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Abstract

We present a method for efficient differentiable
simulation of articulated bodies. This enables in-
tegration of articulated body dynamics into deep
learning frameworks, and gradient-based opti-
mization of neural networks that operate on ar-
ticulated bodies. We derive the gradients of the
contact solver using spatial algebra and the adjoint
method. Our approach is an order of magnitude
faster than autodiff tools. By only saving the ini-
tial states throughout the simulation process, our
method reduces memory requirements by two or-
ders of magnitude. We demonstrate the utility of
efficient differentiable dynamics for articulated
bodies in a variety of applications. We show that
reinforcement learning with articulated systems
can be accelerated using gradients provided by
our method. In applications to control and inverse
problems, gradient-based optimization enabled by
our work accelerates convergence by more than
an order of magnitude.

1. Introduction
Differentiable physics enables efficient gradient-based opti-
mization with dynamical systems. It has achieved promising
results in both simulated (Hu et al., 2019; Qiao et al., 2020)
and real environments (Bern et al., 2019; Song & Boularias,
2020a). Our goal is to make articulated body simulation
efficiently differentiable. We aim to maximize efficiency in
both computation and memory use, in order to support fast
gradient-based optimization of differentiable systems that
interact with articulated bodies in physical environments.

Articulated bodies play a central role in robotics, computer
graphics, and embodied AI. Many control systems are op-
timized via experiences collected in simulation (Todorov
et al., 2012; Coumans, 2015; Lee et al., 2018; Tedrake et al.,
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2019). However, they do not have access to analytic deriva-
tives of the articulated dynamics. Therefore, nearly all
gradient-based approaches have to design strategies to com-
pute the gradients indirectly when dealing with articulated
bodies.

The straightforward way to differentiate the simulation is
to use existing automatic differentiation tools (Griewank &
Walther, 2008; Abadi et al., 2016; Paszke et al., 2019). How-
ever, autodiff tools consume prohibitive amounts of memory
when there are many simulation steps. Autodiff tracks every
operation and stores the intermediate results in order to per-
form backpropagation. In articulated body simulation, the
iterative contact solver and the dynamics algorithm (Feath-
erstone, 2007) yield exceedingly long computational graphs.
In our experiments, differentiable simulators built with au-
todiff tools run out of memory after 5,000 simulation steps –
just a few seconds of experience. As a result, learning is
constrained to short experiences or forced to used large time
steps, thus curtailing the scope of behaviors that can be
learned or undermining the simulation’s stability.

Furthermore, the overhead of creating and storing the aux-
iliary variables for autodiff also slows down the forward
simulation. Although autodiff tools like DiffTaichi (Hu
et al., 2020) and JAX (Bradbury et al., 2018) can accelerate
the simulation of fluids and deformable solids by vectoriza-
tion, it is difficult to achieve the same speedup in articulated
body simulation because the articulated dynamics algorithm
is highly serialized, unlike inherently parallel computation
on grids and particles.

In this paper, we design a differentiable articulated body sim-
ulation method that runs 10x faster with 1% of the memory
consumption compared to differentiation based on autodiff
tools. In order to minimize the overhead of differentiation,
we derive the gradients of articulated body simulation us-
ing the adjoint method (Giles & Pierce, 2000). The adjoint
method has been applied to fluids (McNamara et al., 2004)
and multi-body systems (Geilinger et al., 2020), but these
applications do not support physically correct differentiable
simulation of articulated bodies. Our derivation of the oper-
ator adjoints uses spatial algebra (Featherstone, 2008). Our
method needs almost no additional computation during the
forward simulation and is an order of magnitude faster than
autodiff tools.
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We further reduce memory requirements by adapting ideas
from checkpointing (Griewank & Walther, 2000; Chen et al.,
2016) to the differentiable simulation setting. In the forward
pass, we store the initial simulation state for each time step.
During backpropagation, we recreate intermediate variables
by reproducing simulation from the stored state. The overall
runtime remains fast, while memory consumption is reduced
by two orders of magnitude.

As an application of differentiable dynamics for articulated
systems, we show that reinforcement learning (RL) can ben-
efit from the knowledge of gradients in two ways. First, it
can make use of the gradients computed by the simulation to
generate extra samples using first-order approximation. Sec-
ond, during the policy learning phase, differentiable physics
enables us to perform a one-step rollout of the objective
value function so that the policy updates can be more ac-
curate. Both schemes effectively improve the convergence
speed and the attained reward. We also demonstrate ap-
plications of efficient differentiable articulated dynamics
to inverse problems, such as motion control and param-
eter estimation. Gradient-based optimization enabled by
our method accelerates convergence in these settings by
more than an order of magnitude. Code is available on our
project page: https://github.com/YilingQiao/
diffarticulated

The contributions of this work are as follows:

• We derive the adjoint formulations for the entire ar-
ticulated body simulation workflow, enabling a 10x
acceleration over autodiff tools.

• We adapt the checkpointing method to the structure of
articulated body simulation to reduce memory con-
sumption by 100x, making stable collection of ex-
tended experiences feasible.

• We introduce two general schemes for accelerating
reinforcement learning using differentiable physics.

• We demonstrate the utility of differentiable simulation
of articulated bodies in motion control and parameter
estimation, enhancing performance in these scenarios
by more than an order of magnitude.

2. Related Work
Differentiable programming has been applied to render-
ing (Li et al., 2018a; Nimier-David et al., 2019; Laine et al.,
2020), image processing (Li et al., 2020; 2018b), SLAM (Kr-
ishna Murthy et al., 2020), and design (Du et al., 2020).
Making complex systems differentiable enables learning
and optimization using gradient-based methods. Our liter-
ature review focuses on differentiable physics, the adjoint
method, and neural approximations of physical systems.

Differentiable physics. Differentiable physics provides
gradients for learning, control, and inverse problems that in-

volve physical systems. Degrave et al. (2019) advocate using
differentiable physics to solve control problems in robotics.
de Avila Belbute-Peres et al. (2018) obtain gradients of 2D
rigid body dynamics. Liang et al. (2019) use automatic
differentiation tools to obtain gradients for cloth simulation.
Qiao et al. (2020) develop a more comprehensive differen-
tiable physics engine for rigid bodies and cloth based on
mesh representations. Ingraham et al. (2019) present dif-
ferentiable simulation of protein dynamics. For volumetric
data, ChainQueen (Hu et al., 2019) computes gradients of
the MPM simulation pipeline. Bern et al. (2019) use FEM
to model soft robots and perform trajectory optimization
with analytic gradients. Takahashi et al. (2021) differentiate
the simulation of fluids with solid coupling.

Many exciting applications of differentiable physics have
been explored (Spielberg et al., 2019; Heiden et al., 2019;
2020; Wang et al., 2020; Krishna Murthy et al., 2021).
Huang et al. (2021) propose a soft-body manipulation bench-
mark for differentiable physics. Toussaint et al. (2018) ma-
nipulate tools with the help of differentiable physics. Song &
Boularias (2020b) perform system identification by learning
from the trajectory, and Song & Boularias (2020a) then use
the estimated frictional properties to help robotic pushing.

A related line of work concerns the development of powerful
automatic differentiation tools that can be used to differen-
tiate simulation. DiffTaichi (Hu et al., 2020) provides a
new programming language and a compiler, enabling the
high-performance Taichi simulator to compute the gradi-
ents of the simulation. JAX MD (Schoenholz & Cubuk,
2020) makes use of the JAX autodiff library (Bradbury
et al., 2018) to differentiate molecular dynamics simulation.
These works have specifically made use of vectorization on
both CPU and GPU to achieve high performance on grids
and particle sets, where the simulation is intrinsically par-
allel. In contrast, the simulation of articulated bodies is far
more serial, as dynamics propagates along kinematic paths
rather than acting in parallel on grid cells or particles.

TinyDiffSim (Coumans et al., 2020) provides a templatized
simulation framework that can leverage existing autodiff
tools such as CppAD (Bell et al., 2018), Ceres (Agarwal
et al., 2010), and PyTorch (Paszke et al., 2019) to differen-
tiate simulation. However, these methods introduce signif-
icant overhead in tracing the computation graph and accu-
mulate substantial computational and memory costs when
applied to articulated bodies.

Our method does not need to store the entire computation
graph to compute the gradients. We store the initial states of
each simulation step and reproduce the intermediate results
when needed by the backward pass. This checkpointing
strategy is also used in training neural ODEs (Zhuang et al.,
2020) and large neural networks (Chen et al., 2016; Gruslys
et al., 2016; Kirisame et al., 2021; Shah et al., 2021). We
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are the first to adapt this technique to articulated dynamics,
achieving dramatic reductions in memory consumption and
enabling stable simulation of long experiences.

Adjoint method. The adjoint method has been applied to
fluid control (McNamara et al., 2004), PDEs (Holl et al.,
2020), light transport simulation (Nimier-David et al., 2020),
and neural ODEs (Chen et al., 2018; Zhuang et al., 2020).
Recently, Geilinger et al. (2020) proposed to use the adjoint
method in multi-body dynamics. However, they operate
in maximal coordinates and model body attachments using
springs. This does not enforce physical validity of articu-
lated bodies. In contrast, we operate in reduced coordinates
and derive the adjoints for the articulated body algorithm
and spatial algebra operators that properly model the body’s
joints. This supports physically correct simulation with joint
torques, limits, Coriolis forces, and proper transmission of
internal forces between links.

Neural approximation. A number of works approximate
physics simulation using neural networks (Battaglia et al.,
2016; Chang et al., 2017; Mrowca et al., 2018; Schenck &
Fox, 2018; Sanchez-Gonzalez et al., 2018; 2020; Li et al.,
2019; Belbute-Peres et al., 2020; Ummenhofer et al., 2020;
Wandel et al., 2021; Pfaff et al., 2021). Physical princi-
ples have also been incorporated in the design of neural
networks (Schütt et al., 2017; Anderson et al., 2019; Bo-
gatskiy et al., 2020; Chen et al., 2020; Cranmer et al., 2020).
Approximate simulation by neural networks is naturally dif-
ferentiable, but the networks are not constrained to abide
by the underlying physical dynamics and simulation fidelity
may degenerate outside the training distribution.

3. Preliminaries

Articulated body dynamics. For the forward simula-
tion, we choose the recursive Articulated Body Algorithm
(ABA) (Featherstone, 2007), which has O(n) complexity
and is widely used in articulated body simulators (Todorov
et al., 2012; Coumans, 2015; Lee et al., 2018). In each
simulation step k, the states xk of the system consist of
configurations in generalized coordinates and their veloc-
ities xk = [qk, q̇k] ∈ R2nq×1, where nq is the number of
degrees of freedom in the system. Assuming each joint can
be actuated by a torque, there is an nq-dimensional control
signal uk ∈ Rnq×1. The discretized dynamics at this step
can be written as fk+1(uk,xk,xk+1) = 0.

Adjoint method. We can concatenate
the states in the entire time sequence into
x = [x1,x2, ...,xnt ] ∈ Rnt·2nq×1, with correspond-
ing control input u = [u1,u2, ...,unt ] ∈ Rnt·nu×1, where
nt is the number of simulation steps. The concate-
nated dynamics equations can be similarly written as

f = [f1, f2, ..., fnt ] = 0. For a learning or optimization
problem, we would usually define a scalar objective
function Φ(x,u). To get the derivative of this function w.r.t.
the control input u, one needs to compute

dΦ

du
=
∂Φ

∂u
+
∂Φ

∂x

dx

du
. (1)

∂Φ
∂u is easy to compute for each single simulation step. But
it is prohibitively expensive to directly solve ∂Φ

∂x
dx
du because

dx
du will be a 2nqnt × nqnt matrix.

Instead, we differentiate the dynamics f(x,u) = 0 and
obtain the constraint ∂f

∂x
dx
du = − ∂f

∂u . Applying the adjoint
method (Giles & Pierce, 2000), ∂Φ

∂x
dx
du equals to

−R>
∂f

∂u
such that

(
∂f

∂x

)>
R =

(
∂Φ

∂x

)>
(2)

Since the dynamics equation for one step only involves a
small number of previous steps, the sparsity of ∂f

∂u and ∂f
∂x

makes it easier to solve for the variable R in Eq. 2.
∂Φ
∂u −R> ∂f

∂u is called the adjoint of u and is equivalent to
the gradient by our substitution. In the following derivation,
we denote the adjoint of a variable s by s, and the adjoint of
a function f(·) by f(·).

4. Efficient Differentiation
In this section, we introduce our algorithm for the gradient
computation in articulated body simulation. For faster dif-
ferentiation, the gradients of articulated body dynamics are
computed by the adjoint method. We derive the adjoint of
time integration, contact resolution, and forward dynamics
in reverse order. We then adapt the checkpoint method to
articulated body simulation to reduce memory consumption.

4.1. Adjoint Method for Articulated Dynamics

One forward simulation step can be split into five modules,
as shown in Figure 1: perform the forward kinematics from
the root link to the leaf links, update the forces from the
leaves to the root, update the accelerations from the root
to the leaves, detect and resolve collisions, and perform
time integration. Backpropagation proceeds through these
modules in reverse order.

Time integration. Backpropagation starts from the time
integration. As an example, for a simulation sequence with
nt = 3 steps and an integrator with a temporal horizon of
2, the constraints ( ∂f∂x )>R = (∂Φ

∂x )> in Equation 2 can be
expanded as ( ∂f

1

∂x1 )> ( ∂f
2

∂x1 )> 0

0 ( ∂f
2

∂x2 )> ( ∂f
3

∂x2 )>

0 0 ( ∂f
3

∂x3 )>


 R1

R2

R3

 =

 ( ∂Φ
∂x1 )>

( ∂Φ
∂x2 )>

( ∂Φ
∂x3 )>


(3)
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Figure 1. The workflow of a simulation step. Assume there are nq = 6 DoF. The initial state is an nq× 3 matrix containing the position,
velocity, and control input of each joint. The forward dynamics will traverse the articulated body sequentially three times. This process is
difficult to parallelize and will generate a large number of intermediate results. After the forward dynamics there is a collision resolution
step with collision detection and an iterative Gauss-Seidel solver. The size of the initial state (position, velocity, and control input) is
much smaller than that of intermediate results but the initial state has all the information to resume all the intermediate variables.

If using the explicit Euler integrator, we have ∂fk

∂xk = I.
Initially Rnt = ∂Φ

∂xnt
. The following Rk can be computed

iteratively by

Rk = (
∂Φ

∂xk
)>−(

∂fk+1

∂xk
)>Rk+1, k = 1, 2, .., nt−1. (4)

When Rk backpropagates through time, the gradients uk
can also be computed by Equation 2. In fact, by the way we
calculate Rk, it equals the gradients of xk. Other parameters
can also be computed in a similar way as uk.

Collision resolution. The collision resolution step consists
of collision detection and a collision solver. Upon receiving
the gradients x from the time integrator, the collision solver
needs to pass the gradients to detection, and then to the
forward dynamics. In our collision solver, we construct a
Mixed Linear Complementarity Problem (MLCP) (Stepien,
2013):

a = Ax + b

s.t. 0 ≤a ⊥ x ≥ 0 and c− ≤ x ≤ c+,
(5)

where x is the new collision-free state, A is the iner-
tial matrix, b contains the relative velocities, and c−, c+

are the lower bound and upper bound constraints, respec-
tively. We use the projected Gauss-Seidel (PGS) method
to solve this MLCP. This iterative solve trades off accu-
racy for speed such that the constraints a>x = 0 might not
hold on termination. In this setting, where the solution is
not guaranteed to satisfy constraints, implicit differentia-
tion (de Avila Belbute-Peres et al., 2018; Liang et al., 2019;
Qiao et al., 2020) no longer works. Instead, we design a re-
verse version of the PGS solver using the adjoint method to
compute the gradients. Further details are in the supplement.
In essence, the solver mirrors PGS, substituting the adjoints
for the original operators. This step passes the gradients
from the collision-free states to the forward dynamics.

Forward dynamics. Our articulated body simulator prop-
agates the forward dynamics as shown in the green blocks
of Figure 1. Each operation in the forward simulation has
its corresponding adjoint operation in the backward pass.
To compute the gradients, we derive adjoint rules for the
operators in spatial algebra (Featherstone, 2008).

As a simple example, a spatial vector pi = [w,v] ∈ R6

representing the bias force of the i-th link is the sum of
an external force [f1, f2] ∈ R6 and a cross product of two
spatial motion vectors [w1,v1], [w2,v2] ∈ R6:[

w
v

]
=

[
f1 + w1 ×w2 + v1 × v2

f2 + w1 × v2

]
. (6)

Once we get the adjoint [w,v] of pi = [w,v], we can
propagate it to its inputs:[

w1

v1

]
=

[
−w×w2 − v×v2

−w×v2

]
[

w2

v2

]
=

[
w×w1

w×v1 + v×w1

]
,

[
f1

f2

]
=

[
w
v

] (7)

This example shows the adjoint of one forward operation.
The time and space complexity of the original operation
and its adjoint are the same as the forward simulation. The
supplement provides more details on the adjoint operations.

4.2. Checkpointing for Articulated Dynamics

The input and output variables of one simulation step have
relatively small dimensionalities (positions, velocities, and
accelerations), but many more intermediate values are com-
puted during the process. Although this is not a bottleneck
for forward simulation because the memory allocation for
intermediate results can be reused across time steps, it be-
comes a problem for differentiable simulation, which needs
to store the entire computation graph for the backward pass.
This causes memory consumption to explode when simu-
lation proceeds over many time steps, as is the case when
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Figure 2. Differentiation of articulated body dynamics. Top:
forward simulation at step k. The simulator stores the states qk, q̇k,
and control input uk. Bottom: During backpropagation, the check-
points are reloaded and the simulator runs one forward step to
reconstruct the intermediate variables. Beginning with the gradi-
ents from step k + 1, we use the adjoint method to sequentially
compute the gradients of all variables through time integration, the
constraint solver, and forward dynamics.

small time steps are needed for accuracy and stability, and
when the effects of actions take time to become apparent.

The need for scaling to larger simulation steps motivates
our adaptation of the checkpointing method (Griewank &
Walther, 2000; Chen et al., 2016). Instead of saving the
entire computation graph, we choose to store only the initial
states in each time step. We use this granularity because
(a) the states of each step have the smallest size among all
essential information sufficient to replicate the simulation
step, (b) finer checkpoints are not useful because at least one
step of intermediate results needs to be stored in order to
do the simulation, and (c) sparser checkpoints will use less
memory but require multiple steps for reconstructing inter-
mediate variables, costing more memory and computation.
We validate our checkpointing policy with an ablation study
in the supplement. Figure 2 illustrates the scheme. Dur-
ing forward simulation, we store the simulation state in the
beginning of each time step. During backpropagation, we
reload the checkpoints (blue arrows) and redo the forward
(one-step) simulation to generate the computation graph,
and then compute the gradients using the adjoint method in
reverse order (red arrows).

In summary, assume the simulation step consists of two
parts:

Zk = G(xk−1), xk = F (Zk), (8)

where Zk represents all the intermediate results. After each
step, we free the space consumed by Zk, only storing xk.
During backpropagation, we recompute Zk from xk−1 and
use the adjoint method to compute gradients of the previous

step:

Zk = G(xk−1), (9)

Zk = F (Zk,xk), (10)

xk−1 = G(xk−1,Zk). (11)

5. Reinforcement Learning
Our method can be applied to simulation-based reinforce-
ment learning (RL) tasks to improve policy performance as
well as convergence speed. By computing gradients with
respect to the actions, differentiable simulation can provide
more information about the environment. We suggest two
approaches to integrating differentiable physics into RL.

Sample enhancement. We can make use of the computed
gradients to generate samples in the neighborhood around an
existing sample. Specifically, given a sample (s, a0, s

′
0, r0)

from the history, with observation s, action a0, next-step
observation s′0, and reward r0, we can generate new samples
(s, ak, s

′
k, rk) using first-order approximation:

ak = a0 + ∆ak,

s′k = s′0 +
∂s′0
∂a0

∆ak,

rk = r0 +
∂r0

∂a0
∆ak,

where ∆ak is a random perturbation vector. This method,
which we call sample enhancement, effectively generates as
many approximately accurate samples as desired for learn-
ing purposes. By providing a sufficient number of generated
samples around the neighborhood, the critic can have a
better grasp of the function shape (patchwise rather than
pointwise), and can thus learn and converge faster.

Policy enhancement. Alternatively, the policy update can
be adjusted to a format compatible with differentiable
physics, usually dependent on the specific RL algorithm.
For example, in MBPO (Janner et al., 2019), the policy
network is updated using the gradients of the critic:

Lµ = −Q(s, µ(s)) + Z, (12)

where Lµ is the loss for the policy network µ, Q is the value
function for state-action pairs, and Z is the regularization
term. To make use of the gradients, we can expand the Q
function one step forward,

∂Q(s,a)

∂a
=
∂r

∂a
+ γ

∂Q(s′, µ(s′))

∂s′
∂s′

∂a
, (13)

and substitute it in Eq. 12:

L′µ = −∂Q(s,a)

∂a
µ(s) + Z. (14)
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steps 50 100 500 1000 5000

Ceres 100.0 200.0 1100.0 2700.0 23 600.0
CppAD 16.0 26.0 160.0 320.0 3100.0
JAX 200.0 200.0 400.0 700.0 3000.0
PyTorch 1200.0 2400.0 11 700.0 12 400.0 N/A
Ours 0.3 0.3 0.7 1.2 5.0

Table 1. Peak memory use of different simulation frameworks.
The memory footprint (MB) of our framework is more than two
orders of magnitude lower than autodiff methods. PyTorch crashes
at 5,000 simulation steps. ADF fails to compute the gradients in a
reasonable time (10 min) and is not included here for this reason.

steps 50 100 500 1000 5000

ADF 25.7 25.5 25.1 32.1 58.4
Ceres 27.2 27.5 27.2 34.0 58.2
CppAD 2.4 2.4 2.3 2.3 4.5
JAX 53.3 46.1 43.1 42.7 42.3
PyTorch 195.6 192.2 199.2 192.8 N/A
Ours 0.3 0.3 0.2 0.2 0.2

Table 2. Simulation time for forward pass. Ours is at least an
order of magnitude faster than autodiff tools (in msec). PyTorch
crashes at 5,000 simulation steps. CppAD is the fastest baseline.

Eqs. 12 and 14 yield the same gradients with respect to
the action, which provide the gradients of the network pa-
rameters. This method, which we call policy enhancement,
constructs the loss functions with embedded ground-truth
gradients so that the policy updates are physics-aware and
generally more accurate than merely looking at the Q func-
tion itself, thus achieving faster convergence and even po-
tentially higher reward.

6. Results
For experiments, we will first scale the complexity of simu-
lated scenes and compare the performance of our method
with autodiff tools. Then we will integrate differentiable
physics into reinforcement learning and use our method to
learn control policies. Lastly, we will apply differentiable
articulated dynamics to solve motion control and parameter
estimation problems.

6.1. Comparison with Autodiff Tools

Using existing autodiff tools is a convenient way to derive
simulation gradients. However, these tools are not optimized
for articulated dynamics, which adversely affects their com-
putation and memory consumption in this domain. We com-
pare our method with state-of-the-art autodiff tools, includ-
ing CppAD (Bell et al., 2018), Ceres (Agarwal et al., 2010),
PyTorch (Paszke et al., 2019), autodiff (Leal et al., 2018)
(referred to as ADF to avoid ambiguity), and JAX (Brad-
bury et al., 2018). All our experiments are performed on a
desktop with an Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz

steps 50 100 500 1000 5000

Ceres 29.5 29.6 29.5 37.6 62.8
CppAD 2.4 2.3 2.3 2.4 4.8
JAX 148.1 125.7 127.6 129.6 126.6
PyTorch 275.7 273.3 280.8 272.1 N/A
Ours 1.2 1.1 1.2 1.1 1.2

Table 3. Simulation time for the backward pass. Ours is the
fastest (in msec). PyTorch crashes at 5,000 simulation steps.
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Figure 3. Memory and speed of our method vs. CppAD, the
fastest autodiff method. (a,b) Two scenes used in experiments.
(c,d) Memory consumption and per-step runtime when simulating
ten Laikago robots for different numbers of steps. CppAD crashes
when simulating for 5,000 steps due to memory overflow.

with 32GB of memory.

One robot. In the first round, we profile all the methods
by simulating one Laikago robot standing on the ground.
Figure 3(a) provides a visualization. The state vector of the
Laikago has 37 dimensions (19-dimensional positions and
18-dimensional velocities). We vary the number of simula-
tion steps from 50 to 5,000. JAX is based on Python and its
JIT compiler cannot easily be used in our C++ simulation
framework. To test the performance of JAX, we write a sim-
ple approximation of our simulator in Python, with similar
computational complexity as ours. The simplified test code
can be found in the supplement.

The memory consumption of different methods is listed
in Table 1. The memory consumed by autodiff tools is
orders of magnitude higher than ours. Among all the auto-
differentiation tools, JAX and CppAD are the most memory-
efficient. ADF fails to backpropagate the gradients in a
reasonable time. We show in the supplement that the com-
putation time of backpropagation in ADF is exponential in
the depth of the computational graph. Note that articulated
body simulation is intrinsically deep. In this experiment, the
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depth of one simulation step can reach 103 due to sequen-
tial iterative steps in the forward dynamics and the contact
solver. PyTorch crashes at 5,000 simulation steps because
of memory overflow.

Table 2 reports the average time for a forward simulation
step. The numbers indicate that our method is faster than
others by at least an order of magnitude. Our method has
a constant time complexity per step. The time per step of
ADF, Ceres, and CppAD increases with the number of steps.
Note that JAX and Torch are optimized for heavily data-
parallel workloads. Articulated body simulation is much
more serial in nature and cannot take full advantage of their
vectorization. Table 3 reports the time for backward step.
Our method is the fastest when computing the gradients.

Ten robots. To further test the efficiency of our method,
we simulate a scene with 10 Laikago robots. Figure 3(b)
provides a visualization. In this experiment, our method is
compared with CppAD, the best-performing autodiff frame-
work according to the experiments reported in Tables 1
and 2. The number of simulation steps is varied from 1,000
to 5,000. Figure 3(c) shows that the memory footprint of our
method is negligible compared to CppAD. Our method only
needs to store 5 KB of data per step, while CppAD needs to
save the full data and topology of the computational graph.
The forward and backward time per step are plotted in Fig-
ure 3(d). Our backward pass takes longer than our forward
pass because the method first runs forward simulation to
reconstruct the intermediate variables. Nevertheless, our
method is much faster than CppAD and the performance
gap grows with simulation length.

6.2. Integration with Reinforcement Learning

We demonstrate the improvements from the two RL en-
hancement methods described in Section 5. Note that we
cannot use the two methods together because policy en-
hancement requires the gradients at the sample point, which
the extra samples from sample enhancement do not have
(unless higher-order gradients are computed). Thus, we
test the two techniques separately. We use the model-based
MBPO optimizer as the main baseline (Janner et al., 2019).
All networks use the PyTorch default initialization scheme.

N-link pendulum. We first test our policy enhancement
method in a simple scenario, where an n-link pendulum
needs to reach a target point by applying torques on each
of the joints under gravity (Figure 4(a)). The target point
is fixed to be the highest point reachable, and initially the
pendulum is positioned horizontally. The reward function is
the progress to the target between consecutive steps:

r = ‖xt − xg‖2 − ‖xt−1 − xg‖2, (15)

where xt is the end-effector location at time t, and xg is the
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Figure 4. The n-link pendulum task. Our method attains higher
reward than MBPO.
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Figure 5. The MuJoCo Ant task. Using our differentiable simu-
lator to generate extra samples accelerates learning.

target location.

We trained each model for 100n epochs, where n is the
number of links. The results are shown in Figure 4. In Fig-
ure 4(b), we report the relative reward of each task, which is
defined as the attained reward divided by the maximal possi-
ble reward. MBPO works well in easy scenarios with up to
3 links, but its performance degrades starting at 4 links. In
contrast, our model reaches close to the best possible reward
for all systems. The learning curves for the 5-link and 7-link
systems are shown in Figure 4(c,d). MBPO does not attain
satisfactory results for 6- and 7-link systems. We observed
that around the 100th epoch, the losses for the Q function of
the MBPO method increased a lot. We hypothesize that this
is because the complexity of the physical system exceeds
the expressive power of the model network in MBPO.

MuJoCo Ant. Next, we test our sample enhancement
method on the MuJoCo Ant. In this scenario, a four-legged
robot on the ground needs to learn to walk towards a fixed
heading (Figure 5(a)). The scenario is the same as the stan-
dard task defined in MuJoCo, except that the simulator is
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Figure 6. Motion control. The task is to optimize the torque vec-
tors to (a) throw a ball with an articulated 9-DoF robot arm and
(b) hit a golf ball with an articulated linkage. In both scenarios,
the goal is for the ball to settle at a specified target location. SGD
with gradients provided by our method converges within 20 and 50
steps, respectively, while gradient-free optimization fails to reach
comparable accuracy even with more than an order of magnitude
higher number of iterations. The third row indicates that even
though CMA-ES does not compute gradients, our method is still
faster overall in wall-clock time.

replaced by ours. We also compare with other methods
(SAC (Haarnoja et al., 2018), SQL (Haarnoja et al., 2017),
and PPO (Schulman et al., 2017) implemented in Ray RL-
lib (Liang et al., 2018)) for reference. For every true sample
we get from the simulator, we generate 9 extra samples
around it using our sample enhancement method. Other
than that, everything is the same as in MBPO. We repeat
the training 4 times for all methods. Figure 5(b) shows the
reward over time. Our method exhibits faster convergence.

We can also transfer the policy trained in our differentiable
simulator to MuJoCo. This tests the fidelity of our simulator
and robustness of the learned policy to simulator details.
The results are reported in the supplement.

6.3. Applications

Motion control. Differentiable physics enables application
of gradient-based optimization to learning and control prob-
lems that involve physical systems. In Figure 6, we show
two physical tasks: (a) throwing a ball to a target location

0 20 40
episode

0

0.02

0.04

0.06

0.08

0.1

ob
je

ct
iv

e 
fu

nc
tio

n

CMA-ES

Ours

(a) A racecar (b) Loss per episode

0 5 10 15
time (s)

0

0.02

0.04

0.06

0.08

0.1

ob
je

ct
iv

e 
fu

nc
tio

n

CMA-ES

Ours

0 0.5 1 1.5
frictional coefficient

0

0.2

0.4

0.6

0.8

1

lo
ss

 fu
nc

tio
n

loss
ground truth

(c) Loss over time (d) Loss landscape

Figure 7. Parameter estimation. The goal is to estimate the slid-
ing friction coefficient that makes the racecar decelerate to a target
location. (b,c) Loss curves in episode and wall-clock time, respec-
tively. (d) Loss landscape plot. SGD with gradients computed by
our method solves the task within 10 iterations, more accurately
and faster than the gradient-free baseline.

using a 9-DoF robot arm and (b) hitting a golf ball to a target
location using an articulated linkage. These tasks are also
shown in the supplementary video.

For both scenarios, a torque vector is applied to the joints
in each time step. Assume there are n time steps and k
DoFs. The torque variable to be optimized has n × k di-
mensions, and the objective function is the L2 distance from
the ball’s actual position to the target. The joint positions
and the torques are initialized as 0. If no gradients are
available, a derivative-free optimization algorithm such as
CMA-ES (Hansen, 2016) can be used. We plot the loss
curves of our method and CMA-ES in Figure 6.

In (a), SGD with gradients from our simulator converges
in 20 steps. In contrast, CMA-ES does not reach the same
accuracy even after 500 steps. In (b), SGD with gradients
from our simulator converges in 50 steps, while CMA-ES
does not reach the same accuracy even after 1500 steps.

Parameter estimation. Our method can estimate unknown
physical parameters from observation. In Figure 7, a racecar
starts with horizontal velocity 1m/s. The wheels and the
steering system are articulated. We estimate the sliding fric-
tion coefficient µ between the wheels and the ground such
that the car stops at x = 0.8m at the end of the episode. At
the initial guess µ = 0.002, the car reaches x = 1.0m. We
use gradient descent to optimize the estimated friction coef-
ficient. After 10 iterations of SGD with gradients provided
by our method, the car reaches the goal with µ = 0.21. In
comparison, the gradient-free baseline takes multiple times
longer to reach comparable objective values.



Efficient Differentiable Simulation of Articulated Bodies

7. Conclusion
We have developed a differentiable simulator for articulated
body dynamics that runs 10x faster with 100x smaller mem-
ory footprint in comparison to existing autodiff tools. To
achieve this performance gain, we analyze the workload
of each simulation step to better manage computation and
memory. The adjoint method is used to compute the gra-
dients of the simulation. We derive the adjoints of spatial
algebra and the Gauss-Seidel solver. We then adapt the
checkpointing method to deal with the sequential nature of
articulated body simulation, reducing memory consumption
by two orders of magnitude.

As a supporting contribution, we have explored two applica-
tions of differentiable physics to reinforcement learning with
physical systems, reporting preliminary results that indicate
that differentiable physics can accelerate learning. We have
also presented application scenarios that clearly demonstrate
the effectiveness of gradient-based optimization in motion
control and parameter estimation with articulated physical
systems.
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