
A Probabilistic Approach to Neural Network Pruning

A. Supporting Lemmas
We start by presenting various technical lemmas that support the main proofs. Lemma 1 shows the expectation of moments
of order statistics of the uniform distribution. This lemma is used in the magnitude-based pruning result of FCNs.

Lemma 1. Given n independent and identically distributed random variables U1, . . . , Un „ U r´a, as and Xi “ U2
i , i P

rns, we have

EXprq “ a2
pr ` 1qr

pn` 2qpn` 1q
and EX2

prq “ a4
pr ` 3qpr ` 2qpr ` 1qr

pn` 4qpn` 3qpn` 2qpn` 1q
,

where r ď n is a constant and Xp1q ď ¨ ¨ ¨ ď Xpnq are order statistics of X1, . . . , Xn.

Proof. Note that for 0 ď x ď a2, we have F pxq fi P pXi ď xq “ P
`

U2
i ď x

˘

“ P p´
?
x ď Ui ď

?
xq “

?
x
a . Therefore,

the probability density function of Xprq is given by

fprqpxq “
n!

pr ´ 1q!pn´ rq!
rF pxqs

r´1
r1´ F pxqs

n´r
F 1pxq

“
n!

pr ´ 1q!pn´ rq!

„?
x

a

r´1 „

1´

?
x

a

n´r
1

2a
?
x
.

For p P Z, we have

EXp
prq “

ż a2

0

xpfprqpxqdx

“

ż a2

0

xp
n!

pr ´ 1q!pn´ rq!

„?
x

a

r´1 „

1´

?
x

a

n´r
1

2a
?
x

dx

“
n!

pr ´ 1q!pn´ rq!

1

2an

ż a2

0

xpx
r
2´1pa´

?
xqn´rdx

“
n!

pr ´ 1q!pn´ rq!

1

2an

ż 1

0

patq2p`r´2pa´ atqn´r2a2tdt

“
a2pn!

pr ´ 1q!pn´ rq!

ż 1

0

tr`2p´1p1´ tqn´rdt

“
a2pn!

pr ´ 1q!pn´ rq!

pn´ rq!pr ` 2p´ 1q!

pn` 2pq!

“
pr ` 2p´ 1q!n!

pr ´ 1q!pn` 2pq!
a2p.

Specifically, we have EXprq “ a2 pr`1qr
pn`2qpn`1q and EX2

prq “ a4 pr`3qpr`2qpr`1qr
pn`4qpn`3qpn`2qpn`1q .

Next, we present some results for sub-Gaussian random matrices. We first give the definition of sub-Gaussian random
variables in the following.

Definition 1. A random variable X P R is said to be sub-Gaussian with variance proxy σ2 if EX “ 0 and its moment
generating function satisfies

E exp rsXs ď exp

ˆ

σ2s2

2

˙

, @s P R.

In this case, we write X „ subGpσ2q.

Note that subGpσ2q denotes a class of distributions rather than a single distribution. Many common distributions, like
Gaussian and any bounded distributions with zero expectation, all fall into this category. If X „ subGpσ2q, then we have
var pXq “ EX2 ď σ2.
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Lemma 2 (Proposition 2.4 of Rudelson & Vershynin (2010)). Let A be a n1 ˆ n2 random matrix whose entries are
independent mean zero sub-Gaussian random variables whose sub-Gaussian variance proxy are bounded by 1. Then there
exists universal positive constants c and C such that, for any t ą 0 we have

P p}A}2 ą C p
?
n1 `

?
n2q ` tq ď 2e´ct

2

. (12)

Lemma 3. Let B be a n1 ˆ n2 random matrix whose entries are independently and identically distributed following
U
”

´ K?
n
, K?

n

ı

, where K is a positive constant and n “ max tn1, n2u. Then there exist positive constants c0 (depends on

K) and δ0 such that }B}2 ď c0 with probability at least 1´ 2e´4δ0n.

Proof. Let us denote A “
?
3n
K B. Then the entries in A are independently and identically distributed following

U
“

´
?

3,
?

3
‰

, which belongs to the sub-Gaussian distribution with variance proxy 1. Applying Lemma 2, we know
that there exist positive constants C and δ0 such that

P
`

}A}2 ą 2C
?
n` t

˘

ď P p}A}2 ą C p
?
n1 `

?
n2q ` tq ď 2e´δ0t

2

.

Taking t “ 2
?
n, we have

P
ˆ

}B}2 ą
2K
?

3
pC ` 1q

˙

“ P
ˆ

K
?

3n
}A}2 ą

2K
?

3
pC ` 1q

˙

“ P
`

}A}2 ą 2
?
n pC ` 1q

˘

ď 2e´4δ0n,

and therefore

P p}B}2 ď c0q ě 1´ 2e´4δ0n,

where c0 “ 2K?
3
pC ` 1q ą 0.

In the two lemmas above, we assume certain distributions for the entries in the random matrices. The following lemma is
more general in the sense that it only requires the entries in the matrices to be independent.

Lemma 4 (Theorem 2 of Latała (2005)). Let A be a random matrix whose entries Ai,j are independent mean zero random
variables with finite fourth moment. Then

E }A}2 ď C

»

–max
i

˜

ÿ

j

EA2
i,j

¸
1
2

`max
j

˜

ÿ

i

EA2
i,j

¸
1
2

`

˜

ÿ

i,j

EA4
i,j

¸
1
4

fi

fl , (13)

where C is an universal positive constant.

The proofs of the main theorems in this paper heavily rely on Lemmas 3 and 4. Note that there are some universal constants
in the statement of these two lemmas that all appear in the bounds of the main theorems. Thus we give a numerical study of
these two lemmas in Appendix D.3 and D.4.

Lemma 5 (Chernoff Bound). Suppose X1, . . . , Xm are independent random variables taking values in t0, 1u. Let
X :“

řm
i“1Xi and µ :“ EX . Then for any δ ą 0, we have

P pX ě p1` δqµq ď exp

ˆ

´
δ2

1` δ
µ

˙

. (14)

The next lemma results from the famous problem “balls-into-bins.” This is a classic problem in probability theory that has
many applications in computer science. See the survey paper by Richa et al. (2001) for more details.

Lemma 6. Consider the problem of throwing N balls independently and uniformly at random into n bins. Let Xj be the
random variable that counts the number of balls in the j-th bin, 1 ď j ď n. If N ě n logpnq, then with probability at least
1´ n´

1
3 we have maxjPrnsXj ď

3N
n .
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Proof. Let Xij be the indicator random variable for the event that the i-th ball falls into the j-th bin, i P rN s, j P rns. Then
EXj “

řN
i“1 EXij “

N
n , j P rns. Note that µ “ N

n ě logpnq, applying Lemma 5 with δ “ 2, we have

P
ˆ

Xj ě 3
N

n

˙

ď exp

ˆ

´
4

3
µ

˙

ď exp

ˆ

´
4

3
logpnq

˙

“ n´
4
3 .

By the union bound we have

P
ˆ

max
jPrns

Xj ě
3N

n

˙

“ P

¨

˝

ď

jPrns

"

Xj ě
3N

n

*

˛

‚ď
ÿ

jPrns

P
ˆ

Xj ě
3N

n

˙

ď n ¨ n´
4
3 “ n´

1
3 ,

and therefore

P
ˆ

max
jPrns

Xj ď
3N

n

˙

ě 1´ n´
1
3 .

The last lemma focuses on the singular values of the matrix representation of convolutional operators. Given a convolutional
tensor F P Rdˆdˆqˆq , the corresponding matrix representation W of F has dimension p2dˆ p2d, where p is the width and
height of the input feature map. Applying the traditional singular value decomposition methods on such a large matrix is
usually time-consuming and computationally-inefficient. Sedghi et al. (2018) provide tools to represent the set of singular
values of W by the joint of sets of singular values of many smaller sub-matrices. This is done by carefully analyzing the
properties of ciuculant-type matrices. We use the following lemma from Sedghi et al. (2018) to calculate the L2 norm of the
weight matrices in CNNs.

Lemma 7 (Theorem 6 of Sedghi et al. (2018)). Let ω “ exp p2πi{pq, where i “
?
´1 and S be the p ˆ p matrix that

represents the discrete Fourier transform

S :“

»

—

–

ω1ˆ1 ¨ ¨ ¨ ω1ˆp

...
. . .

...
ωpˆ1 ¨ ¨ ¨ ωpˆp

fi

ffi

fl

.

Given a tensor F P Rdˆdˆqˆq, let us denote K P Rdˆdˆpˆp as defined in (7) and we denote W˚ P Rdp2ˆdp2 as
the matrix encoding the linear transformation computed by the convolutional layer parameterized by K, as defined in
(8) – (9). Let P pu,vq be the d ˆ d matrix such that the ps, tq-th element of P pu,vq is equal to the pu, vq-th element of
STKs,t,:,:S, u, v P rps, s, t, P rds, or equivalently

P
pu,vq
s,t “

`

STKs,t,:,:S
˘

u,v
, u, v P rps, s, t, P rds.

Then
}W˚}2 “ max

u,vPrps

!
›

›

›
P pu,vq

›

›

›

2

)

.

B. Proofs
In this section, we provide the full proof of Theorems 1, 2, and 3. Note that the proofs of these three theorems are similar.
Theorem 2 exhibits all ideas and thus it is presented in full. The proofs of the other theorems show the difference.

B.1. Proof of Theorem 2

Proof. For any x P Bd0 and 1 ď k ă l, we denote ykpxq :“ σk pWkσk´1 p¨ ¨ ¨W2σ1 pW1xqqq and y˚k pxq :“
σk pW

˚
k σk´1 p¨ ¨ ¨W

˚
2 σ1 pW

˚
1 xqqq as the output of the k-th layer of f and F , respectively.

Recall that we set M1 and Ml as the all 1 matrices, i.e. W1 “W˚
1 and Wl “W˚

l . For each 1 ă k ă l, we order the entries
of W˚

k by their absolute values such that
ˇ

ˇ

ˇ
pW˚

k qik1 ,j
k
1

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
pW˚

k qik2 ,j
k
2

ˇ

ˇ

ˇ
ď ¨ ¨ ¨ ď ¨ ¨ ¨ ď

ˇ

ˇ

ˇ
pW˚

k qikDk ,j
k
Dk

ˇ

ˇ

ˇ
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and denote Ik :“
 

piks , j
k
s q : 1 ď s ď tD1´α

k u
(

. We set pMkqi,j “ 0 if pi, jq P Ik, and pMkqi,j “ 1 otherwise. We further
denote two events

Apkqr :“
 

the number of zero entries in each row of Mk is at most 3tD1´α
k u{dk

(

,

Apkqc :“
 

the number of zero entries in each column of Mk is at most 3tD1´α
k u{dk´1

(

and set event Apkq :“ A
pkq
r

Ş

A
pkq
c . Note that (3) and (4) guarantee that tD1´α

k u ě dk log pdkq and D1´α
k ě

dk´1 log pdk´1q, respectively, and the events Apkqr and Apkqc are independent. Thus by Lemma 6, we have

P
´

Apkq
¯

“ P
´

Apkqr
č

Apkqc

¯

“ P
´

Apkqr

¯

P
´

Apkqc

¯

ě

´

1´ d
´ 1

3

k

¯´

1´ d
´ 1

3

k´1

¯

ě

´

1´ d´
1
3

¯2

.

Further, for A :“ Ap2q
Ş

¨ ¨ ¨
Ş

Apl´1q, we have P pAq “
śl´1
k“2 P

`

Apkq
˘

ě

´

1´ d´
1
3

¯2pl´2q

where the probability is
taken over the randomness of masks (and is not over the randomness of weights in W˚

k ’s).

Let us assume that

d´
1
4α ď min

"

N2, . . . , Nl´1,
ε

p2l´2 ´ 1qL1:l´1N1:l

*

. (15)

We use induction to show that, for any x P Bd0 and 1 ď k ă l,

(I) with probability at least
śk
i“1 p1´ δiq, we have }y˚k pxq}2 ď L1:kN1:k,

(II) with probability at least 1´ pk´ 1qc2d
´α4 ´ 2pk´ 1qd´

1
3 ´

řk
i“1pk` 1´ iqδi, we have

›

›

`

ykpxq
ˇ

ˇA
˘

´ y˚k pxq
›

›

2
ď

`

2k´1 ´ 1
˘

d´
1
4αL1:kN1:k for some positive constant c2 specified later8.

The case of k “ 1 is as follows. Note that for any vector v, we have }σ1pvq}2 “ }σ1pvq ´ σ1p0q}2 ď L1 }v ´ 0}2 “ L1 }v}2.
Thus, }y˚1 pxq}2 “ }σ1 pW

˚
1 xq}2 ď L1 }W

˚
1 x}2 ď L1 }W

˚
1 }2 }x}2 ď L1N1 with probability at least 1 ´ δ1. Further, we

have y1pxq “ σ1 pW1xq “ σ1 pW
˚
1 xq “ y˚1 pxq, and thus }y1pxq ´ y˚1 pxq}2 “ 0.

Suppose the statement holds for 1 ď k ă l ´ 1; we consider the case of k ` 1. Note that the events
!

›

›W˚
k`1

›

›

2
ď Nk`1

)

and
 

}y˚k pxq}2 ď L1:kN1:k

(

are independent. By induction statement (I), with probability at least

P
´

 
›

›W˚
k`1

›

›

2
ď Nk`1

(

č

 

}y˚k pxq}2 ď L1:kN1:k

(

¯

“ P
`
›

›W˚
k`1

›

›

2
ď Nk`1

˘

¨P
`

}y˚k pxq}2 ď L1:kN1:k

˘

ě

k
ź

i“1

p1´ δiq ,

we have
›

›y˚k`1pxq
›

›

2
“
›

›σk`1

`

W˚
k`1y

˚
k pxq

˘
›

›

2
ď Lk`1

›

›W˚
k`1y

˚
k pxq

›

›

2
ď Lk`1

›

›W˚
k`1

›

›

2
}y˚k pxq}2

ď Lk`1Nk`1 ¨ L1:kN1:k “ L1:k`1N1:k`1,

which shows (I) in the induction statement.

We next show that (II) holds. Under event A, the number of non-zero entries in each row of Wk`1 is at most 3tD1´α
k`1 u{dk`1.

Thus we have

max
iPrdk`1s

¨

˝

ÿ

jPrdks

E
”

pWk`1q
2
i,j

ˇ

ˇ

ˇ
A
ı

˛

‚

1
2

ď

˜

3tD1´α
k`1 u

dk`1
¨

K1

max tdk`1, dku

¸
1
2

ď

˜

3K1D
1´α
k`1

dk`1dk

¸
1
2

“
a

3K1D
´α2
k`1 ď

a

3K1d
´α,

(16)

8Note that in the induction statement (II), the probability (and the expectations in the following context) is taken over the randomness of
weights but not the masks. The random variable

›

›

`

ykpxq
ˇ

ˇA
˘

´ y˚k pxq
›

›

2
is equivalent to

›

›ykpxq ´ y
˚
k pxq

›

›

2

ˇ

ˇ

ˇ
A, and the statement can also

be written as P
´!

›

›ykpxq ´ y
˚
k pxq

›

›

2
ď

`

2k´1
´ 1

˘

d´
1
4
αL1:kN1:k

)
ˇ

ˇ

ˇ
A
¯

ě 1´ pk´ 1qc2d
´α

4 ´ 2pk´ 1qd´
1
3 ´

řk
i“1pk` 1´ iqδi.
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and similarly,

max
jPrdks

¨

˝

ÿ

iPrdk`1s

E
”

pWk`1q
2
i,j

ˇ

ˇ

ˇ
A
ı

˛

‚

1
2

ď
a

3K1d
´α. (17)

In addition, since there are at most tD1´α
k`1 u non-zero entries in Wk`1 :“Wk`1 ´W

˚
k`1, we have

ÿ

iPrdk`1s,jPrdks

E
„

ˇ

ˇ

ˇ
pWk`1qi,j

ˇ

ˇ

ˇ

4
ˇ

ˇ

ˇ

ˇ

A



ď tD1´α
k`1 u ¨

K2

max tdk`1, dku
2 ď D1´α

k`1

K2

Dk`1
“ K2D

´α
k`1 ď K2d

´2α. (18)

Combining (16) – (18) and Lemma 4, there exists a universal positive constant c1 such that

E r}Wk`1}2|As ď c1

»

—

–

max
iPrdk`1s

¨

˝

ÿ

jPrdks

E pWk`1q
2
i,j

˛

‚

1
2

` max
jPrdks

¨

˝

ÿ

iPrdk`1s

E pWk`1q
2
i,j

˛

‚

1
2

`

¨

˝

ÿ

iPrdk`1s,jPrdks

E pWk`1q
4
i,j

˛

‚

1
4

fi

ffi

fl

ď c1

”

a

3K1d
´α `

a

3K1d
´α `

`

K2d
´2α

˘
1
4

ı

(19)

ď c2d
´α2 ,

where c2 “ c1

´

2
?

3K1 `K
1
4
2

¯

.

By the Markov’s inequality, for all t ą 0 we have

P
´

t}Wk`1}2 ě tu
ˇ

ˇ

ˇ
A
¯

ď
E r}Wk`1}2|As

t
.

Taking t “ d´
α
4 , we have

P
´

 

}Wk`1}2 ď d´
α
4

(

ˇ

ˇ

ˇ
A
¯

ě 1´ c2d
´α4 .

By induction statement (II) and the fact that P p
Şs
i“1Aiq ě

řs
i“1 P pAiq ´ ps´ 1q, with probability at least9

P
ˆ

 
›

›

`

Wk`1

ˇ

ˇA
˘

´W˚
k`1

›

›

2
ď d´

α
4

(

č

 ›

›W˚
k`1

›

›

2
ď Nk`1

(

č

 

}y˚k pxq}2 ď L1:kN1:k

(

č

!

›

›

`

ykpxq
ˇ

ˇA
˘

´ y˚k pxq
›

›

2
ď
`

2k´1 ´ 1
˘

d´
1
4αL1:kN1:k

)

˙

(20)

ě
`

1´ c2d
´α4

˘

` p1´ δk`1q `

k
ź

i“1

p1´ δiq `

˜

1´ pk ´ 1qc2d
´α4 ´

k
ÿ

i“1

pk ` 1´ iqδi

¸

´ 3

ě
`

1´ c2d
´α4

˘

` p1´ δk`1q `

˜

1´
k
ÿ

i“1

δi

¸

`

˜

1´ pk ´ 1qc2d
´α4 ´

k
ÿ

i“1

pk ` 1´ iqδi

¸

´ 3

“ 1´ kc2d
´α4 ´

k`1
ÿ

i“1

pk ` 2´ iqδi,

9We use the fact that, for any a1, ¨ ¨ ¨ , as P p0, 1q, we have
śs
i“1p1´ aiq ě 1´

řs
i“1 ai. This inequality is frequently used in the

following proofs.
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we have
›

›

`

yk`1pxq
ˇ

ˇA
˘

´ y˚k`1pxq
›

›

2

“
›

›σk`1

``

Wk`1

ˇ

ˇA
˘

ykpxq
˘

´ σk`1

`

W˚
k`1y

˚
k pxq

˘
›

›

2

ď Lk`1

›

›

`

Wk`1

ˇ

ˇA
˘

ykpxq ´W
˚
k`1y

˚
k pxq

›

›

2

ď Lk`1

“›

›

`

Wk`1

ˇ

ˇA
˘

ykpxq ´Wk`1y
˚
k pxq

›

›

2
`
›

›

`

Wk`1

ˇ

ˇA
˘

y˚k pxq ´W
˚
k`1y

˚
k pxq

›

›

2

‰

ď Lk`1

“
›

›

`

Wk`1

ˇ

ˇA
˘
›

›

2
}ykpxq ´ y

˚
k pxq}2 `

›

›

`

Wk`1

ˇ

ˇA
˘

´W˚
k`1

›

›

2
}y˚k pxq}2

‰

ď Lk`1

“`
›

›W˚
k`1

›

›

2
`
›

›

`

Wk`1

ˇ

ˇA
˘

´W˚
k`1

›

›

2

˘

}ykpxq ´ y
˚
k pxq}2 `

›

›

`

Wk`1

ˇ

ˇA
˘

´W˚
k`1

›

›

2
}y˚k pxq}2

‰

ď Lk`1

”´

Nk`1 ` d
´ 1

4α
¯

›

›

`

ykpxq
ˇ

ˇA
˘

´ y˚k pxq
›

›

2
` d´

1
4αL1:kN1:k

ı

(21)

ď Lk`1

”

2Nk`1

›

›

`

ykpxq
ˇ

ˇA
˘

´ y˚k pxq
›

›

2
` d´

1
4αL1:kN1:k

ı

ď Lk`1

”

2Nk`1 ¨
`

2k´1 ´ 1
˘

d´
1
4αL1:kN1:k ` d

´ 1
4αL1:kN1:k

ı

ď Lk`1

”

2Nk`1 ¨
`

2k´1 ´ 1
˘

d´
1
4αL1:kN1:k ` d

´ 1
4αL1:kN1:k`1

ı

“
`

2k ´ 1
˘

d´
1
4αL1:k`1N1:k`1 (22)

where in (21) we use assumption (15). This finishes the induction.

We have just shown that with probability at least 1´ pl ´ 2qc2d
´α4 ´

řl´1
i“1pl ´ iqδi, we have

›

›

`

yl´1pxq
ˇ

ˇA
˘

´ y˚l´1pxq
›

›

2
ď
`

2l´2 ´ 1
˘

d´
1
4αL1:l´1N1:l´1.

For the last layer, by assumption, with probability at least p1´ δlq ¨
”

1´ pl ´ 2qc2d
´α4 ´

řl´1
i“1pl ´ iqδi

ı

, we have for
every x P Bd0 ,

›

›

`

fpxq
ˇ

ˇA
˘

´ F pxq
›

›

2
“
›

›Wl

`

yl´1pxq
ˇ

ˇA
˘

´W˚
l y
˚
l´1pxq

›

›

2

“
›

›W˚
l

`

yl´1pxq
ˇ

ˇA
˘

´W˚
l y
˚
l´1pxq

›

›

2

ď }W˚
l }2

›

›

`

yl´1pxq
ˇ

ˇA
˘

´ y˚l´1pxq
›

›

2

ď Nl
`

2l´2 ´ 1
˘

d´
1
4αL1:l´1N1:l´1

“
`

2l´2 ´ 1
˘

d´
1
4αL1:l´1N1:l

ď ε,

where the last inequality follows from assumption (15). In conclusion, with probability at least P pAq ě
´

1´ d´
1
3

¯2pl´2q

over the randomness of masks, we have supxPBd0

›

›

`

fpxq
ˇ

ˇA
˘

´ F pxq
›

›

2
ď ε with probability at least p1´ δlq ¨

”

1´ pl ´ 2qc2d
´α4 ´

řl´1
i“1pl ´ iqδi

ı

. As a result, basic probability yields that with probability at least

p0 :“
´

1´ d´
1
3

¯2pl´2q

p1´ δlq

«

1´ pl ´ 2qc2d
´α4 ´

l´1
ÿ

i“1

pl ´ iqδi

ff

,

we have
sup
xPBd0

}fpxq ´ F pxq}2 ď ε.

It remains to determine a lower bound of d such that

d´
1
4α ď min

"

N2, . . . , Nl´1,
ε

p2l´2 ´ 1qL1:l´1N1:l

*

(23)
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and
p0 ě 1´ δ. (24)

For (23), we have

d ě N
´ 4
α

k , 2 ď k ď l ´ 1 and d ě
``

2l´2 ´ 1
˘

L1:l´1N1:l

˘

4
α ¨ ε´

4
α . (25)

Regarding (24), condition (5) guarantees that δ0 “ δ ´
”

δl `
řl´1
i“1pl ´ iqδi

ı

ě 0. We have

2pl ´ 2qd´
1
3 ď

2

3
δ0 ô d ě δ´3

0 p3pl ´ 2qq
3
, (26)

pl ´ 2qc2d
´α4 ď

1

3
δ0 ô d ě δ

´ 4
α

0 p3c2pl ´ 2qq
4
α . (27)

Combining (25) - (27), we know that if

d ě max

#

C
4
α
1 ,

ˆ

C2

ε

˙
4
α

,

ˆ

C3

δ0

˙3

,

ˆ

C4

δ0

˙
4
α

+

,

for some positive constant C1, C2, C3 and C4, then with probability at least

p0 “
´

1´ d´
1
3

¯2pl´2q

p1´ δlq ¨

«

1´ pl ´ 2qc2d
´α4 ´

l´1
ÿ

i“1

pl ´ iqδi

ff

ě 1´ pl ´ 2qc2d
´α4 ´ 2pl ´ 2qd´

1
3 ´

«

δl `
l´1
ÿ

i“1

pl ´ iqδi

ff

ě 1´
2

3
δ0 ´

1

3
δ0 ´ pδ ´ δ0q

“ 1´ δ,

we have
sup
xPBd0

}fpxq ´ F pxq}2 ď ε.

B.2. Proof of Theorem 1

Proof. For any x P Bd0 and 1 ď k ă l, we denote ykpxq “ σ pWkσ p¨ ¨ ¨W2σ pW1xqqq and y˚k pxq “

σ pW˚
k σ p¨ ¨ ¨W

˚
2 σ pW

˚
1 xqqq as the output of the k-th layer of f and F , respectively.

Recall that we set M1 and Ml as the all 1 matrices, i.e. W1 “W˚
1 and Wl “W˚

l . For each 1 ă k ă l, we order the entries
of W˚

k by their absolute values such that
ˇ

ˇ

ˇ
pW˚

k qik1 ,j
k
1

ˇ

ˇ

ˇ
ď

ˇ

ˇ

ˇ
pW˚

k qik2 ,j
k
2

ˇ

ˇ

ˇ
ď ¨ ¨ ¨ ď ¨ ¨ ¨ ď

ˇ

ˇ

ˇ
pW˚

k qikDk ,j
k
Dk

ˇ

ˇ

ˇ

and denote Ik :“
 

piks , j
k
s q : 1 ď s ď tD1´α

k u
(

. We set pMkqi,j “ 0 if pi, jq P Ik, and pMkqi,j “ 1 otherwise. In the
following, we show that M1, . . . ,Ml defined above satisfy (2).

By Lemma 3, there exist positive constants c0 (depends on K) and δ0 such that10

P
`

}W˚
k }2 ď c0

˘

ě 1´ 2e´4δ0d, 1 ď k ď l. (28)

10In fact, we get l different sets of tci, δiu , i P rls by applying Lemma 3 l times. We take c0 “ max tciu and δ0 “ min tδiu so that
(28) is satisfied for all 1 ď k ď l.
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Let us assume that

d´α ď min

#

c0,
ε

p2l´2 ´ 1qL1:pl´1qc
l´1
0

+

. (29)

We use induction to show that, for any x P Bd0 and 1 ď k ă l,

(I) with probability at least
`

1´ 2e´4δ0d
˘k

, we have }y˚k pxq}2 ď L1:kc
k
0

(II) with probability at least 1 ´ pk ´ 1qc2d
´α ´ pk ` 2qpk ´ 1qe´4δ0d, we have }ykpxq ´ y

˚
k pxq}2 ď

`

2k´1 ´ 1
˘

d´αL1:kc
k´1
0 .

Statement (I) can be proved in the same way as in the proof of Theorem 2. We next show that (II) holds. The case of
k “ 1 is trivial since y1pxq “ y˚1 pxq. Suppose the statement holds for 1 ď k ă l ´ 1; we consider the case of k ` 1. Note

that the non-zero entries of Wk`1 :“ Wk`1 ´W˚
k`1 are

!

`

W˚
k`1

˘

i,j
: pi, jq P Ik`1

)

. Taking a “ K?
maxtdk,dk`1u

, n “

Dk`1, r “ tD1´α
k`1 u in Lemma 1, for every entry e of Wk`1, we have

E e2 ď E

ˇ

ˇ

ˇ

ˇ

ˇ

`

W˚
k`1

˘

ik`1

tD
1´α
k`1

u
,jk`1

tD
1´α
k`1

u

ˇ

ˇ

ˇ

ˇ

ˇ

2

“
K2

max tdk, dk`1u
¨
tD1´α

k`1 u
`

tD1´α
k`1 u` 1

˘

pDk`1 ` 1qpDk`1 ` 2q

ď
K2

max tdk, dk`1u
¨

D1´α
k`1

`

D1´α
k`1 ` 1

˘

pDk`1 ` 1qpDk`1 ` 2q
ď

K2

max tdk, dk`1u
¨ 2D´2α

k`1 ď 2K2d´1´4α,

and similarly

E e4 ď E

ˇ

ˇ

ˇ

ˇ

ˇ

`

W˚
k`1

˘

ik`1

tD
1´α
k`1

u
,jk`1

tD
1´α
k`1

u

ˇ

ˇ

ˇ

ˇ

ˇ

4

ď 24K4d´2´8α.

Taking A “ Wk`1 in Lemma 4, we know there exists a constant c2 ą 0 such that E }Wk`1}2 ď c2d
´2α, where

c2 “ CK
`

2
?

2` p24q1{4
˘

and C is the universal constant as defined in Lemma 4. By Markov’s inequality, for all t ą 0

we have P p}Wk`1}2 ě tq ď
E}Wk`1}2

t . Taking t “ d´α, we have

P
`

}Wk`1}2 ď d´α
˘

ě 1´ c2d
´α.

Similar to (20) – (22) in the proof of Theorem 2, with probability at least

P
ˆ

 
›

›Wk`1 ´W
˚
k`1

›

›

2
ď d´α

(

č

 
›

›W˚
k`1

›

›

2
ď c0

(

č

!

›

›y˚k pxq
›

›

2
ď L1:kc

k
0

)

č

!

›

›ykpxq ´ y
˚
k pxq

›

›

2
ď

´

2k´1
´ 1

¯

d´αL1:kc
k´1
0

)

˙

(30)

ě
`

1´ c2d
´α

˘

`

´

1´ 2e´4δ0d
¯

`

´

1´ 2e´4δ0d
¯k

`

´

1´ pk ´ 1qc2d
´α
´ pk ` 2qpk ´ 1qe´4δ0d

¯

´ 3

ě 1´ kc2d
´α
´ pk ` 3qke´4δ0d,

we have
›

›yk`1pxq ´ y
˚
k`1pxq

›

›

2
ď
`

2k ´ 1
˘

d´αL1:pk`1qc
k
0 ,

which finishes the induction.

We have just shown that with probability at least 1´ pl ´ 2qc2d
´α ´ pl ` 1qpl ´ 2qe´4δ0d, we have

›

›yl´1pxq ´ y
˚
l´1pxq

›

›

2
ď
`

2l´2 ´ 1
˘

d´αL1:pl´1qc
l´2
0 .

For the last layer, by (28), with probability at least
`

1´ 2e´4δ0d
˘

¨
`

1´ pl ´ 2qc2d
´α ´ pl ` 1qpl ´ 2qe´4δ0d

˘

, we have
for every x P Bd0 ,

}fpxq ´ F pxq}2 ď c0 ¨
`

2l´2 ´ 1
˘

d´αL1:pl´1qc
l´2
0 ď ε,
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where the last inequality follows from assumption (29). In conclusion, we show that with probability at least

p0 :“
`

1´ 2e´4δ0d
˘

¨
`

1´ pl ´ 2qc2d
´α ´ pl ` 1qpl ´ 2qe´4δ0d

˘

,

we have
sup
xPBd0

}fpxq ´ F pxq}2 ď ε.

It remains to determine a lower bound of d such that

d´α ď min

#

c0,
ε

p2l´2 ´ 1qL1:pl´1qc
l´1
0

+

(31)

and
p0 ě 1´ δ. (32)

For (31), we have

d ě c
´ 1
α

0 and d ě

˜

`

2l´2 ´ 1
˘

L1:pl´1qc
l´1
0

ε

¸
1
α

. (33)

Regarding (32), we have p0 ě 1 ´ pl ´ 2qc2d
´α ´ pl2 ´ lqe´4δ0d. Note that p0 ě 1 ´ δ if pl ´ 2qc2d

´α ď l´2
l2´2δ and

pl2 ´ lqe´4δ0d ď l2´l
l2´2δ. These conditions are satisfied if

d ě

ˆ

pl2 ´ 2qc2
δ

˙

1
α

(34)

and

d ě
1

4δ0

ˆ

log

ˆ

1

δ

˙

` logpl2 ´ 2q

˙

. (35)

Combining (33) - (35), we know that if

d ě max

#

C
1
α
1 ,

ˆ

C2

ε

˙
1
α

,

ˆ

C3

δ

˙
1
α

, C4 ` C5 log

ˆ

1

δ

˙

+

,

for some positive constants C1, C2, C3, C4 and C5 specified above, then with probability at least 1´ δ we have

sup
xPBd0

}fpxq ´ F pxq}2 ď ε.

B.3. Proof of Theorem 3

Proof. Let F pkq P Rdkˆdk´1ˆqkˆqk be the corresponding convulotional tensor of W˚
k and Kpkq P Rdkˆdk´1ˆpkˆpk

be as defined in (7). For any x P Cd0 and 1 ď k ă l, we denote ykpxq “ σ pWkσ p¨ ¨ ¨W2σ pW1xqqq and y˚k pxq “
σ pW˚

k σ p¨ ¨ ¨W
˚
2 σ pW

˚
1 xqqq as the output of the k-th layer of f and F , respectively.

Recall that for 1 ă k ă l, random pruning is based on 2D filters, i.e., we randomly select td2´αu pairs of indices ps1, t1q
from rds ˆ rds with replacement and set F pkqs1,t1,:,: to be zero. Denote Ik :“

!

ps1, t1q : F pkqs1,t1,:,: is pruned
)

and Mpkq be the

dˆ d matrix such that Mpkq
s1,t1 “ 1 if ps1, t1q P Ik and Mpkq

s1,t1 “ 0 otherwise. We further denote two events

Apkqr :“
!

the number of zero entries in each row of Mpkq is at most 3td2´αu{d
)

,

Apkqc :“
!

the number of zero entries in each column of Mpkq is at most 3td2´αu{d
)
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and set event Apkq :“ A
pkq
r

Ş

A
pkq
c . Note that α ď 2´ logpd`1q`logp2qpdq

logpdq guarantees that td2´αu ě d logpdq and the events

A
pkq
r and Apkqc are independent. Thus by Lemma 6, we have

P
´

Apkq
¯

“ P
´

Apkqr
č

Apkqc

¯

“ P
´

Apkqr

¯

P
´

Apkqc

¯

ě

´

1´ d´
1
3

¯2

.

Further, for A :“ Ap2q
Ş

¨ ¨ ¨
Ş

Apl´1q, we have P pAq “
śl´1
k“2 P

`

Apkq
˘

ě

´

1´ d´
1
3

¯2pl´2q

where the probability is
taken over the randomness of masks (and is not over the randomness of weights in W˚

k ’s).

For 1 ď k ă l, let P pk,u,vq P Rdˆd, u, v P rps be as defined in Lemma 7 such that11

}W˚
k }2 “ max

u,vPrps

!
›

›

›
P pk,u,vq

›

›

›

2

)

.

Recall that ω “ exp
`

2π
?
´1{p

˘

and S P Rpˆp is the matrix of the discrete Fourier transform. By Lemma 7, the ps, tq-th
entry of P pk,u,vq can be written as

P
pk,u,vq
s,t “

`

STKs,t,:,:S
˘

u,v
“

ÿ

i,jPrps

ωuiK
pkq
s,t,i,jω

vj “
ÿ

i,jPrqs

ωuiK
pkq
s,t,i,jω

vj , s, t P rds, u, v P rps,

where the last equality is due to (7) since Kpkqs,t,:,: has non-zero entries only in its top-left q ˆ q sub-matrix.

Denoting P pk,u,v,i,jq :“ ωui`vjK
pkq
:,:,i,j , u, v P rps, i, j P rqs, then we have P pk,u,vq :“

ř

i,jPrqs P
pk,u,v,i,jq and

›

›

›
P pk,u,v,i,jq

›

›

›

2
“

›

›

›
ωui`vjK

pkq
:,:,i,j

›

›

›

2
“

›

›

›
K
pkq
:,:,i,j

›

›

›

2
“

›

›

›
F pkq:,:,i,j

›

›

›

2
, u, v P rps, i, j P rqs.

By assumption (iii), F pkq:,:,i,j P Rdˆd is a random matrix whose entries are independently sampled from different distributions.
In addition, these distributions’ second-order moments are upper-bounded by C1

p2d and the fourth-order moments are
upper-bounded by C2

p4d2 . By Lemma 4, for all i, j P rqs, there exists a universal constant C ą 0 such that

E
›

›

›
F pkqi,j,:,:

›

›

›

2
ď C

«

ˆ

d
C1

p2d

˙
1
2

`

ˆ

d
C1

p2d

˙
1
2

`

ˆ

d2
C2

p4d2

˙
1
4

ff

ď
C3

p
, (36)

where C3 “ C
´

2
?
C1 ` C

1{4
2

¯

.

Thus we have

E }W˚
k }2 ď max

u,vPrps

!

E
›

›

›
P pk,u,vq

›

›

›

2

)

ď max
u,vPrps

$

&

%

ÿ

i,jPrqs

E
›

›

›
P pk,u,v,i,jq

›

›

›

2

,

.

-

“ max
u,vPrps

$

&

%

ÿ

i,jPrqs

E
›

›

›
F pkq:,:,i,j

›

›

›

2

,

.

-

ď C3
q2

p
. (37)

By the Markov’s inequality, we have

P
`

}W˚
k }2 ď p´β1

˘

ě 1´ C3
q2

p1´β1
. (38)

We use induction to show that, for any x P Cp20d0 and 1 ď k ă l, we have

(I) with probability at least
´

1´ C3
q2

p1´β1

¯k

, we have }y˚k pxq}2 ď
`

Lp´β1
˘k
p0
?
d0,

11Note that the dimension of W˚
1 and W˚

l are not p2dˆ p2d and thus we cannot apply Lemma 7 directly. However, we can always
embed them into a p2dˆ p2d matrix. For example, we can define ĂW˚

l “ rW
˚
l ,0p2dˆp2pd´dlqs and apply Lemma 7 on ĂW˚

l . We use the

fact that
›

›W˚
l

›

›

2
ď

›

›

›

ĂW˚
l

›

›

›

2
to get the same result.
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(II) with probability at least 1 ´ pk ´ 1qC4
q2

p d
´ 1

4α`β2 ´ k2`k´2
2 C3

q2

p1´β1
, we have

›

›

`

ykpxq
ˇ

ˇA
˘

´ y˚k pxq
›

›

2
ď

´

p´β1
`

p´β1 ` d´β2
˘k´1

´ p´kβ1

¯

Lkp0
?
d0 holds for some positive constant C4 specified later12.

The case of k “ 1 is as follows. With probability at least 1´ C3
q2

p1´β1
, we have }y˚1 pxq}2 “ }σ pW

˚
1 xq}2 ď L }W˚

1 x}2 ď

L }W˚
1 }2 }x}2 ď Lp´β1p0

?
d0. Further, we have y1pxq “ σ pW1xq “ σ pW˚

1 xq “ y˚1 pxq, and thus }y1pxq ´ y˚1 pxq}2 “
0.

Suppose the statement holds for 1 ď k ă l ´ 1, we consider the case of k ` 1. Note that the events
!

›

›W˚
k`1

›

›

2
ď p´β1

)

and
!

}y˚k pxq}2 ď
`

Lp´β1
˘k
p0
?
d0

)

are independent. By (38) and the induction statement (I), with probability at least

P
`
›

›W˚
k`1

›

›

2
ď p´β1

˘

P
´

}y˚k pxq}2 ď
`

Lp´β1
˘k
p0
a

d0

¯

ě

ˆ

1´ C3
q2

p1´β1

˙k`1

,

we have
›

›y˚k`1pxq
›

›

2
“
›

›σ
`

W˚
k`1y

˚
k pxq

˘
›

›

2
ď L

›

›W˚
k`1y

˚
k pxq

›

›

2
ď L

›

›W˚
k`1

›

›

2
}y˚k pxq}2

ď Lp´β1 ¨
`

Lp´β1
˘k
p0
a

d0 “
`

Lp´β1
˘k`1

p0
a

d0,

which shows (I) in the induction statement.

We use a similar approach as in the proof for Theorem 2 to show that (II) holds. Let us denote K
pk`1q

:,:i,j :“ Mpk`1q ˝

K
pk`1q
:,:,i,j , i, j P rps, i.e.,K

pk`1q

s1,t1,:,: “ K
pk`1q
s1,t1,:,: if ps1, t1q P Ik`1 andK

pk`1q

s1,t1,:,: “ 0pˆp otherwise. ThenW k`1 :“W˚
k`1´Wk`1

can be represented by

W k`1 “

»

—

—

–

B
pk`1q

1,1 ¨ ¨ ¨ B
pk`1q

1,d
...

. . .
...

B
pk`1q

d1,1 ¨ ¨ ¨ B
pk`1q

d1,d

fi

ffi

ffi

fl

, (39)

where each B
pk`1q

s,t is a doubly block circulant matrix such that

B
pk`1q

s,t “

»

—

—

—

—

—

—

–

circ
´

K
pk`1q

s,t,1,:

¯

circ
´

K
pk`1q

s,t,2,:

¯

¨ ¨ ¨ circ
´

K
pk`1q

s,t,p,:

¯

circ
´

K
pk`1q

s,t,p,:

¯

circ
´

K
pk`1q

s,t,1,:

¯

¨ ¨ ¨ circ
´

K
pk`1q

s,t,p´1,:

¯

...
...

. . .
...

circ
´

K
pk`1q

s,t,2,:

¯

circ
´

K
pk`1q

s,t,3,:

¯

¨ ¨ ¨ circ
´

K
pk`1q

s,t,1,:

¯

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (40)

Again, let P
pk`1,u,vq

P Rdˆd, u, v P rps be such that

P
pk`1,u,vq

s,t “

´

STK
pk`1q

s,t,:,: S
¯

u,v
“

ÿ

i,jPrqs

ωuiK
pk`1q

s,t,i,jω
vj , s, t P rds, u, v P rps,

and we denote P
pk`1,u,v,i,jq

:“ ωui`vjK
pk`1q

:,:,i,j , u, v P rps, i, j P rqs. Then we have P
pk`1,u,vq

“
ř

i,jPrqs P
pk`1,u,v,i,jq

and
›

›

›
P
pk`1,u,v,i,jq

›

›

›

2
“

›

›

›
ωui`vjK

pk`1q

:,:,i,j

›

›

›

2
“

›

›

›
K
pk`1q

:,:,i,j

›

›

›
, u, v P rps, i, j P rqs.

12Note that in induction statement (II), the probability (and the expectations in the following context) is taken over the randomness of
weights but not the masks, the random variable

›

›

`

ykpxq
ˇ

ˇA
˘

´ y˚k pxq
›

›

2
is equivalent to

›

›ykpxq ´ y
˚
k pxq

›

›

2

ˇ

ˇA. Further, the statement can
also be written as

P
ˆ"

›

›ykpxq ´ y
˚
k pxq

›

›

2
ď

ˆ

p´β1
´

p´β1 ` d´β2
¯k´1

´ p´kβ1
˙

Lkp0
?
d0

*

ˇ

ˇ

ˇ
A

˙

ě 1´ pk ´ 1qC4
q2

p
d´

1
4
α`β2 ´

k2 ` k ´ 2

2
C3

q2

p1´β1
.
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By assumption (iii), every entry of K
pk`1q

:,:,i,j follows a distribution such that the second-order moment is upper-bounded by
C1

p2d and the fourth-order moment is upper-bounded by C2

p4d2 . Under event A, that the number of non-zero entries in K
pk`1q

:,:,i,j

is at most td2´αu and the number of non-zero entries in each row/column of K
pk`1q

:,:,i,j is at most 3td2´αu{d, by Lemma 4 and
a similar derivation to (16) – (19), we have

E
”
›

›

›
K
pk`1q

:,:,i,j

›

›

›

2

ˇ

ˇ

ˇ
A
ı

ď
C4

p
d´

1
4α,

where C4 “ C
´

2 p3C1q
1
2 ` C

1
4
2

¯

and C is the universal constant as defined in Lemma 4.

By Lemma 7, we have

E
“
›

›W˚
k`1 ´Wk`1

›

›

2

ˇ

ˇA
‰

“ E
“
›

›W k`1

›

›

2

ˇ

ˇA
‰

“ max
u,vPrps

!

E
”
›

›

›
P
pk`1,u,vq

›

›

›

2

ˇ

ˇ

ˇ
A
ı)

ď max
u,vPrps

$

&

%

ÿ

i,jPrqs

E
”
›

›

›
P
pk`1,u,v,i,jq

›

›

›

2

ˇ

ˇ

ˇ
A
ı

,

.

-

“ max
u,vPrps

$

&

%

ÿ

i,jPrqs

E
”
›

›

›
K
pk`1q

:,:,i,j

›

›

›

2

ˇ

ˇ

ˇ
A
ı

,

.

-

ď C4
q2

p
d´

1
4α.

By the Markov’s inequality, for all t ą 0 we have

P
´

 
›

›W˚
k`1 ´Wk`1

›

›

2
ě t

(

ˇ

ˇ

ˇ
A
¯

ď
E
”

›

›W˚
k`1 ´Wk`1

›

›

2

ˇ

ˇ

ˇ
A
ı

t
.

Taking t “ d´β2 , we have

P
´

 
›

›W˚
k`1 ´Wk`1

›

›

2
ď d´β2

(

ˇ

ˇ

ˇ
A
¯

ě 1´ C4
q2

p
d´

1
4α`β2 .

Similar to (20) – (22) in the proof of Theorem 2, with probability at least

P
ˆ

 
›

›

`

Wk`1

ˇ

ˇA
˘

´W˚
k`1

›

›

2
ď d´β2

(

č

 
›

›W˚
k`1

›

›

2
ď p´β1

(

č

!

}y˚k pxq}2 ď
`

Lp´β1
˘k
p0
?
d
)

č

!

›

›

`

ykpxq
ˇ

ˇA
˘

´ y˚k pxq
›

›

2
ď

´

p´β1
`

p´β1 ` d´β2
˘k´1

´ p´kβ1

¯

Lkp0
a

d0

)

˙

(41)

ě

ˆ

1´ C4
q2

p
d´

1
4α`β2

˙

`

ˆ

1´ C3
q2

p1´β1

˙

`

ˆ

1´ C3
q2

p1´β1

˙k

`

ˆ

1´ pk ´ 1qC4
q2

p
d´

1
4α`β2 ´

k2 ` k ´ 2

2
C3

q2

p1´β1

˙

´ 3

“ 1´ kC4
q2

p
d´

1
4α`β2 ´

pk ` 1q2 ` pk ` 1q ´ 2

2
C3

q2

p1´β1
,

we have
›

›

`

yk`1pxq
ˇ

ˇA
˘

´ y˚k`1pxq
›

›

2
ď Lk`1p0

?
d
”

p´β1
`

p´β1 ` d´β2
˘k
´ p´pk`1qβ1

ı

,

which finishes the induction.

We have just shown that with probability at least 1´ pl ´ 2qC4
q2

p d
´ 1

4α`β2 ´ l2´l´2
2 C3

q2

p1´β1
, we have

›

›

`

yl´1pxq
ˇ

ˇA
˘

´ y˚l´1pxq
›

›

2
ď Ll´1p0

?
d
”

p´β1
`

p´β1 ` d´β2
˘l´2

´ p´pl´1qβ1

ı

.
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Note that the last layer of F is a fully-connected layer with dimension p2dˆ dl. By Lemma 4, the Markov’s inequality, and
a similar derivation to (36) – (37), there exists a positive constant C5 such that P

`

}W˚
l } ď p´β1

˘

ě 1´ C5

p1´β1
. Therefore,

with probability at least
ˆ

1´
C5

p1´β1

˙

¨

ˆ

1´ pl ´ 2qC4
q2

p
d´

1
4α`β2 ´

l2 ´ l ´ 2

2
C3

q2

p1´β1

˙

ě 1´ pl ´ 2qC4
q2

p
d´

1
4α`β2 ´

l2 ´ l ´ 2

2
C3

q2

p1´β1
´

C5

p1´β1
,

we have that for every x P Cp20d0
›

›

`

fpxq
ˇ

ˇA
˘

´ F pxq
›

›

2
ď p´β1Ll´1p0

?
d
”

p´β1
`

p´β1 ` d´β2
˘l´2

´ p´pl´1qβ1

ı

.

With probability at least P pAq “
´

1´ d´
1
3

¯2pl´2q

over the randomness of masks, we have

sup
xPC

p20d0

›

›

`

fpxq
ˇ

ˇA
˘

´ F pxq
›

›

2
ď p´β1Ll´1p0

?
d
”

p´β1
`

p´β1 ` d´β2
˘l´2

´ p´pl´1qβ1

ı

with probability at least 1´ pl ´ 2qC4
q2

p d
´ 1

4α`β2 ´ l2´l´2
2 C3

q2

p1´β1
´ C5

p1´β1
. As a result, basic probability yields that

sup
xPC

p20d0

}fpxq ´ F pxq}2 ď p´β1Ll´1p0
?
d
”

p´β1
`

p´β1 ` d´β2
˘l´2

´ p´pl´1qβ1

ı

holds with probability at least
´

1´ d´
1
3

¯2pl´2q ´

1´ pl ´ 2qC4
q2

p d
´ 1

4α`β2 ´ l2´l´2
2 C3

q2

p1´β1
´ C5

p1´β1

¯

.

C. Extension of Magnitude-based Pruning
In this section, we discuss some extensions of Theorems 1 and 3 presented in the main paper. Note that we only provide
ideas but not strict proofs in this section, as the results here are based on approximations and further efforts are required to
give precise statements.

C.1. Magnitude-based Pruning of FCNs with Sub-Gaussian Distributions

Note that in Theorem 1, assumption (iii), we assume that the distribution of the weights in the layers of F are independently

and identically following U
„

´ K?
maxtdk,dk´1u

, K?
maxtdk,dk´1u



. The uniform distribution provides a closed-form order

statistics and hence we can bound the gap between weight matrices and pruned weight matrices precisely. In fact, the
uniform and exponential distributions are the only distributions that have a closed-form for order statistics in the literature.
It is a natural question of what happens if the weights follow a more general distribution, e.g. a sub-Gaussian distribution.

Consider a target weight matrix W˚ P Rdˆd where we prune the smallest td2´αu entries in W˚ based on magnitude. We
further assume that the weights in W˚ independently and identically follow a sub-Gaussian distribution subGpσ2q with
appropriate choice of σ2 (e.g., σ2 “ 1

d ). Next we present the idea of applying the results of intermediate order statistics to
show a similar result in the asymptotic sense.

Theorem 4 (Lemma 1 of Chibisov (1964)). Let X1, X2, . . . be a sequence of independent random variables with the
same distribution function F . We denote Xpnqm as the m-th largest among X1, . . . , Xn and Gm,npxq “ P

´

X
pnq
m ă x

¯

. If

nÑ8,mÑ8, and m{nÑ 0, then

sup
x
|Gm,npanx` bnq ´ Φ punpxqq| Ñ 0,

where unpxq “
nF panx`bnq?

m
and Φ is the cumulative distribution function of the standard Gaussian distribution.
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Note that the non-zero entries of W :“W˚ ´W are the smallest td2´αu order statistics of subGpσ2q based on magnitude,
where W is the pruned weight matrix. If we order the weights in W˚ by their magnitude, i.e.

ˇ

ˇW˚
i1,j1

ˇ

ˇ ď
ˇ

ˇW˚
i2,j2

ˇ

ˇ ď ¨ ¨ ¨ ď

ˇ

ˇ

ˇ
W˚
id2 ,jd2

ˇ

ˇ

ˇ
,

then the non-zero entries in W are
W˚
i1,j1 ,W

˚
i2,j2 , . . . ,W

˚
i

td2´αu
,j

td2´αu
.

Taking m “ td2´αu, n “ d2, an “ 1, bn “ 0 in Theorem 4 and note that Gm,npxq “ P
´
ˇ

ˇ

ˇ
W˚
i

td2´αu
,j

td2´αu

ˇ

ˇ

ˇ
ď x

¯

, we have

sup
x

ˇ

ˇ

ˇ

ˇ

ˇ

P
´
ˇ

ˇ

ˇ
W˚
i

td2´αu
,j

td2´αu

ˇ

ˇ

ˇ
ď x

¯

´ Φ

˜

d2F pxq
a

td2´αu

¸ˇ

ˇ

ˇ

ˇ

ˇ

Ñ 0, xÑ8.

Thus we can approximate the expectation E
”
ˇ

ˇ

ˇ
W˚
i

td2´αu
,j

td2´αu

ˇ

ˇ

ˇ

ı

by some positive constant β, by the properties of the cumu-

lative density function of standard Gaussian and subG
`

σ2
˘

. Similarly, we can get the estimations of E
„

ˇ

ˇ

ˇ
W˚
i

td2´αu
,j

td2´αu

ˇ

ˇ

ˇ

2


and E
„

ˇ

ˇ

ˇ
W˚
i

td2´αu
,j

td2´αu

ˇ

ˇ

ˇ

4


. Then we can apply Lemma 4 (similar to (16) – (19)) to upper-bound the expectation E }W}2.

Recall that this is an asymptotic derivation, and we also need to bound the gap between the above second and fourth-order
moments when n “ d2 is a large but fixed.

C.2. Magnitude-based Pruning of CNNs

We are given a convolutional tensor F P Rdˆdˆpˆp. Let

W˚ “

»

—

–

B1,1 ¨ ¨ ¨ B1,d

...
. . .

...
Bd,1 ¨ ¨ ¨ Bd,d

fi

ffi

fl

P Rp
2dˆp2d

be the linear transformation corresponding to F , and tensor K and B as defined in (7) – (9). The magnitude-based filter
pruning of CNN is to order the L1 norms }vec pBi,jq}1 , i, j P rds (or equivalently, }vec pKi,j,:,:q}1) and set the filters with
the smallest L1 norms to be zero. In other words, if we denote W to be the pruned weight matrix, then

W˚ ´W “

»

—

–

B1,1 ¨ ¨ ¨ B1,d

...
. . .

...
Bd,1 ¨ ¨ ¨ Bd,d

fi

ffi

fl

is a block matrix of Bi,j , where Bi,j “ Bi,j if }vec pBi,jq}1 is among the smallest td2´αu norms, and Bi,j “ 0pˆp other-

wise. Similar to Appendix C.1, we can upper-bound E }W˚ ´W }2 by E
›

›B0

›

›

2

2
and E

›

›B0

›

›

4

2
, whereB0 P

 

Bi,j : i, j P rds
(

is the matrix corresponding ot the td2´αu-th smallest value based on L1 norms.

Note that the L1 norms are the sum of many random samples drawn from a given distribution. By the Central Limit Theory,
}vec pBi,jq}1 can be approximated by a normal distribution. Thus we can estimate

›

›vec
`

B0

˘
›

›

1
by a similar approach to the

one in Appendix C.1. Theorem 6 of Sedghi et al. (2018) further provides a tool to upper-bound
›

›B0

›

›

2
by

›

›vec
`

B0

˘
›

›

1
.

Note that we use two approximations in the above derivation. One is for the distribution of }vec pBi,jq}1 , i, j P rds and the
other one comes from the asymptotic result as discussed in Appendix C.1. Caution should be taken while following these
steps to attack the magnitude-based pruning problem of CNNs.

D. Numerical Study
In Sections D.1 and D.2, we show the histograms of some trained FCNs and CNNs. In Sections D.3 and D.4, we show the
universal constants in Lemmas 3 and 4 as we use them frequently in the paper.
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D.1. Distribution of Weights in Trained FCNs

We first describe the setting where we train a vanilla FCN. The Covertype dataset (Blackard & Dean, 1998) is to predict
7 different forest cover types from cartographic variables. Data is in raw form (not scaled) and contains binary (0 or 1)
columns of data for qualitative independent variables (wilderness areas and soil types). The dataset contains about 580,000
samples with 9 numerical and 44 categorical features. We normalize the numerical features by mean and variance of each
feature. We build a 5-hidden-layer fully-connected neural network with ReLU activation functions to predict the label of
each sample. There are 1,024 neurons in each hidden layer and thus the first weight matrix has dimension 54ˆ 1024, the
internal 4 weight matrices have dimension 1024ˆ 1024, and the last weight matrix has dimension 1024ˆ 7. We minimize
the cross-entropy loss using Adam with learning rate 0.001. The batch-size is selected to be 512 and we run 20 epochs of
training. The trained network achieves approximately 80% predicting accuracy.

Figure 1 in the main paper shows the histogram of the entries in all weight matrices. We mainly focus on the second to fifth
layers because we do not perform any pruning on the first and last layers. In these 4 layers, the weights are approximately
distributed following a Gaussian distribution. We also report the means and variances of the entries in each internal layer in
Table 1. As we can see from the results, for the internal weight matrices, the means are close to zero while the variances are
approximately bounded by 3

1024 , which is also the initialization variance suggested by Glorot & Bengio (2010). We have
also tested several other random initial weights and network architectures, and the results and conclusions are similar and
not presented.

Table 1: Expectation and variance of the entries in all weight matrices

Layer 1 2 3 4 5 6

Mean -0.0309 -0.0215 -0.0078 -0.0119 -0.0092 -0.0275
Variance 0.0155 0.0035 0.0022 0.0019 0.0016 0.0057

D.2. Distribution of Weights in VGG16

We plot the histogram of weights in different layers of VGG16 (Simonyan & Zisserman, 2014). The pre-trained model is
imported from PyTorch package (Paszke et al., 2019) where the weights are trained on a variety of image datasets. Figure
2 shows the results for all layers of the pre-trained VGG16 (13 convulotional layers and 3 fully-connected layers). As we
can see, the entries in the internal layers follow Gaussian distributions approximately.

D.3. Constants in Lemma 3

Lemma 3 gives an upper-bound of the random matrixB P Rn1ˆn2 whose entries are independently and identically following
a uniform distribution U

”

´ K?
n
, K?

n

ı

, where n “ max tn1, n2u andK is a positive constant. To better understand the values
of constants c0 and δ0, we take various tuples of pn1, n2,Kq and calculate the norm }B}2. In the numerical experiments,
we generate in total N “ 1000 random matrices and report c0 and δ0 that satisfy P p}B}2 ď c0q “ 1 ´ 2e´4δ0n “ q for
q “ 95%, 99%, 99.9%, 99.99%. We also report the mean and standard deviation of }B}2 for reference. The results are
given in Table 2. The table shows that, even if n1 and n2 are on the low end with respect to the actual use cases, we can
still have a small c0 that is close to 1 and a small δ0 that is close to 0. Note that these two quantities are frequently used in
Theorem 1 and we observe that the constant terms in the theorem are mild while the probability that the statement hold is
positive.

D.4. Constant in Lemma 4

Lemma 4 shows that there exists a universal constant C such that, for any random matrix A whose entries are independent,
we have

E }A}2 ď C

»

–max
i

˜

ÿ

j

EA2
i,j

¸
1
2

`max
j

˜

ÿ

i

EA2
i,j

¸
1
2

`

˜

ÿ

i,j

EA4
i,j

¸
1
4

fi

fl . (42)

We use this lemma many times to bound the L2 norm of various random matrices, e.g., in (19) and (36). In the following,
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Figure 2: Histogram of entries of all weight matrices of a pre-trained VGG16

we consider the cases where the elements of A P Rdˆd follows U :“ U
”

´

b

3
d ,
b

3
d

ı

and N
`

0, Kd
˘

for some positive

constant K, respectively. We also consider the case where we initialize the elements of A by samples of N
`

0, 1d
˘

, but we
set td2´αu entries to be zero randomly (thus it aligns with the use case in (19)).

In the numerical experiments, we generate in total N “ 500 random matrices A and calculate the quantities

E }A}2 ,maxi

´

ř

j EA2
i,j

¯
1
2

,maxj
`
ř

i EA2
i,j

˘
1
2 and

´

ř

i,j EA4
i,j

¯
1
4

. In Table 3, we report the minimum C such that
(42) holds with the choices of d, distribution of Ai,j , and α (if necessary).

E. Discussion
In this section, we discuss some assumptions made to simply the presentations. We provide (possible) ways to avoid them
but the detailed proofs are omitted.

E.1. Independency of Weights in the Target Network

The assumption of independent trained weights satisfied to a certain degree. Many existing works show that the trained
weights are not “far away” from the initialization and thus certain levels of independency remains among the trained weights.
For example, Bai & Lee (2020) show that the trained weights can be approximated by a Taylor expansion around the
initialization and the coefficients of the polynomial are relatively small. This also aligns with the observation from the
NTK literature (Jacot et al., 2018) that the trained weights are close to initialization. There are no well-accepted metrics to
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Table 2: Numerical results for the constants in Lemma 3

n1 n2 K E }B}2 std p}B}2q
q “ 95% q “ 99% q “ 99.9% q “ 99.99%
c0 δ0 c0 δ0 c0 δ0 c0 δ0

32 32 1 1.087 0.038 1.15 0.029 1.183 0.041 1.206 0.059 1.218 0.077
32 32

?
3 1.882 0.066 1.996 0.029 2.044 0.041 2.069 0.059 2.131 0.077

32 64 1 0.941 0.027 0.988 0.014 1.015 0.021 1.039 0.03 1.042 0.039
32 64

?
3 1.631 0.046 1.707 0.014 1.743 0.021 1.786 0.03 1.797 0.039

32 128 1 0.836 0.018 0.867 0.007 0.878 0.01 0.895 0.015 0.902 0.019
32 128

?
3 1.449 0.032 1.503 0.007 1.528 0.01 1.577 0.015 1.579 0.019

32 256 1 0.762 0.013 0.784 0.004 0.794 0.005 0.806 0.007 0.811 0.01
32 256

?
3 1.319 0.022 1.357 0.004 1.371 0.005 1.39 0.007 1.393 0.01

32 512 1 0.708 0.009 0.723 0.002 0.731 0.003 0.74 0.004 0.747 0.005
32 512

?
3 1.226 0.016 1.253 0.002 1.267 0.003 1.278 0.004 1.283 0.005

64 64 1 1.114 0.026 1.158 0.014 1.183 0.021 1.205 0.03 1.209 0.039
64 64

?
3 1.932 0.045 2.009 0.014 2.045 0.021 2.07 0.03 2.086 0.039

64 128 1 0.959 0.018 0.992 0.007 1.005 0.01 1.04 0.015 1.054 0.019
64 128

?
3 1.66 0.031 1.711 0.007 1.743 0.01 1.782 0.015 1.785 0.019

64 256 1 0.848 0.012 0.868 0.004 0.88 0.005 0.887 0.007 0.888 0.01
64 256

?
3 1.47 0.021 1.508 0.004 1.523 0.005 1.53 0.007 1.554 0.01

64 512 1 0.77 0.008 0.785 0.002 0.792 0.003 0.796 0.004 0.801 0.005
64 512

?
3 1.333 0.015 1.359 0.002 1.371 0.003 1.388 0.004 1.392 0.005

128 128 1 1.131 0.017 1.159 0.007 1.173 0.01 1.199 0.015 1.205 0.019
128 128

?
3 1.956 0.029 2.008 0.007 2.024 0.01 2.044 0.015 2.045 0.019

128 256 1 0.969 0.012 0.99 0.004 0.999 0.005 1.012 0.007 1.013 0.01
128 256

?
3 1.679 0.019 1.712 0.004 1.728 0.005 1.743 0.007 1.746 0.01

128 512 1 0.856 0.008 0.87 0.002 0.875 0.003 0.881 0.004 0.885 0.005
128 512

?
3 1.482 0.014 1.507 0.002 1.52 0.003 1.527 0.004 1.528 0.005

256 256 1 1.14 0.011 1.16 0.004 1.17 0.005 1.18 0.007 1.181 0.01
256 256

?
3 1.976 0.021 2.01 0.004 2.027 0.005 2.036 0.007 2.036 0.01

256 512 1 0.976 0.008 0.989 0.002 0.995 0.003 1.002 0.004 1.014 0.005
256 512

?
3 1.691 0.013 1.714 0.002 1.727 0.003 1.735 0.004 1.735 0.005

512 512 1 1.146 0.007 1.159 0.002 1.163 0.003 1.172 0.004 1.174 0.005
512 512

?
3 1.985 0.012 2.006 0.002 2.015 0.003 2.033 0.004 2.04 0.005

measure how close are the weights to independency, and thus we assume them to be independent.

There are other ways to relax independency. For random pruning, independency is assumed so that we can apply the Latala’s
inequality (Lemma 4). There also exist other versions of spectral norm bounds for sub-Gaussian random matrix with
non-i.i.d. entries (Chapter 5 of Pastur & Shcherbina (2011)) and for a matrix with independent rows and columns (Vershynin,
2012). For magnitude-based pruning, the assumption is used to derive the explicit form of expectation of order statistics. By
assuming an equal correlation between weights, we can also give the explicit forms (Chapter 5 of David & Nagaraja (2004)).
The general form of order statistics for dependent uniform samples can be achieved approximately in the same way.

E.2. With-replacement and Without-replacement Sampling for Random Pruning

Under the random pruning scheme, we select N entries uniformly at random from a dˆ d weight matrix and set them to
zero. The proposed approach in the beginning of Section 4 corresponds to “with-replacement” sampling since an entry might
be selected multiple times. Another “without-replacement” sampling approach refers to selecting N non-overlapping entries

from the weight matrix. Note that with a positive probability of p
d2

N q
d2N

, the entries selected by the “with-replacement” approach
have no repeated elements and the two approaches align. In this sense, we can derive the results of the “without-replacement”
approach from the stated results in this work by simply multiplying the corresponding probability that all selected entries are
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Table 3: Numerical results for the constant in Lemma 4

d Distribution α maxi

´

ř

j EA2
i,j

¯
1
2

maxj
`
ř

i EA2
i,j

˘
1
2

´

ř

i,j EA4
i,j

¯
1
4 E }A}2 C

32 U N/A 1.006 1.006 1.159 1.888 0.596
64 U N/A 1.006 1.005 1.159 1.934 0.61
128 U N/A 1.005 1.005 1.159 1.958 0.618
256 U N/A 1.004 1.003 1.158 1.976 0.624
512 U N/A 1.003 1.002 1.158 1.985 0.627

32 N
`

0, 1d
˘

N/A 1.011 1.014 1.314 1.905 0.571

64 N
`

0, 1d
˘

N/A 1.008 1.008 1.315 1.947 0.585

128 N
`

0, 1d
˘

N/A 1.005 1.007 1.316 1.965 0.59

256 N
`

0, 1d
˘

N/A 1.005 1.006 1.316 1.979 0.595

512 N
`

0, 1d
˘

N/A 1.004 1.004 1.316 1.988 0.598

32 N
`

0, 3d
˘

N/A 1.751 1.745 2.279 3.295 0.571

64 N
`

0, 3d
˘

N/A 1.755 1.744 2.28 3.361 0.582

128 N
`

0, 3d
˘

N/A 1.742 1.743 2.28 3.405 0.591

256 N
`

0, 3d
˘

N/A 1.743 1.742 2.28 3.428 0.595

512 N
`

0, 3d
˘

N/A 1.74 1.739 2.279 3.441 0.598

32 N
`

0, 1d
˘

0.01 0.626 0.63 1.033 1.237 0.54

64 N
`

0, 1d
˘

0.01 0.632 0.629 1.035 1.239 0.54

128 N
`

0, 1d
˘

0.01 0.63 0.63 1.037 1.242 0.541

256 N
`

0, 1d
˘

0.01 0.63 0.63 1.039 1.246 0.542

32 N
`

0, 1d
˘

0.1 0.714 0.713 1.103 1.379 0.545

64 N
`

0, 1d
˘

0.1 0.729 0.729 1.117 1.426 0.554

128 N
`

0, 1d
˘

0.1 0.744 0.744 1.129 1.459 0.558

256 N
`

0, 1d
˘

0.1 0.758 0.756 1.14 1.491 0.562

32 N
`

0, 1d
˘

0.5 0.928 0.925 1.258 1.759 0.565

64 N
`

0, 1d
˘

0.5 0.95 0.948 1.275 1.831 0.577

128 N
`

0, 1d
˘

0.5 0.964 0.964 1.288 1.883 0.586

256 N
`

0, 1d
˘

0.5 0.975 0.974 1.296 1.92 0.592

not repeated.

E.3. Global and Layer-wise Magnitude-based Pruning

In this paper, the magnitude-based pruning is defined layer-wise as we order the weights in each layer based on magnitude
separately and prune the smallest ones. There is also another “global” version where the weights of the entire network are
sorted and the weights with the smallest magnitudes are pruned. Next we show the connection between these two settings
and how to extend the proofs to the global setting.

Suppose that we want to prune a total of N weights in a l-layer network. If we treat the small weights as balls and layers as
bins, then by Lemma 6, the maximum load in each bin is bounded by OpN{lq with high probability. In other words, we
expect to see that the appearances of pruned weights in all layers are approximately uniform (the numbers can differ by a
constant but not orders of magnitude) with high probability. This is also the reason why we rarely see that the small weights
appear in the same layer of a trained network in practice. Under this high-probability event, we get back to the layer-wise
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magnitude-based pruning setting excepts that the number of weights to be pruned in each layer may vary by a constant. In
this sense, the original proofs can be easily revised to fit the global magnitude-based setting.


