A. Omitted Algorithm for Player 2 in Section 3

```
Algorithm 4 Optimistic Policy Optimization for Player 2 with Factored Independent Transition
    Initialize: For all \(h \in[H],\left(s^{1}, s^{2}, a, b\right) \in \mathcal{S}_{1} \times \mathcal{S}_{2} \times \mathcal{A} \times \mathcal{B}: \mu_{h}^{0}\left(\cdot \mid s^{1}\right)=\mathbf{1} /|\mathcal{A}|, \widehat{\mathcal{P}}_{h}^{1,0}\left(\cdot \mid s^{1}, a\right)=\mathbf{1} /\left|\mathcal{S}_{1}\right|, \widehat{\mathcal{P}}_{h}^{2,0}\left(\cdot \mid s^{2}, b\right)=\)
    \(\mathbf{1} /\left|\mathcal{S}_{2}\right|, \widehat{r}_{h}^{0}(\cdot, \cdot, \cdot)=\beta_{h}^{0}(\cdot, \cdot, \cdot)=\mathbf{0}\).
    for episode \(k=1, \ldots, K\) do
        Observe Player 1's policy \(\left\{\mu_{h}^{k-1}\right\}_{h=1}^{H}\).
        Start from state \(s_{1}=\left(s_{1}^{1}, s_{1}^{2}\right)\), set \(\bar{V}_{H+1}^{k-1}(\cdot)=\mathbf{0}\).
        for step \(h=H, H-1, \ldots, 1\) do
            Estimate the transition and reward function by \(\widehat{\mathcal{P}}_{h}^{k-1}(\cdot \mid \cdot, \cdot)\) and \(\widehat{r}_{h}^{k-1}(\cdot, \cdot, \cdot)\) as (11).
            Update Q-function \(\forall(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}\) :
                    \(\underline{Q}_{h}^{k-1}(s, a, b)=\min \left\{\left(\widehat{r}_{h}^{k-1}+\widehat{\mathcal{P}}_{h}^{k-1} V_{h+1}^{k-1}-\beta_{h}^{k-1}\right)(s, a, b), H-h+1\right\}^{+}\).
            Update value-function \(\forall s \in \mathcal{S}\) :
\[
\underline{V}_{h}^{k-1}(s)=\left[\mu_{h}^{k-1}(\cdot \mid s)\right]^{\top} \underline{Q}_{h}^{k-1}(s, \cdot, \cdot) \nu_{h}^{k-1}(\cdot \mid s) .
\]
end for
Compute the empirical state reaching probability \(d_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{1, k}}\left(s^{2}\right)\) of Player 1 under \(\mu^{k}, \widehat{\mathcal{P}}^{1, k}, \forall h \in[H]\).
Update policy \(\nu_{h}^{k}\left(b \mid s^{2}\right)\) by solving (15), \(\forall\left(s^{2}, b, h\right)\).
Take actions following \(b_{h}^{k} \sim \nu_{h}^{k}\left(\cdot \mid s_{h}^{2, k}\right), \forall h \in[H]\).
Observe the trajectory \(\left\{\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}, s_{h+1}^{k}\right)\right\}_{h=1}^{H}\), and rewards \(\left\{r_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)\right\}_{h=1}^{H}\).
end for
```

Based on the empirical state reaching probability, the policy improvement step is associated with solving the following optimization problem

$$
\begin{equation*}
\max _{\mu} \sum_{h=1}^{H}\left[\underline{\underline{k}}_{h}^{k-1}\left(\nu_{h}\right)+\gamma^{-1} D_{\mathrm{KL}}\left(\nu_{h}\left(\cdot \mid s^{2}\right), \nu_{h}^{k}\left(\cdot \mid s^{2}\right)\right)\right], \tag{15}
\end{equation*}
$$

where we define the linear function as $\bar{G}_{h}^{k-1}\left(\mu_{h}\right):=\left\langle\nu_{h}\left(\cdot \mid s^{2}\right)-\nu_{h}^{k}\left(\cdot \mid s^{2}\right), \sum_{s^{1} \in \mathcal{S}_{1}} F_{h}^{2, k}(s, \cdot) d_{h}^{\mu^{k}, \hat{\mathcal{P}}^{1, k}}\left(s^{1}\right)\right\rangle_{\mathcal{B}}$ with $F_{h}^{2, k}(s, b)=\left\langle\underline{Q}_{h}^{k}(s, \cdot, b), \mu_{h}^{k}\left(\cdot \mid s^{1}\right)\right\rangle_{\mathcal{A}}$. Here (15) is a standard mirror descent step and admits a closed-form solution as $\left.\nu_{h}^{k}\left(b \mid s^{2}\right)=\left(\widetilde{Y}_{h}^{k-1}\right)^{-1} \nu_{h}^{k-1}\left(b \mid s^{2}\right) \cdot \exp \left\{-\gamma \sum_{s^{1} \in \mathcal{S}_{1}} F_{h}^{2, k}(s, b) d_{h}^{k^{k}, \widehat{\mathcal{P}}^{1, k}}\left(s^{1}\right)\right\rangle_{\mathcal{A}}\right\}$, where \widetilde{Y}_{h}^{k-1} is a probability normalization term.

B. Proofs for Section 3

Lemma B.1. At the k-th episode, the difference between value functions $V_{1}^{\mu^{*}, \nu^{k}}\left(s_{1}\right)$ and $V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)$ is

$$
\begin{align*}
& V_{1}^{\mu^{*}, \nu^{k}}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right) \\
&= \bar{V}_{1}^{k}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)+\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}, \nu^{k}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}\right)\right]^{\top} \bar{L}_{h}^{k}\left(s_{h}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}\right) \mid s_{1}\right\} \\
&\left.+\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left\{\left\langle\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}^{1}\right), \sum_{s_{h}^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, \cdot\right)\right)_{h}^{\nu^{k}, \hat{\mathcal{P}}^{2}, k}\left(s_{h}^{2}\right)\right\rangle_{\mathcal{A}} \mid s_{1}^{1}, s_{1}^{2}\right\} \tag{16}\\
&+2 H \sum_{h=1}^{H} \sum_{s_{h}^{2} \in \mathcal{S}_{2}}\left|q_{h}^{\nu^{k}, \mathcal{P}^{2}}\left(s_{h}^{2}\right)-d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right)\right|,
\end{align*}
$$

where s_{h}, a_{h}, b_{h} are random variables for state and actions, $U_{h}^{k}(s, a):=\left\langle\bar{Q}_{h}^{k}(s, a, \cdot), \nu_{h}^{k}(\cdot \mid s)\right\rangle_{\mathcal{B}}$, and we define the model prediction error of Q-function as

$$
\begin{equation*}
\bar{\iota}_{h}^{k}(s, a, b)=r_{h}(s, a, b)+\mathcal{P}_{h} \bar{V}_{h+1}^{k}(s, a, b)-\bar{Q}_{h}^{k}(s, a, b) . \tag{17}
\end{equation*}
$$

Proof. The proof of this lemma starts with decomposing the value function difference as

$$
\begin{equation*}
V_{1}^{\mu^{*}, \nu^{k}}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)=V_{1}^{\mu^{*}, \nu^{k}}\left(s_{1}\right)-\bar{V}_{1}^{k}\left(s_{1}\right)+\bar{V}_{1}^{k}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right) \tag{18}
\end{equation*}
$$

Here the term $\bar{V}_{1}^{k}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)$ is the bias between the estimated value function $\bar{V}_{1}^{k}\left(s_{1}\right)$ generated by Algorithm 1 and the value function $V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)$ under the true transition model \mathcal{P} at the k-th episode.
We first analyze the term $V_{1}^{\mu^{*}, \nu^{k}}\left(s_{1}\right)-\bar{V}_{1}^{k}\left(s_{1}\right)$. For any h and s, we consider to decompose the term $V_{h}^{\mu^{*}, \nu^{k}}(s)-\bar{V}_{h}^{k}(s)$, which gives

$$
\begin{align*}
& V_{h}^{\mu^{*}, \nu^{k}}(s)-\bar{V}_{h}^{k}(s) \\
&= {\left[\mu_{h}^{*}(\cdot \mid s)\right]^{\top} Q_{h}^{\mu^{*}, \nu^{k}}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)-\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \bar{Q}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s) } \\
&= {\left[\mu_{h}^{*}(\cdot \mid s)\right]^{\top} Q_{h}^{\mu^{*}, \nu^{k}}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)-\left[\mu_{h}^{*}(\cdot \mid s)\right]^{\top} \bar{Q}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s) } \\
&+\left[\mu_{h}^{*}(\cdot \mid s)\right]^{\top} \bar{Q}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)-\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \bar{Q}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s) \tag{19}\\
&= {\left[\mu_{h}^{*}(\cdot \mid s)\right]^{\top}\left[Q_{h}^{\mu^{*}, \nu^{k}}(s, \cdot, \cdot)-\bar{Q}_{h}^{k}(s, \cdot, \cdot)\right] \nu_{h}^{k}(\cdot \mid s) } \\
&+\left[\mu_{h}^{*}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \bar{Q}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)
\end{align*}
$$

where the first inequality is by the definition of $V_{h}^{\mu^{*}, \nu^{k}}$ in (1) and the definition of \bar{V}_{h}^{k} in Line 1 of Algorithm 1. In addition, by the definition of $Q_{h}^{\mu^{*}, \nu^{k}}(s, \cdot, \cdot)$ in (2) and the definition of the model prediction error $\bar{\iota}_{h}^{k}$ for Player one in (36), we have

$$
\begin{aligned}
& {\left[\mu_{h}^{*}(\cdot \mid s)\right]^{\top}\left[Q_{h}^{\mu^{*}, \nu^{k}}(s, \cdot, \cdot)-\bar{Q}_{h}^{k}(s, \cdot, \cdot)\right] \nu_{h}^{k}(\cdot \mid s)} \\
& \quad=\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} \mu_{h}^{*}(a \mid s)\left[\sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}_{h}\left(s^{\prime} \mid s, a, b\right)\left[V_{h+1}^{\mu^{*}, \nu^{k}}\left(s^{\prime}\right)-\bar{V}_{h+1}^{k}\left(s^{\prime}\right)\right]+\bar{\iota}_{h}^{k}(s, a, b)\right] \nu_{h}^{k}(b \mid s) \\
& \quad=\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} \mu_{h}^{*}(a \mid s)\left[\sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}_{h}\left(s^{\prime} \mid s, a, b\right)\left[V_{h+1}^{\mu^{*}, \nu^{k}}\left(s^{\prime}\right)-\bar{V}_{h+1}^{k}\left(s^{\prime}\right)\right]\right] \nu_{h}^{k}(b \mid s)+\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} \mu_{h}^{*}(a \mid s) \bar{\iota}_{h}^{k}(s, a, b) \nu_{h}^{k}(b \mid s)
\end{aligned}
$$

Combining this equality with (19) gives

$$
\begin{align*}
V_{h}^{\mu^{*}, \nu^{k}}(s)-\bar{V}_{h}^{k}(s)= & \sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} \mu_{h}^{*}(a \mid s)\left[\sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}_{h}\left(s^{\prime} \mid s, a, b\right)\left[V_{h+1}^{\mu^{*}, \nu^{k}}\left(s^{\prime}\right)-\bar{V}_{h+1}^{k}\left(s^{\prime}\right)\right]\right] \nu_{h}^{k}(b \mid s) \\
& +\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} \mu_{h}^{*}(a \mid s) \bar{l}_{h}^{k}(s, a, b) \nu_{h}^{k}(b \mid s) \tag{20}\\
& +\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}}\left[\mu_{h}^{*}(a \mid s)-\mu_{h}^{k}(a \mid s)\right] \bar{Q}_{h}^{k}(s, a, b) \nu_{h}^{k}(b \mid s)
\end{align*}
$$

The inequality (20) indicates a recursion of the value function difference $V_{h}^{\mu^{*}, \nu^{k}}(s)-\bar{V}_{h}^{k}(s)$. As we have defined $V_{H+1}^{\mu^{*}, \nu^{k}}(s)=0$ and $\bar{V}_{H+1}^{k}(s)=0$, by recursively applying (20) from $h=1$ to H, we obtain

$$
\begin{align*}
V_{1}^{\mu^{*}, \nu^{k}} & \left(s_{1}\right)-\bar{V}_{1}^{k}\left(s_{1}\right) \\
= & \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}, \nu^{k}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}\right)\right]^{\top} \bar{\iota}_{h}^{k}\left(s_{h}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}\right) \mid s_{1}\right\} \tag{21}\\
& +\underbrace{\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}, \nu^{k}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}\right)\right]^{\top} \bar{Q}_{h}^{k}\left(s_{h}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}\right) \mid s_{1}\right\}}_{\operatorname{Term(I)}}
\end{align*}
$$

where s_{h} are a random variables denoting the state at the h-th step following a distribution determined jointly by $\mu^{*}, \mathcal{P}, \nu^{k}$. Note that we have the factored independent transition model structure $\mathcal{P}_{h}\left(s^{\prime} \mid s, a, b\right)=\mathcal{P}_{h}^{1}\left(s^{1 \prime} \mid s^{1}, a\right) \mathcal{P}_{h}^{2}\left(s^{2 \prime} \mid s^{2}, b\right)$ with
$s=\left(s^{1}, s^{2}\right)$ and $s^{\prime}=\left(s^{1 \prime}, s^{2 \prime}\right)$, and $\mu_{h}(a \mid s)=\mu_{h}\left(a \mid s^{1}\right)$ as well as $\nu_{h}(b \mid s)=\nu_{h}\left(b \mid s^{2}\right)$. Here we also have the state reaching probability $q^{\nu^{k}, \mathcal{P}^{2}}\left(s^{2}\right)=\left\{q_{h}^{\mu^{k}, \mathcal{P}^{2}}\left(s^{2}\right)\right\}_{h=1}^{H}$ under μ^{k} and true transition \mathcal{P}^{2} for Player 2, and define the empirical reaching probability $d^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)=\left\{d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)\right\}_{h=1}^{H}$ under the empirical transition model $\widehat{\mathcal{P}}^{2, k}$ for Player 2, where we let $\widehat{\mathcal{P}}_{h}^{k}\left(s^{\prime} \mid s, a, b\right)=\widehat{\mathcal{P}}_{h}^{1, k}\left(s^{1 \prime} \mid s^{1}, a\right) \widehat{\mathcal{P}}_{h}^{2, k}\left(s^{2 \prime} \mid s^{2}, b\right)$. Then, for Term(I), we have

$$
\begin{align*}
\operatorname{Term}(\mathrm{I}) & =\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}, \nu^{k}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}\right)\right]^{\top} \bar{Q}_{h}^{k}\left(s_{h}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}\right) \mid s_{1}\right\} \\
& =\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}, \mathcal{P}^{2}, \nu^{k}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}^{1}\right)\right]^{\top} \bar{Q}_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}^{2}\right) \mid s_{1}^{1}, s_{1}^{2}\right\} \tag{22}\\
& =\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}^{1}\right)\right]^{\top} \sum_{s_{h}^{2} \in \mathcal{S}_{2}} \bar{Q}_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}^{2}\right) q_{h}^{\nu^{k}, \mathcal{P}^{2}}\left(s_{h}^{2}\right) \mid s_{1}^{1}, s_{1}^{2}\right\} .
\end{align*}
$$

The last term of the above inequality (22) can be further bounded as

$$
\begin{aligned}
& \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}^{1}\right)\right]^{\top} \sum_{s_{h}^{2} \in \mathcal{S}_{2}} \bar{Q}_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}^{2}\right) q_{h}^{\nu^{k}, \mathcal{P}^{2}}\left(s_{h}^{2}\right) \mid s_{1}^{1}, s_{1}^{2}\right\} \\
& \quad=\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}^{1}\right)\right]^{\top} \sum_{s_{h}^{2} \in \mathcal{S}_{2}} \bar{Q}_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}^{2}\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right) \mid s_{1}^{1}, s_{1}^{2}\right\} \\
& \quad+\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}^{1}\right)\right]^{\top} \sum_{s_{h}^{2} \in \mathcal{S}_{2}} \bar{Q}_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}^{2}\right)\left[q_{h}^{\nu^{k}, \mathcal{P}^{2}}\left(s_{h}^{2}\right)-d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right)\right] \mid s_{1}^{1}, s_{1}^{2}\right\} \\
& \quad \leq \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}^{1}\right)\right]^{\top} \sum_{s_{h}^{2} \in \mathcal{S}_{2}} \bar{Q}_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}^{2}\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right) \mid s_{1}^{1}, s_{1}^{2}\right\} \\
& \quad+2 H \sum_{h=1}^{H} \sum_{s_{h}^{2} \in \mathcal{S}_{2}}\left|q_{h}^{\nu^{k}, \mathcal{P}^{2}}\left(s_{h}^{2}\right)-d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right)\right|,
\end{aligned}
$$

where the factor H in the last term is due to $\left|\bar{Q}_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, \cdot, \cdot\right)\right| \leq H$. Combining the above inequality with (22), we have

$$
\begin{align*}
\operatorname{Term}(\mathrm{I}) \leq & \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}^{1}\right)\right]^{\top} \sum_{s_{h}^{2} \in \mathcal{S}_{2}} \bar{Q}_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}^{2}\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right) \mid s_{1}^{1}, s_{1}^{2}\right\} \tag{23}\\
& +2 H \sum_{h=1}^{H} \sum_{s_{h}^{2} \in \mathcal{S}_{2}}\left|q_{h}^{\nu^{k}, \mathcal{P}^{2}}\left(s_{h}^{2}\right)-d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right)\right|
\end{align*}
$$

Further combining (23) with (18), we eventually have

$$
\begin{aligned}
& V_{1}^{\mu^{*}, \nu^{k}}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right) \\
& \leq \bar{V}_{1}^{k}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)+\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}, \nu^{k}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}\right)\right]^{\top} \bar{\iota}_{h}^{k}\left(s_{h}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}\right) \mid s_{1}\right\} \\
&+\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left\{\left\langle\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}^{1}\right), \sum_{s_{h}^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right)\right\rangle_{\mathcal{A}} \mid s_{1}^{1}, s_{1}^{2}\right\} \\
&+2 H \sum_{h=1}^{H} \sum_{s_{h}^{2} \in \mathcal{S}_{2}}\left|q_{h}^{\nu^{k}, \mathcal{P}^{2}}\left(s_{h}^{2}\right)-d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right)\right|
\end{aligned}
$$

where we denote $F_{h}^{1, k}\left(s_{h}^{1}, s_{h}^{2}, a\right):=\left\langle\bar{Q}_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, a, \cdot\right), \nu_{h}^{k}\left(\cdot \mid s_{h}^{2}\right)\right\rangle_{\mathcal{B}}$ for any $a \in \mathcal{A}$. This completes our proof.
Lemma B.2. With setting $\eta=\sqrt{\log |\mathcal{A}| /\left(K H^{2}\right)}$, the mirror ascent steps of Algorithm 1 lead to

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left\{\left\langle\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}^{1}\right), \sum_{s_{h}^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right)\right\rangle_{\mathcal{A}} \mid s_{1}^{1}, s_{1}^{2}\right\} \leq \mathcal{O}\left(\sqrt{H^{4} K \log |\mathcal{A}|}\right)
$$

Proof. As shown in (10), the mirror ascent step at the k-th episode is to solve the following maximization problem

$$
\operatorname{maximize}_{\mu \in \Delta\left(\mathcal{A} \mid \mathcal{S}_{1}, H\right)} \sum_{h=1}^{H}\left\langle\mu_{h}\left(\cdot \mid s^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s^{1}\right), \sum_{s^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s^{1}, s^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)\right\rangle_{\mathcal{A}}-\frac{1}{\eta} \sum_{h=1}^{H} D_{\mathrm{KL}}\left(\mu_{h}\left(\cdot \mid s^{1}\right), \mu_{h}^{k}\left(\cdot \mid s^{1}\right)\right),
$$

with $F_{h}^{1, k}\left(s^{1}, s^{2}, a\right):=\left\langle\bar{Q}_{h}^{k}\left(s^{1}, s^{2}, a, \cdot\right), \nu_{h}^{k}\left(\cdot \mid s^{2}\right)\right\rangle_{\mathcal{B}}$. We equivalently rewrite this maximization problem to a minimization problem as

$$
\operatorname{minimize}_{\mu \in \Delta\left(\mathcal{A} \mid \mathcal{S}_{1}, H\right)}-\sum_{h=1}^{H}\left\langle\mu_{h}\left(\cdot \mid s^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s^{1}\right), \sum_{s^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s^{1}, s^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)\right\rangle_{\mathcal{A}}+\frac{1}{\eta} \sum_{h=1}^{H} D_{\mathrm{KL}}\left(\mu_{h}\left(\cdot \mid s^{1}\right), \mu_{h}^{k}\left(\cdot \mid s^{1}\right)\right) .
$$

Note that the closed-form solution μ_{h}^{k+1} to this minimization problem is guaranteed to stay in the relative interior of its feasible set $\Delta\left(\mathcal{A} \mid \mathcal{S}_{1}, H\right)$ if initializing $\mu_{h}^{0}\left(\cdot \mid s^{1}\right)=\mathbf{1} /|\mathcal{A}|$. Thus, we apply Lemma C. 12 and obtain that for any $\mu=\left\{\mu_{h}\right\}_{h=1}^{H}$, the following inequality holds

$$
\begin{gathered}
-\eta\left\langle\mu_{h}^{k+1}\left(\cdot \mid s^{1}\right), \sum_{s^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s^{1}, s^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)\right\rangle_{\mathcal{A}}+\eta\left\langle\mu_{h}\left(\cdot \mid s^{1}\right), \sum_{s^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s^{1}, s^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)\right\rangle_{\mathcal{A}} \\
\leq D_{\mathrm{KL}}\left(\mu_{h}\left(\cdot \mid s^{1}\right), \mu_{h}^{k}\left(\cdot \mid s^{1}\right)\right)-D_{\mathrm{KL}}\left(\mu_{h}\left(\cdot \mid s^{1}\right), \mu_{h}^{k+1}\left(\cdot \mid s^{1}\right)\right)-D_{\mathrm{KL}}\left(\mu_{h}^{k+1}\left(\cdot \mid s^{1}\right), \mu_{h}^{k}\left(\cdot \mid s^{1}\right)\right)
\end{gathered}
$$

Then, by rearranging the terms and letting $\mu_{h}=\mu_{h}^{*}$, we have

$$
\begin{align*}
& \eta\left\langle\mu_{h}^{*}\left(\cdot \mid s^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s^{1}\right), \sum_{s^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s^{1}, s^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right)\right\rangle_{\mathcal{A}} \\
& \leq D_{\mathrm{KL}}\left(\mu_{h}^{*}\left(\cdot \mid s^{1}\right), \mu_{h}^{k}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\mu_{h}^{*}(\cdot \mid s), \mu_{h}^{k+1}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\mu_{h}^{k+1}(\cdot \mid s), \mu_{h}^{k}(\cdot \mid s)\right) \tag{24}\\
&+\eta\left\langle\mu_{h}^{k+1}\left(\cdot \mid s^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s^{1}\right), \sum_{s^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s^{1}, s^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right)\right\rangle_{\mathcal{A}}
\end{align*}
$$

Due to Pinsker's inequality, we have

$$
-D_{\mathrm{KL}}\left(\mu_{h}^{k+1}\left(\cdot \mid s^{1}\right), \mu_{h}^{k}\left(\cdot \mid s^{1}\right)\right) \leq-\frac{1}{2}\left\|\mu_{h}^{k+1}\left(\cdot \mid s^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s^{1}\right)\right\|_{1}^{2}
$$

Further by Cauchy-Schwarz inequality, we have

$$
\eta\left\langle\mu_{h}^{k+1}\left(\cdot \mid s^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s^{1}\right), \sum_{s^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s^{1}, s^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)\right\rangle_{\mathcal{A}} \leq \eta H\left\|\mu_{h}^{k+1}\left(\cdot \mid s^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s^{1}\right)\right\|_{1}
$$

since we have

$$
\begin{aligned}
& \left\|\sum_{s^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s^{1}, s^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)\right\|_{\infty} \\
& \quad=\max _{a \in \mathcal{A}} \sum_{s^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s^{1}, s^{2}, a\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right) \\
& \quad=\max _{a \in \mathcal{A}} \sum_{s^{2} \in \mathcal{S}_{2}}\left\langle\bar{Q}_{h}^{k}\left(s^{1}, s^{2}, a, \cdot\right), \nu_{h}^{k}\left(\cdot \mid s^{2}\right)\right\rangle_{\mathcal{B}} \cdot d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right) \\
& \quad \leq \sum_{s^{2} \in \mathcal{S}_{2}} H \cdot d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)=H .
\end{aligned}
$$

Thus, we further obtain

$$
\begin{align*}
& -D_{\mathrm{KL}}\left(\mu_{h}^{k+1}\left(\cdot \mid s^{1}\right), \mu_{h}^{k}\left(\cdot \mid s^{1}\right)\right)+\eta\left\langle\mu_{h}^{k+1}\left(\cdot \mid s^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s^{1}\right), \sum_{s_{h}^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s^{1}, s^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)\right\rangle_{\mathcal{A}} \\
& \quad \leq-\frac{1}{2}\left\|\mu_{h}^{k+1}\left(\cdot \mid s^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s^{1}\right)\right\|_{1}^{2}+\eta H\left\|\mu_{h}^{k+1}\left(\cdot \mid s^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s^{1}\right)\right\|_{1} \tag{25}\\
& \quad \leq \frac{1}{2} \eta^{2} H^{2}
\end{align*}
$$

where the last inequality is by viewing $\left\|\mu_{h}^{k+1}\left(\cdot \mid s^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s^{1}\right)\right\|_{1}$ as a variable x and finding the maximal value of $-1 / 2 \cdot x^{2}+\eta H x$ to obtain the upper bound $1 / 2 \cdot \eta^{2} H^{2}$.
Thus, combing (25) with (24), the policy improvement step in Algorithm 1 implies

$$
\begin{aligned}
& \eta\left\langle\mu_{h}^{*}\left(\cdot \mid s^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s^{1}\right), \sum_{s^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s^{1}, s^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)\right\rangle_{\mathcal{A}} \\
& \quad \leq D_{\mathrm{KL}}\left(\mu_{h}^{*}\left(\cdot \mid s^{1}\right), \mu_{h}^{k}\left(\cdot \mid s^{1}\right)\right)-D_{\mathrm{KL}}\left(\mu_{h}^{*}\left(\cdot \mid s^{1}\right), \mu_{h}^{k+1}\left(\cdot \mid s^{1}\right)\right)+\frac{1}{2} \eta^{2} H^{2}
\end{aligned}
$$

which further leads to

$$
\begin{aligned}
& \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left\{\left\langle\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}^{1}\right), \sum_{s_{h}^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right)\right\rangle_{\mathcal{A}} \mid s_{1}^{1}, s_{1}^{2}\right\} \\
& \quad \leq \frac{1}{\eta} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left[D_{\mathrm{KL}}\left(\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right), \mu_{h}^{k}\left(\cdot \mid s_{h}^{1}\right)\right)-D_{\mathrm{KL}}\left(\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right), \mu_{h}^{k+1}\left(\cdot \mid s_{h}^{1}\right)\right)\right]+\frac{1}{2} \eta H^{3}
\end{aligned}
$$

Taking summation from $k=1$ to K of both sides, we obtain

$$
\begin{aligned}
& \sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left\{\left\langle\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}^{1}\right), \sum_{s_{h}^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right)\right\rangle_{\mathcal{A}} \mid s_{1}^{1}, s_{1}^{2}\right\} \\
& \quad \leq \frac{1}{\eta} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left[D_{\mathrm{KL}}\left(\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right), \mu_{h}^{1}\left(\cdot \mid s_{h}^{1}\right)\right)-D_{\mathrm{KL}}\left(\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right), \mu_{h}^{K+1}\left(\cdot \mid s_{h}^{1}\right)\right)\right]+\frac{1}{2} \eta K H^{3} \\
& \quad \leq \frac{1}{\eta} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left[D_{\mathrm{KL}}\left(\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right), \mu_{h}^{1}\left(\cdot \mid s_{h}^{1}\right)\right)\right]+\frac{1}{2} \eta K H^{3}
\end{aligned}
$$

where the last inequality is by non-negativity of KL divergence. With the initialization in Algorithm 1, it is guaranteed that $\mu_{h}^{1}\left(\cdot \mid s^{1}\right)=\mathbf{1} /|\mathcal{A}|$, which thus leads to $D_{\mathrm{KL}}\left(\mu_{h}^{*}\left(\cdot \mid s^{1}\right), \mu_{h}^{1}\left(\cdot \mid s^{1}\right)\right) \leq \log |\mathcal{A}|$ for any s^{1}. Then, with setting $\eta=$ $\sqrt{\log |\mathcal{A}| /\left(K H^{2}\right)}$, we bound the last term as

$$
\frac{1}{\eta} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left[D_{\mathrm{KL}}\left(\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right), \mu_{h}^{1}\left(\cdot \mid s_{h}^{1}\right)\right)\right]+\frac{1}{2} \eta K H^{3} \leq \mathcal{O}\left(\sqrt{H^{4} K \log |\mathcal{A}|}\right)
$$

which gives

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}^{1}}\left\{\left\langle\mu_{h}^{*}\left(\cdot \mid s_{h}^{1}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}^{1}\right), \sum_{s_{h}^{2} \in \mathcal{S}_{2}} F_{h}^{k}\left(s_{h}^{1}, s_{h}^{2}, \cdot\right) d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s_{h}^{2}\right)\right\rangle_{\mathcal{A}} \mid s_{1}^{1}, s_{1}^{2}\right\} \leq \mathcal{O}\left(\sqrt{H^{4} K \log |\mathcal{A}|}\right)
$$

This completes the proof.
Lemma B.3. For any $k \in[K], h \in[H]$ and all $(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}$, with probability at least $1-\delta$, we have

$$
\left|\widehat{r}_{h}^{k}(s, a, b)-r_{h}(s, a, b)\right| \leq \sqrt{\frac{4 \log (|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K / \delta)}{\max \left\{N_{h}^{k}(s, a, b), 1\right\}}}
$$

Proof. The proof for this theorem is a direct application of Hoeffding's inequality. For $k \geq 1$, the definition of \widehat{r}_{h}^{k} in (11) indicates that $\widehat{r}_{h}^{k}(s, a, b)$ is the average of $N_{h}^{k}(s, a, b)$ samples of the observed rewards at (s, a, b) if $N_{h}^{k}(s, a, b)>0$. Then, for fixed $k \in[K], h \in[H]$ and state-action tuple $(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}$, when $N_{h}^{k}(s, a, b)>0$, according to Hoeffding's inequality, with probability at least $1-\delta^{\prime}$ where $\delta^{\prime} \in(0,1]$, we have

$$
\left|\widehat{r}_{h}^{k}(s, a, b)-r_{h}(s, a, b)\right| \leq \sqrt{\frac{\log \left(2 / \delta^{\prime}\right)}{2 N_{h}^{k}(s, a, b)}}
$$

where we also use the facts that the observed rewards $r_{h}^{k} \in[0,1]$ for all k and h, and $\mathbb{E}\left[\widehat{r}_{h}^{k}\right]=r_{h}$ for all k and h. For the case where $N_{h}^{k}(s, a, b)=0$, by (11), we know $\widehat{r}_{h}^{k}(s, a, b)=0$ such that $\left|\widehat{r}_{h}^{k}(s, a, b)-r_{h}(s, a, b)\right|=\left|r_{h}(s, a, b)\right| \leq 1$. On the other hand, we have $\sqrt{2 \log \left(2 / \delta^{\prime}\right)} \geq 1>\left|\widehat{r}_{h}^{k}(s, a, b)-r_{h}(s, a, b)\right|$. Thus, combining the above results, with probability at least $1-\delta^{\prime}$, for fixed $k \in[K], h \in[H]$ and state-action tuple $(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}$, we have

$$
\left|\hat{r}_{h}^{k}(s, a, b)-r_{h}(s, a, b)\right| \leq \sqrt{\frac{2 \log \left(2 / \delta^{\prime}\right)}{\max \left\{N_{h}^{k}(s, a, b), 1\right\}}}
$$

Moreover, by the union bound, letting $\delta=|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K \delta^{\prime} / 2$, assuming $K>1$, with probability at least $1-\delta$, for any $k \in[K], h \in[H]$ and any state-action tuple $(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}$, we have

$$
\left|\widehat{r}_{h}^{k}(s, a, b)-r_{h}(s, a, b)\right| \leq \sqrt{\frac{4 \log (|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K / \delta)}{\max \left\{N_{h}^{k}(s, a, b), 1\right\}}}
$$

This completes the proof.
In (9), we actually factor the state as $s=\left(s^{1}, s^{2}\right)$ such that we have $|\mathcal{S}|=\left|\mathcal{S}_{1}\right|\left|\mathcal{S}_{2}\right|$. Thus, we set $\beta_{h}^{r, k}(s, a, b)=$ $\sqrt{\frac{4 \log (|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K / \delta)}{\max \left\{N_{h}^{k}(s, a, b), 1\right\}}}=\sqrt{\frac{4 \log \left(\left|\mathcal{S}_{1}\right|\left|\mathcal{S}_{2}\right||\mathcal{A}||\mathcal{B}| H K / \delta\right)}{\max \left\{N_{h}^{k}\left(s^{1}, s^{2}, a, b\right), 1\right\}}}$, which equals the bound in Lemma B.3. The counter $N_{h}^{k}(s, a, b)$ is equivalent to $N_{h}^{k}\left(s^{1}, s^{2}, a, b\right)$.
Lemma B.4. For any $k \in[K], h \in[H]$ and all $(s, a) \in \mathcal{S} \times \mathcal{A}$, with probability at least $1-\delta$, we have

$$
\left\|\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a, b)-\mathcal{P}_{h}(\cdot \mid s, a, b)\right\|_{1} \leq \sqrt{\frac{2|\mathcal{S}| \log (|\mathcal{S}||\mathcal{A}| H K / \delta)}{\max \left\{N_{h}^{k}(s, a), 1\right\}}}
$$

where we have a factored state space $s=\left(s^{1}, s^{2}\right), s^{\prime}=\left(s^{1 \prime}, s^{2 \prime}\right)$, and an independent state transition $\mathcal{P}_{h}\left(s^{\prime} \mid s, a, b\right)=$ $\mathcal{P}_{h}^{1}\left(s^{1 \prime} \mid s^{1}, a\right) \mathcal{P}_{h}^{1}\left(s^{2 \prime} \mid s^{2}, b\right)$ and $\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a, b)=\widehat{\mathcal{P}}_{h}^{1, k}\left(s^{1 \prime} \mid s^{1}, a\right) \widehat{\mathcal{P}}_{h}^{2, k}\left(s^{2 \prime} \mid s^{2}, b\right)$.

Proof. Since the state space and the transition model are factored, we need to decompose the term as follows

$$
\begin{aligned}
& \left\|\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a, b)-\mathcal{P}_{h}(\cdot \mid s, a, b)\right\|_{1} \\
& \quad=\sum_{s^{1 \prime}, s^{2 \prime}}\left|\widehat{\mathcal{P}}_{h}^{1, k}\left(s^{1 \prime} \mid s^{1}, a\right) \widehat{\mathcal{P}}_{h}^{2, k}\left(s^{2 \prime} \mid s^{2}, b\right)-\mathcal{P}_{h}^{1}\left(s^{1 \prime} \mid s^{1}, a\right) \mathcal{P}_{h}^{2}\left(s^{2 \prime} \mid s^{2}, b\right)\right| \\
& \quad=\sum_{s^{1 \prime}, s^{2 \prime}}\left|\left[\widehat{\mathcal{P}}_{h}^{1, k}\left(s^{1 \prime} \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(s^{1 \prime} \mid s^{1}, a\right)\right] \widehat{\mathcal{P}}_{h}^{2, k}\left(s^{2 \prime} \mid s^{2}, b\right)+\mathcal{P}_{h}^{1}\left(s^{1 \prime} \mid s^{1}, a\right)\left[\widehat{\mathcal{P}}_{h}^{2, k}\left(s^{2 \prime} \mid s^{2}, b\right)-\mathcal{P}_{h}^{2}\left(s^{2 \prime} \mid s^{2}, b\right)\right]\right| \\
& \quad \leq \sum_{s^{1 \prime}, s^{2 \prime}}\left\{\left|\widehat{\mathcal{P}}_{h}^{1, k}\left(s^{1 \prime} \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(s^{1 \prime} \mid s^{1}, a\right)\right| \widehat{\mathcal{P}}_{h}^{2, k}\left(s^{2 \prime} \mid s^{2}, b\right)+\mathcal{P}_{h}^{1}\left(s^{1 \prime} \mid s^{1}, a\right)\left|\widehat{\mathcal{P}}_{h}^{2, k}\left(s^{2 \prime} \mid s^{2}, b\right)-\mathcal{P}_{h}^{2}\left(s^{2 \prime} \mid s^{2}, b\right)\right|\right\} \\
& \quad \leq \sum_{s^{1 \prime}}\left|\widehat{\mathcal{P}}_{h}^{1, k}\left(s^{1 \prime} \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(s^{1 \prime} \mid s^{1}, a\right)\right|+\sum_{s^{2 \prime}}\left|\widehat{\mathcal{P}}_{h}^{2, k}\left(s^{2 \prime} \mid s^{2}, b\right)-\mathcal{P}_{h}^{2}\left(s^{2 \prime} \mid s^{2}, b\right)\right| \\
& \quad=\left\|\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right)\right\|_{1}+\left\|\widehat{\mathcal{P}}_{h}^{2, k}\left(\cdot \mid s^{2}, b\right)-\mathcal{P}_{h}^{2}\left(\cdot \mid s^{2}, b\right)\right\|_{1}
\end{aligned}
$$

where the last inequality is due to $\sum_{s^{2}} \widehat{\mathcal{P}}_{h}^{2, k}\left(s^{2 \prime} \mid s^{2}, b\right)=1$ and $\sum_{s^{1}} \mathcal{P}_{h}^{1}\left(s^{1 \prime} \mid s^{1}, a\right)=1$. Thus, we need to bound the two terms $\left\|\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(s^{1 \prime} \mid s^{1}, a\right)\right\|_{1}$ and $\left\|\widehat{\mathcal{P}}_{h}^{2, k}\left(\cdot \mid s^{2}, b\right)-\mathcal{P}_{h}^{2}\left(\cdot \mid s^{2}, b\right)\right\|_{1}$ separately.

For $k \geq 1$, we have $\left\|\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right)\right\|_{1}=\max _{\|\mathbf{z}\|_{\infty} \leq 1}\left\langle\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(s^{1 \prime} \mid s^{1}, a\right), \mathbf{z}\right\rangle_{\mathcal{S}_{1}}$ by the duality. We construct an ε-covering net for the set $\left\{\mathbf{z} \in \mathbb{R}^{\left|\mathcal{S}_{1}\right|}:\|\mathbf{z}\|_{\infty} \leq 1\right\}$ with the distance induced by $\|\cdot\|_{\infty}$, denoted as $\mathcal{N}_{\varepsilon}$, such that for any $\mathbf{z} \in \mathbb{R}^{\left|\mathcal{S}_{1}\right|}$, there always exists $\mathbf{z}^{\prime} \in \mathcal{N}_{\varepsilon}$ satisfying $\left\|\mathbf{z}-\mathbf{z}^{\prime}\right\|_{\infty} \leq \varepsilon$. The covering number is $\left|\mathcal{N}_{\varepsilon}\right|=1 / \varepsilon^{\left|\mathcal{S}_{1}\right|}$. Thus, we know that for any $\left(s^{1}, a\right) \in \mathcal{S}_{1} \times \mathcal{A}$ and any \mathbf{z} with $\|\mathbf{z}\|_{\infty} \leq 1$, there exists $\mathbf{z}^{\prime} \in \mathcal{N}_{\varepsilon}$ such that $\left\|\mathbf{z}^{\prime}-\mathbf{z}\right\|_{\infty} \leq \varepsilon$ and

$$
\begin{aligned}
& \left\langle\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right), \mathbf{z}\right\rangle_{\mathcal{S}_{1}} \\
& \quad=\left\langle\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right), \mathbf{z}^{\prime}\right\rangle_{\mathcal{S}_{1}}+\left\langle\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right), \mathbf{z}-\mathbf{z}^{\prime}\right\rangle_{\mathcal{S}_{1}} \\
& \quad \leq\left\langle\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right), \mathbf{z}^{\prime}\right\rangle_{\mathcal{S}_{1}}+\varepsilon\left\|\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right)\right\|_{1}
\end{aligned}
$$

such that we further have

$$
\begin{align*}
& \left\|\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right)\right\|_{1} \\
& \left.\quad=\max _{\|\mathbf{z}\|_{\infty} \leq 1}\left\langle\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right)\right), \mathbf{z}\right\rangle_{\mathcal{S}_{1}} \tag{26}\\
& \quad \leq \max _{\mathbf{z}^{\prime} \in \mathcal{N}_{\varepsilon}}\left\langle\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right), \mathbf{z}^{\prime}\right\rangle_{\mathcal{S}_{1}}+\varepsilon\left\|\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right)\right\|_{1}
\end{align*}
$$

By Hoeffding's inequality and union bound over all $\mathbf{z}^{\prime} \in \mathcal{N}_{\varepsilon}$, when $N_{h}^{k}\left(s^{1}, a\right)>0$, with probability at least $1-\delta^{\prime}$ where $\delta^{\prime} \in(0,1]$,

$$
\begin{equation*}
\max _{\mathbf{z}^{\prime} \in \mathcal{N}_{\varepsilon}}\left\langle\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right), \mathbf{z}^{\prime}\right\rangle_{\mathcal{S}_{1}} \leq \sqrt{\frac{\left|\mathcal{S}_{1}\right| \log (1 / \varepsilon)+\log \left(1 / \delta^{\prime}\right)}{2 N_{h}^{k}\left(s^{1}, a\right)}} \tag{27}
\end{equation*}
$$

Letting $\varepsilon=1 / 2$, by (26) and (27), with probability at least $1-\delta^{\prime}$, we have

$$
\left\|\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right)\right\|_{1} \leq 1 \sqrt{\frac{|\mathcal{S}| \log 2+\log \left(1 / \delta^{\prime}\right)}{2 N_{h}^{k}\left(s^{1}, a\right)}}
$$

When $N_{h}^{k}\left(s^{1}, a\right)=0$, we have $\left\|\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right)\right\|_{1}=\left\|\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right)\right\|_{1}=1$ such that $2 \sqrt{\frac{|\mathcal{S}| \log 2+\log \left(1 / \delta^{\prime}\right)}{2}}>$ $1=\left\|\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right)\right\|_{1}$ always holds. Thus, with probability at least $1-\delta^{\prime}$,

$$
\left\|\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right)\right\|_{1} \leq 2 \sqrt{\frac{\left|\mathcal{S}_{1}\right| \log 2+\log \left(1 / \delta^{\prime}\right)}{2 \max \left\{N_{h}^{k}\left(s^{1}, a\right), 1\right\}}} \leq \sqrt{\frac{2\left|\mathcal{S}_{1}\right| \log \left(2 / \delta^{\prime}\right)}{\max \left\{N_{h}^{k}\left(s^{1}, a\right), 1\right\}}}
$$

Then, by union bound, assuming $K>1$, letting $\delta^{\prime \prime}=\left|\mathcal{S}_{1}\right||\mathcal{A}| H K \delta^{\prime} / 2$, with probability at least $1-\delta^{\prime \prime}$, for any $\left(s^{1}, a\right) \in$ $\mathcal{S}_{1} \times \mathcal{A}$ and any $h \in[H]$ and $k \in[K]$, we have

$$
\left\|\widehat{\mathcal{P}}_{h}^{1, k}\left(\cdot \mid s^{1}, a\right)-\mathcal{P}_{h}^{1}\left(\cdot \mid s^{1}, a\right)\right\|_{1} \leq \sqrt{\frac{2\left|\mathcal{S}_{1}\right| \log \left(\left|\mathcal{S}_{1}\right||\mathcal{A}| H K / \delta^{\prime \prime}\right)}{\max \left\{N_{h}^{k}\left(s^{1}, a\right), 1\right\}}}
$$

Similarly, we can also obtain that with probability at least $1-\delta^{\prime \prime}$, for any $\left(s^{2}, a\right) \in \mathcal{S}_{2} \times \mathcal{B}$ and any $h \in[H]$ and $k \in[K]$, we have

$$
\left\|\widehat{\mathcal{P}}_{h}^{2, k}\left(\cdot \mid s^{2}, b\right)-\mathcal{P}_{h}^{2}\left(\cdot \mid s^{2}, b\right)\right\|_{1} \leq \sqrt{\frac{2\left|\mathcal{S}_{2}\right| \log \left(\left|\mathcal{S}_{2}\right||\mathcal{B}| H K / \delta^{\prime \prime}\right)}{\max \left\{N_{h}^{k}\left(s^{2}, b\right), 1\right\}}}
$$

Further by union bound, we have with probability at least $1-\delta$ where $\delta=2 \delta^{\prime \prime}$,

$$
\left\|\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a, b)-\mathcal{P}_{h}(\cdot \mid s, a, b)\right\|_{1} \leq \sqrt{\frac{2\left|\mathcal{S}_{1}\right| \log \left(2\left|\mathcal{S}_{1}\right||\mathcal{A}| H K / \delta\right)}{\max \left\{N_{h}^{k}\left(s^{1}, a\right), 1\right\}}}+\sqrt{\frac{2\left|\mathcal{S}_{2}\right| \log \left(2\left|\mathcal{S}_{2}\right||\mathcal{B}| H K / \delta\right)}{\max \left\{N_{h}^{k}\left(s^{2}, b\right), 1\right\}}}
$$

This completes the proof.

In (9), we set $\beta_{h}^{\mathcal{P}, k}(s, a, b)=\sqrt{\frac{2 H^{2}\left|\mathcal{S}_{1}\right| \log \left(2\left|\mathcal{S}_{1}\right||\mathcal{A}| H K / \delta\right)}{\max \left\{N_{h}^{k}\left(s^{1}, a\right), 1\right\}}}+\sqrt{\frac{2 H^{2}\left|\mathcal{S}_{2}\right| \log \left(2\left|\mathcal{S}_{2}\right||\mathcal{B}| H K / \delta\right)}{\max \left\{N_{h}^{k}\left(s^{2}, b\right), 1\right\}}}$, which equals the product of the upper bound in Lemma B. 4 and the factor H.
Lemma B.5. With probability at least $1-2 \delta$, Algorithm 1 ensures that

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}, \nu^{k}}\left[\bar{\iota}_{h}^{k}\left(s_{h}, a_{h}, b_{h}\right) \mid s_{1}\right] \leq 0
$$

Proof. We prove the upper bound of the model prediction error term. We can write the instantaneous prediction error at the h-step of the k-th episode as

$$
\begin{equation*}
\bar{\iota}_{h}^{k}(s, a, b)=r_{h}(s, a, b)+\left\langle\mathcal{P}_{h}(\cdot \mid s, a, b), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\bar{Q}_{h}^{k}(s, a, b) \tag{28}
\end{equation*}
$$

where the equality is by the definition of the prediction error in (17). By plugging in the definition of \bar{Q}_{h}^{k} in Line (1) of Algorithm 1, for any (s, a, b), we bound the following term as

$$
\begin{align*}
& r_{h}(s, a, b)+\left\langle\mathcal{P}_{h}(\cdot \mid s, a, b), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\bar{Q}_{h}^{k}(s, a, b) \\
& \quad \leq r_{h}(s, a, b)+\left\langle\mathcal{P}_{h}(\cdot \mid s, a, b), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\min \left\{\widehat{r}_{h}^{k}(s, a, b)+\left\langle\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a, b), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\beta_{h}^{k}, H-h+1\right\} \tag{29}\\
& \quad \leq \max \left\{r_{h}(s, a, b)-\widehat{r}_{h}^{k}(s, a, b)+\left\langle\mathcal{P}_{h}(\cdot \mid s, a, b)-\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a, b), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\beta_{h}^{k}, 0\right\}
\end{align*}
$$

where the inequality holds because

$$
\begin{aligned}
& r_{h}(s, a, b)+\left\langle\mathcal{P}_{h}(\cdot \mid s, a, b), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}} \\
& \quad \leq r_{h}(s, a, b)+\left\|\mathcal{P}_{h}(\cdot \mid s, a, b)\right\|_{1}\left\|\bar{V}_{h+1}^{k}(\cdot)\right\|_{\infty} \leq 1+\max _{s^{\prime} \in \mathcal{S}}\left|\bar{V}_{h+1}^{k}\left(s^{\prime}\right)\right| \leq 1+H-h
\end{aligned}
$$

since $\left\|\mathcal{P}_{h}(\cdot \mid s, a, b)\right\|_{1}=1$ and also the truncation step as shown in Line 1 of Algorithm 1 for \bar{Q}_{h+1}^{k} such that for any $s^{\prime} \in \mathcal{S}$

$$
\begin{align*}
\left|\bar{V}_{h+1}^{k}\left(s^{\prime}\right)\right| & =\left|\left[\mu_{h+1}^{k}\left(\cdot \mid s^{\prime}\right)\right]^{\top} \bar{Q}_{h+1}^{k}\left(s^{\prime}, \cdot, \cdot\right) \nu_{h+1}^{k}\left(\cdot \mid s^{\prime}\right)\right| \\
& \leq\left\|\mu_{h+1}^{k}\left(\cdot \mid s^{\prime}\right)\right\|_{1}\left\|\bar{Q}_{h+1}^{k}\left(s^{\prime}, \cdot, \cdot\right) \nu_{h+1}^{k}\left(\cdot \mid s^{\prime}\right)\right\|_{\infty} \tag{30}\\
& \leq \max _{a, b}\left|\bar{Q}_{h+1}^{k}\left(s^{\prime}, a, b\right)\right| \leq H
\end{align*}
$$

Combining (28) and (29) gives

$$
\begin{equation*}
\bar{\iota}_{h}^{k}(s, a, b) \leq \max \left\{r_{h}(s, a, b)-\widehat{r}_{h}^{k}(s, a, b)+\left\langle\mathcal{P}_{h}(\cdot \mid s, a, b)-\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a, b), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\beta_{h}^{k}, 0\right\} . \tag{31}
\end{equation*}
$$

Note that as shown in (9), we have

$$
\beta_{h}^{k}(s, a, b)=\beta_{h}^{r, k}(s, a, b)+\beta_{h}^{\mathcal{P}, k}(s, a, b) .
$$

Then, with probability at least $1-\delta$, we have

$$
\begin{aligned}
& r_{h}(s, a, b)-\widehat{r}_{h}^{k}(s, a, b)-\beta_{h}^{r, k}(s, a, b) \\
& \quad \leq\left|r_{h}(s, a, b)-\widehat{r}_{h}^{k}(s, a, b)\right|-\beta_{h}^{r, k}(s, a, b) \\
& \quad \leq \beta_{h}^{r, k}(s, a, b)-\beta_{h}^{r, k}(s, a, b)=0
\end{aligned}
$$

where the last inequality is by Lemma B. 3 and the setting of the bonus for the reward. Moreover, with probability at least $1-\delta$, we have

$$
\begin{aligned}
& \left\langle\mathcal{P}_{h}(\cdot \mid s, a, b)-\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a, b), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\beta_{h}^{\mathcal{P}, k}(s, a, b) \\
& \quad \leq\left\|\mathcal{P}_{h}(\cdot \mid s, a, b)-\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a, b)\right\|_{1}\left\|\bar{V}_{h+1}^{k}(\cdot)\right\|_{\infty}-\beta_{h}^{\mathcal{P}, k}(s, a, b) \\
& \quad \leq H\left\|\mathcal{P}_{h}(\cdot \mid s, a, b)-\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)\right\|_{1}-\beta_{h}^{\mathcal{P}, k}(s, a, b) \\
& \quad \leq \beta_{h}^{\mathcal{P}, k}(s, a, b)-\beta_{h}^{\mathcal{P}, k}(s, a, b)=0
\end{aligned}
$$

where the first inequality is by Cauchy-Schwarz inequality, the second inequality is due to $\max _{s^{\prime} \in \mathcal{S}}\left\|\bar{V}_{h+1}^{k}\left(s^{\prime}\right)\right\|_{\infty} \leq H$ as shown in (30), and the last inequality is by the setting of $\beta_{h}^{\mathcal{P}, k}$ in (9) and also Lemma B.4. Thus, with probability at least $1-2 \delta$, the following inequality holds

$$
r_{h}(s, a, b)-\widehat{r}_{h}^{k}(s, a, b)+\left\langle\mathcal{P}_{h}(\cdot \mid s, a, b)-\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a, b), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\beta_{h}^{k}(s, a, b) \leq 0
$$

Combining the above inequality with (58), we have that with probability at least $1-2 \delta$, for any $h \in[H]$ and $k \in[K]$, the following inequality holds

$$
\bar{\iota}_{h}^{k}(s, a, b) \leq 0, \quad \forall(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}
$$

which leads to

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}, \nu^{k}}\left[\bar{l}_{h}^{k}\left(s_{h}, a_{h}, b_{h}\right) \mid s_{1}\right] \leq 0
$$

This completes the proof.
Lemma B.6. With probability at least $1-\delta$, Algorithm 1 ensures that

$$
\sum_{k=1}^{K} \bar{V}_{1}^{k}\left(s_{1}\right)-\sum_{k=1}^{K} V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right) \leq \widetilde{\mathcal{O}}\left(\sqrt{\left|\mathcal{S}_{1}\right|^{2}|\mathcal{A}| H^{4} K}+\sqrt{\left|\mathcal{S}_{2}\right|^{2}|\mathcal{B}| H^{4} K}+\sqrt{\left|\mathcal{S}_{1}\right|\left|\mathcal{S}_{2}\right||\mathcal{A}||\mathcal{B}| H^{2} K}\right)
$$

Proof. We assume that a trajectory $\left\{\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}, s_{h+1}^{k}\right)\right\}_{h=1}^{H}$ for all $k \in[K]$ is generated according to the policies μ^{k}, ν^{k}, and the true transition model \mathcal{P}. Thus, we expand the bias term at the h-th step of the k-th episode, which is

$$
\begin{align*}
& \bar{V}_{h}^{k}\left(s_{h}^{k}\right)-V_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}^{k}\right) \\
& \quad= \\
& \quad=\left[\mu_{h}^{k}\left(\cdot \mid s_{h}^{k}\right)\right]^{\top}\left[\bar{Q}_{h}^{k}\left(s_{h}^{k}, \cdot, \cdot\right)-Q_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}^{k}, \cdot, \cdot\right)\right] \nu_{h}^{k}\left(\cdot \mid s_{h}^{k}\right) \tag{32}\\
& \quad=\zeta_{h}^{k}+\bar{Q}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-Q_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \\
& \quad= \\
& \quad=\zeta_{h}^{k}+\left\langle\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right), \bar{V}_{h+1}^{k}(\cdot)-V_{h+1}^{\mu^{k}, \nu^{k}}(\cdot)\right\rangle_{\mathcal{S}}-\bar{\iota}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \\
& \quad+\bar{V}_{h+1}^{k}\left(s_{h+1}^{k}\right)-V_{h+1}^{\mu^{k}, \nu^{k}}\left(s_{h+1}^{k}\right)-\bar{\iota}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)
\end{align*}
$$

where the first equality is by Line 2 of Algorithm 2 and (1), the third equality is by plugging in (2) and (36). Specifically, in the above equality, we introduce two martingale difference sequence, namely, $\left\{\zeta_{h}^{k}\right\}_{h \geq 0, k \geq 0}$ and $\left\{\xi_{h}^{k}\right\}_{h \geq 0, k \geq 0}$, which are defined as

$$
\begin{aligned}
\zeta_{h}^{k} & :=\left[\mu_{h}^{k}\left(\cdot \mid s_{h}^{k}\right)\right]^{\top}\left[\bar{Q}_{h}^{k}\left(s_{h}^{k}, \cdot, \cdot\right)-Q_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}^{k}, \cdot, \cdot\right)\right] \nu_{h}^{k}\left(\cdot \mid s_{h}^{k}\right)-\left[\bar{Q}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-Q_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)\right] \\
\xi_{h}^{k} & :=\left\langle\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right), \bar{V}_{h+1}^{k}(\cdot)-V_{h+1}^{\mu^{k}, \nu^{k}}(\cdot)\right\rangle_{\mathcal{S}}-\left[\bar{V}_{h+1}^{k}\left(s_{h+1}^{k}\right)-V_{h+1}^{\mu^{k}, \nu^{k}}\left(s_{h+1}^{k}\right)\right]
\end{aligned}
$$

such that

$$
\mathbb{E}_{a_{h}^{k} \sim \mu_{h}^{k}\left(\cdot \mid s_{h}^{k}\right), b_{h}^{k} \sim \nu_{h}^{k}\left(\cdot \mid s_{h}^{k}\right)}\left[\zeta_{h}^{k} \mid \mathcal{F}_{h}^{k}\right]=0, \quad \mathbb{E}_{s_{h+1}^{k} \sim \mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)}\left[\xi_{h}^{k} \mid \widetilde{\mathcal{F}}_{h}^{k}\right]=0
$$

with \mathcal{F}_{h}^{k} being the filtration of all randomness up to $(h-1)$-th step of the k-th episode plus s_{h}^{k}, and $\widetilde{\mathcal{F}}_{h}^{k}$ being the filtration of all randomness up to $(h-1)$-th step of the k-th episode plus $s_{h}^{k}, a_{h}^{k}, b_{h}^{k}$.
The equality (32) forms a recursion for $\bar{V}_{h}^{k}\left(s_{h}^{k}\right)-V_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}^{k}\right)$. We also have $\bar{V}_{H+1}^{k}(\cdot)=\mathbf{0}$ and $V_{H+1}^{\mu^{k}, \nu^{k}}(\cdot)=\mathbf{0}$. Thus, recursively apply (32) from $h=1$ to H leads to the following equality

$$
\begin{equation*}
\bar{V}_{1}^{k}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)=\sum_{h=1}^{H} \zeta_{h}^{k}+\sum_{h=1}^{H} \xi_{h}^{k}-\sum_{h=1}^{H} \bar{\iota}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \tag{33}
\end{equation*}
$$

Moreover, by (17) and Line 1 of Algorithm 1, we have

$$
\begin{aligned}
-\bar{\imath}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)= & -r_{h}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-\left\langle\mathcal{P}_{h}\left(\cdot \mid s_{h}, a_{h}, b_{h}\right), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}} \\
& +\min \left\{\widehat{r}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)+\left\langle\widehat{\mathcal{P}}_{h}^{k}\left(\cdot \mid s_{h}, a_{h}, b_{h}\right), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}+\beta_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right), H\right\} .
\end{aligned}
$$

Then, we can further bound $-\bar{\iota}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)$ as follows

$$
\begin{aligned}
-\bar{\iota}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \leq & -r_{h}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-\left\langle\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}+\widehat{r}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \\
& +\left\langle\widehat{\mathcal{P}}_{h}^{k}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}+\beta_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \\
\leq & \left|\widehat{r}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-r_{h}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)\right| \\
& +\left|\left\langle\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-\widehat{\mathcal{P}}_{h}^{k}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}\right|+\beta_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)
\end{aligned}
$$

where the first inequality is due to $\min \{x, y\} \leq x$. Additionally, we have

$$
\begin{aligned}
& \left|\left\langle\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-\widehat{\mathcal{P}}_{h}^{k}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}\right| \\
& \quad \leq\left\|\bar{V}_{h+1}^{k}(\cdot)\right\|_{\infty}\left\|\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-\widehat{\mathcal{P}}_{h}^{k}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)\right\|_{1} \\
& \quad \leq H\left\|\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-\widehat{\mathcal{P}}_{h}^{k}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)\right\|_{1}
\end{aligned}
$$

where the first inequality is by Cauchy-Schwarz inequality and the second inequality is by (57). Thus, putting the above together, we obtain

$$
\begin{aligned}
-\bar{l}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) & \leq\left|\widehat{r}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-r_{h}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)\right|+H\left\|\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)\right\|_{1}+\beta_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \\
& \leq 2 \beta_{h}^{r, k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)+2 \beta_{h}^{\mathcal{P}, k}\left(s_{h}^{k}, a_{h}^{k}, a_{h}^{k}\right)
\end{aligned}
$$

where the second inequality is by Lemma B.3, Lemma B.4, and the decomposition of the bonus term β_{h}^{k} as (9). Due to Lemma B. 3 and Lemma B.4, by union bound, for any $h \in[H], k \in[K]$ and $\left(s_{h}, a_{h}, b_{h}\right) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}$, the above inequality holds with probability with probability at least $1-2 \delta$. Therefore, by (33), with probability at least $1-2 \delta$, we have

$$
\begin{align*}
\sum_{k=1}^{K} & {\left[\bar{V}_{1}^{k}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)\right] } \tag{34}\\
& \leq \sum_{k=1}^{K} \sum_{h=1}^{H} \zeta_{h}^{k}+\sum_{k=1}^{K} \sum_{h=1}^{H} \xi_{h}^{k}+2 \sum_{k=1}^{K} \sum_{h=1}^{H} \beta_{h}^{r, k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)+2 \sum_{k=1}^{K} \sum_{h=1}^{H} \beta_{h}^{\mathcal{P}, k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)
\end{align*}
$$

By Azuma-Hoeffding inequality, with probability at least $1-\delta$, the following inequalities hold

$$
\begin{aligned}
& \sum_{k=1}^{K} \sum_{h=1}^{H} \zeta_{h}^{k} \leq \mathcal{O}\left(\sqrt{H^{3} K \log \frac{1}{\delta}}\right) \\
& \sum_{k=1}^{K} \sum_{h=1}^{H} \xi_{h}^{k} \leq \mathcal{O}\left(\sqrt{H^{3} K \log \frac{1}{\delta}}\right)
\end{aligned}
$$

where we use the facts that $\left|\bar{Q}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-Q_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)\right| \leq 2 H$ and $\left|\bar{V}_{h+1}^{k}\left(s_{h+1}^{k}\right)-V_{h+1}^{\mu^{k}, \nu^{k}}\left(s_{h+1}^{k}\right)\right| \leq 2 H$. Next, we need to bound $\sum_{k=1}^{K} \sum_{h=1}^{H} \beta_{h}^{r, k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)$ and $\sum_{k=1}^{K} \sum_{h=1}^{H} \beta_{h}^{\mathcal{P}, k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)$ in (34). We show that

$$
\begin{aligned}
& \sum_{k=1}^{K} \sum_{h=1}^{H} \beta_{h}^{r, k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)=C \sum_{k=1}^{K} \sum_{h=1}^{H} \sqrt{\frac{\log \left(\left|\mathcal{S}_{1}\right|\left|\mathcal{S}_{2}\right||\mathcal{A}||\mathcal{B}| H K / \delta\right)}{\max \left\{N_{h}^{k}\left(s_{h}^{1, k}, s_{h}^{2, k}, a_{h}^{k}, b_{h}^{k}\right), 1\right\}}} \\
&=C \sum_{k=1}^{K} \sum_{h=1}^{H} \sqrt{\frac{\log \left(\left|\mathcal{S}_{1}\right|\left|\mathcal{S}_{2}\right||\mathcal{A}||\mathcal{B}| H K / \delta\right)}{N_{h}^{k}\left(s_{h}^{1, k}, s_{h}^{2, k}, a_{h}^{k}, b_{h}^{k}\right)}} \\
& \leq C \sum_{h=1}^{N_{h}^{K}\left(s^{1}, s^{2}, a, b\right)} \sqrt{\substack{\log \left(\left|\mathcal{S}_{1}\right|\left|\mathcal{S}_{2}\right||\mathcal{A}||\mathcal{B}| H K / \delta\right)}} n \\
& \sum_{\substack{\left.1, s^{2}, a, b\right) \in \mathcal{S}_{1} \times \mathcal{S}_{2} \times \mathcal{A} \times \mathcal{B} \\
N_{h}^{K\left(s^{1}, s^{2}, a, b\right)>0}}} \sqrt{\frac{\sum_{n=1}}{n}},
\end{aligned}
$$

where the second equality is because $\left(s_{h}^{1, k}, s_{h}^{2, k}, a_{h}^{k}, b_{h}^{k}\right)$ is visited such that $N_{h}^{k}\left(s_{h}^{1, k}, s_{h}^{2, k}, a_{h}^{k}, b_{h}^{k}\right) \geq 1$. In addition, we have

$$
\begin{aligned}
& \sum_{h=1}^{H} \sum_{\substack{\left.s^{1}, s^{2}, a, b\right) \in \mathcal{S}_{1} \times \mathcal{S}_{2} \times \mathcal{A} \times \mathcal{B} \\
N_{h}^{K}\left(s^{1}, s^{2}, a, b\right)>0}} \sum_{n=1}^{N_{h}^{K}\left(s^{1}, s^{2}, a, b\right)} \sqrt{\frac{\log \left(\left|\mathcal{S}_{1}\right|\left|\mathcal{S}_{2}\right||\mathcal{A}||\mathcal{B}| H K / \delta\right)}{n}} \\
& \leq \sum_{h=1}^{H} \sum_{\substack{\left(s^{1}, s^{2}, a, b\right) \in \mathcal{S}_{1} \times \mathcal{S}_{2} \times \mathcal{A} \times \mathcal{B}}} \mathcal{O}\left(\sqrt{N_{h}^{K}\left(s^{1}, s^{2}, a, b\right) \log \frac{\left|\mathcal{S}_{1}\right|\left|\mathcal{S}_{2}\right||\mathcal{A}||\mathcal{B}| H K}{\delta}}\right) \\
& \quad \leq \mathcal{O}\left(H \sqrt{K\left|\mathcal{S}_{1}\right|\left|\mathcal{S}_{2}\right||\mathcal{A} \| \mathcal{B}| \log \frac{\left|\mathcal{S}_{1}\right|\left|\mathcal{S}_{2}\right| \mathcal{A}| | \mathcal{B} \mid H K}{\delta}}\right),
\end{aligned}
$$

where the last inequality is based on the consideration that $\sum_{\left(s^{1}, s^{2}, a, b\right) \in \mathcal{S}_{1} \times \mathcal{S}_{2} \times \mathcal{A} \times \mathcal{B}} N_{h}^{K}\left(s^{1}, s^{2}, a, b\right)=K$ such that $\sum_{\left(s^{1}, s^{2}, a, b\right) \in \mathcal{S}_{1} \times \mathcal{S}_{2} \times \mathcal{A} \times \mathcal{B}} \sqrt{N_{h}^{K}\left(s^{1}, s^{2}, a, b\right)} \leq \mathcal{O}\left(\sqrt{K\left|\mathcal{S}_{1}\right|\left|\mathcal{S}_{2}\right||\mathcal{A} \| \mathcal{B}|}\right)$ when K is sufficiently large. Putting the above together, we obtain

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \beta_{h}^{r, k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \leq \mathcal{O}\left(H \sqrt{K\left|\mathcal{S}_{1}\right|\left|\mathcal{S}_{2}\right||\mathcal{A}||\mathcal{B}| \log \frac{\left|\mathcal{S}_{1}\right|\left|\mathcal{S}_{2}\right| \mathcal{A}| | \mathcal{B} \mid H K}{\delta}}\right)
$$

Similarly, we have

$$
\begin{aligned}
\sum_{k=1}^{K} \sum_{h=1}^{H} \beta_{h}^{\mathcal{P}, k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) & =\sum_{k=1}^{K} \sum_{h=1}^{H}\left(\sqrt{\frac{2 H^{2}\left|\mathcal{S}_{1}\right| \log \left(2\left|\mathcal{S}_{1}\right||\mathcal{A}| H K / \delta\right)}{\max \left\{N_{h}^{k}\left(s_{h}^{1, k}, a_{h}^{k}\right), 1\right\}}}+\sqrt{\frac{2 H^{2}\left|\mathcal{S}_{2}\right| \log \left(2\left|\mathcal{S}_{2}\right||\mathcal{B}| H K / \delta\right)}{\max \left\{N_{h}^{k}\left(s_{h}^{2, k}, b_{h}^{k}\right), 1\right\}}}\right) \\
& \leq \mathcal{O}\left(H \sqrt{K\left|\mathcal{S}_{1}\right|^{2}|\mathcal{A}| H^{2} \log \frac{2\left|\mathcal{S}_{1}\right||\mathcal{A}| H K}{\delta}}+H \sqrt{K\left|\mathcal{S}_{2}\right|^{2}|\mathcal{B}| H^{2} \log \frac{2\left|\mathcal{S}_{2}\right||\mathcal{B}| H K}{\delta}}\right)
\end{aligned}
$$

Thus, by (34), with probability at least $1-\delta$, we have

$$
\sum_{k=1}^{K} \bar{V}_{1}^{k}\left(s_{1}\right)-\sum_{k=1}^{K} V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right) \leq \widetilde{\mathcal{O}}\left(\sqrt{\left|\mathcal{S}_{1}\right|^{2}|\mathcal{A}| H^{4} K}+\sqrt{\left|\mathcal{S}_{2}\right|^{2}|\mathcal{B}| H^{4} K}+\sqrt{\left|\mathcal{S}_{1}\right|\left|\mathcal{S}_{2}\right||\mathcal{A}||\mathcal{B}| H^{2} K}\right)
$$

where $\widetilde{\mathcal{O}}$ hides logarithmic terms. This completes the proof.
Before presenting the next lemma, we first show the following definition of confidence set for the proof of the next lemma.
Definition B. 7 (Confidence Set for Player 2). Define the following confidence set for transition models for Player 2

$$
\begin{aligned}
\Upsilon^{2, k}:=\{\widetilde{\mathcal{P}}: & \left|\widetilde{\mathcal{P}}_{h}\left(s^{2 \prime} \mid s^{2}, b\right)-\widehat{\mathcal{P}}_{h}^{2, k}\left(s^{2 \prime} \mid s^{2}, b\right)\right| \leq \epsilon_{h}^{2, k},\left\|\widetilde{\mathcal{P}}_{h}\left(\cdot \mid s^{2}, b\right)\right\|_{1}=1 \\
& \text { and } \left.\widetilde{\mathcal{P}}_{h}\left(s^{2 \prime} \mid s^{2}, b\right) \geq 0, \forall\left(s^{2}, b, s^{2 \prime}\right) \in \mathcal{S}_{2} \times \mathcal{B} \times \mathcal{S}_{2}, \forall k \in[K]\right\}
\end{aligned}
$$

where we define

$$
\epsilon_{h}^{2, k}:=2 \sqrt{\frac{\widehat{\mathcal{P}}_{h}^{2, k}\left(s^{2 \prime} \mid s^{2}, b\right) \log \left(\left|\mathcal{S}_{2}\right||\mathcal{B}| H K / \delta^{\prime}\right)}{\max \left\{N_{h}^{k}\left(s^{2}, b\right)-1,1\right\}}}+\frac{14 \log \left(\left|\mathcal{S}_{2}\right||\mathcal{B}| H K / \delta^{\prime}\right)}{3 \max \left\{N_{h}^{k}\left(s^{2}, b\right)-1,1\right\}}
$$

with $N_{h}^{k}\left(s^{2}, b\right):=\sum_{\tau=1}^{k} \mathbf{1}\left\{\left(s^{2}, b\right)=\left(s_{h}^{2, \tau}, b_{h}^{\tau}\right)\right\}$, and $\widehat{\mathcal{P}}^{2, k}$ being the empirical transition model for Player 2.
Lemma B.8. With probability at least $1-\delta$, the difference between $q_{h}^{\nu^{k}, \mathcal{P}^{2}}$ and $d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}$ are bounded as

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s^{2} \in \mathcal{S}_{2}}\left|q_{h}^{\nu^{k}, \mathcal{P}^{2}}\left(s^{2}\right)-d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)\right| \leq \widetilde{\mathcal{O}}\left(H^{2}\left|\mathcal{S}_{2}\right| \sqrt{|\mathcal{B}| K}\right)
$$

Proof. By the definition of state distribution for Player 2, we have

$$
\begin{aligned}
\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s^{2} \in \mathcal{S}_{2}}\left|q_{h}^{\nu^{k}, \mathcal{P}^{2}}\left(s^{2}\right)-d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)\right| & =\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s^{2} \in \mathcal{S}_{2}}\left|\sum_{b \in \mathcal{B}} w_{h}^{2, k}\left(s^{2}, b\right)-\sum_{b \in \mathcal{B}} \widehat{w}_{h}^{2, k}\left(s^{2}, b\right)\right| \\
& \leq \sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s^{2} \in \mathcal{S}_{2}} \sum_{b \in \mathcal{B}}\left|w_{h}^{2, k}(s, a)-\widehat{w}_{h}^{2, k}\left(s^{2}, b\right)\right|
\end{aligned}
$$

where $\widehat{w}_{h}^{2, k}\left(s^{2}, b\right)$ is the occupancy measure under the empirical transition model $\widehat{\mathcal{P}}^{2, k}$ and the policy ν^{k}. Then, since $\widehat{\mathcal{P}}^{2, k} \in \Upsilon^{2, k}$ always holds for any k, by Lemma B.11, we can bound the last term of the bound inequality such that with probability at least $1-6 \delta^{\prime}$,

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s^{2} \in \mathcal{S}_{2}}\left|q_{h}^{\nu^{k}, \mathcal{P}^{2}}\left(s^{2}\right)-d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)\right| \leq \mathcal{E}_{1}+\mathcal{E}_{2}
$$

Then, we compute \mathcal{E}_{1} by Lemma B. 10 . With probability at least $1-2 \delta^{\prime}$, we have

$$
\begin{aligned}
\mathcal{E}_{1} & =\mathcal{O}\left[\sum_{h=2}^{H} \sum_{h^{\prime}=1}^{h-1} \sum_{k=1}^{K} \sum_{s^{2} \in \mathcal{S}_{2}} \sum_{b \in \mathcal{B}} w_{h}^{k}\left(s^{2}, b\right)\left(\sqrt{\frac{\left|\mathcal{S}_{2}\right| \log \left(\left|\mathcal{S}_{2}\right||\mathcal{B}| H K / \delta^{\prime}\right)}{\max \left\{N_{h}^{k}\left(s^{2}, b\right), 1\right\}}}+\frac{\log \left(\left|\mathcal{S}_{2}\right||\mathcal{B}| H K / \delta^{\prime}\right)}{\max \left\{N_{h}^{k}\left(s^{2}, b\right), 1\right\}}\right)\right] \\
& =\mathcal{O}\left[\sum_{h=2}^{H} \sum_{h^{\prime}=1}^{h-1} \sqrt{\left|\mathcal{S}_{2}\right|}\left(\sqrt{\left|\mathcal{S}_{2}\right||\mathcal{B}| K}+\left|\mathcal{S}_{2}\right||\mathcal{B}| \log K+\log \frac{H}{\delta^{\prime}}\right) \log \frac{\left|\mathcal{S}_{2}\right||\mathcal{B}| H K}{\delta^{\prime}}\right] \\
& =\mathcal{O}\left[\left(H^{2}\left|\mathcal{S}_{2}\right| \sqrt{|\mathcal{B}| K}+H^{2}\left|\mathcal{S}_{2}\right|^{3 / 2}|\mathcal{B}| \log K+H^{2} \sqrt{\left|\mathcal{S}_{2}\right|} \log \frac{H}{\delta^{\prime}}\right) \log \frac{\left|\mathcal{S}_{2}\right||\mathcal{B}| H K}{\delta^{\prime}}\right] \\
& =\widetilde{\mathcal{O}}\left(H^{2}\left|\mathcal{S}_{2}\right| \sqrt{|\mathcal{B}| K}\right)
\end{aligned}
$$

where we ignore $\log K$ when K is sufficiently large such that \sqrt{K} dominates, and $\widetilde{\mathcal{O}}$ hides logarithm dependence on $\left|\mathcal{S}_{2}\right|$, $|\mathcal{B}|, H, K$, and $1 / \delta^{\prime}$. In addition, \mathcal{E}_{2} depends on $\operatorname{ploy}\left(H,\left|\mathcal{S}_{2}\right|,|\mathcal{B}|\right)$ except the factor $\log \frac{\left|\mathcal{S}_{2}\right||\mathcal{B}| H K}{\delta^{\prime}}$ as shown in Lemma B.11. Thus, \mathcal{E}_{2} can be ignored comparing to \mathcal{E}_{1} if K is sufficiently large. Therefore, we obtain that with probability at least $1-8 \delta^{\prime}$, the following inequality holds

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s^{2} \in \mathcal{S}_{2}}\left|q_{h}^{\nu^{k}, \mathcal{P}^{2}}\left(s^{2}\right)-d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)\right| \leq \widetilde{\mathcal{O}}\left(H^{2}\left|\mathcal{S}_{2}\right| \sqrt{|\mathcal{B}| K}\right)
$$

We further let $\delta=8 \delta^{\prime}$ such that $\log \frac{\left|\mathcal{S}_{2}\right||\mathcal{B}| H K}{\delta^{\prime}}=\log \frac{8\left|\mathcal{S}_{2}\right||\mathcal{B}| H K}{\delta}$ which does not change the order as above. Then, with probability at least $1-\delta$, we have $\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s^{2} \in \mathcal{S}_{2}}\left|q_{h}^{\nu^{k}, \mathcal{P}^{2}}\left(s^{2}\right)-d_{h}^{\nu^{k}, \widehat{\mathcal{P}}^{2, k}}\left(s^{2}\right)\right| \leq \widetilde{\mathcal{O}}\left(H^{2}\left|\mathcal{S}_{2}\right| \sqrt{|\mathcal{B}| K}\right)$. This completes the proof.

B.1. Other Supporting Lemmas

The following lemmas are adapted from the recent papers (Efroni et al., 2020; Jin \& Luo, 2019), where we can find their detailed proofs.
Lemma B.9. With probability at least $1-4 \delta^{\prime}$, the true transition model \mathcal{P}^{2} satisfies that for any $k \in[K]$,

$$
\mathcal{P} \in \Upsilon^{2, k}
$$

This lemma indicates that the estimated transition model $\widehat{\mathcal{P}}_{h}^{2, k}\left(s^{2 \prime} \mid s^{2}, b\right)$ for Player 2 by (11) is closed to the true transition model $\mathcal{P}_{h}^{2}\left(s^{2 \prime} \mid s^{2}, b\right)$ with high probability. The upper bound is by empirical Bernstein's inequality and the union bound.

The next lemma is adapted from Lemma 10 in Jin \& Luo (2019).

Lemma B.10. We let $w_{h}^{2, k}\left(s^{2}, b\right)$ denote the occupancy measure at the h-th step of the k-th episode under the true transition model \mathcal{P}^{2} and the current policy ν^{k}. Then, with probability at least $1-2 \delta^{\prime}$ we have for all $h \in[H]$, the following inequalities hold

$$
\sum_{k=1}^{K} \sum_{s^{2} \in \mathcal{S}_{2}} \sum_{b \in \mathcal{B}} \frac{w_{h}^{k}\left(s^{2}, b\right)}{\max \left\{N_{h}^{k}\left(s^{2}, b\right), 1\right\}}=\mathcal{O}\left(\left|\mathcal{S}_{2}\right||\mathcal{B}| \log K+\log \frac{H}{\delta^{\prime}}\right)
$$

and

$$
\sum_{k=1}^{K} \sum_{s^{2} \in \mathcal{S}_{2}} \sum_{b \in \mathcal{B}} \frac{w_{h}^{k}\left(s^{2}, b\right)}{\sqrt{\max \left\{N_{h}^{k}\left(s^{2}, b\right), 1\right\}}}=\mathcal{O}\left(\sqrt{\left|\mathcal{S}_{2}\right||\mathcal{B}| K}+\left|\mathcal{S}_{2}\right||\mathcal{B}| \log K+\log \frac{H}{\delta^{\prime}}\right)
$$

By Lemma B. 9 and Lemma B.10, we have the following lemma to show the difference of two occupancy measures, which is modified from parts of the proof of Lemma 4 in Jin \& Luo (2019).
Lemma B.11. For Player 2, we let $w_{h}^{2, k}\left(s^{2}, b\right)$ be the occupancy measure at the h-th step of the k-th episode under the true transition model \mathcal{P}^{2} and the current policy ν^{k}, and $\widetilde{w}_{h}^{2, k}\left(s^{2}, b\right)$ be the occupancy measure at the h-th step of the k-th episode under any transition model $\widetilde{\mathcal{P}}^{2, k} \in \Upsilon^{k}$ and the current policy ν^{k} for any k. Then, with probability at least $1-6 \delta^{\prime}$ we have for all $h \in[H]$, the following inequalities hold

$$
\sum_{k=1}^{K} \sum_{h=1}^{K} \sum_{s \in \mathcal{S}_{2}} \sum_{b \in \mathcal{B}}\left|\widetilde{w}_{h}^{2, k}\left(s^{2}, b\right)-w_{h}^{2, k}\left(s^{2}, b\right)\right| \leq \mathcal{E}_{1}+\mathcal{E}_{2}
$$

where \mathcal{E}_{1} and \mathcal{E}_{2} are in the level of

$$
\mathcal{E}_{1}=\mathcal{O}\left[\sum_{h=2}^{H} \sum_{h^{\prime}=1}^{h-1} \sum_{k=1}^{K} \sum_{s^{2} \in \mathcal{S}_{2}} \sum_{b \in \mathcal{B}} w_{h}^{k}\left(s^{2}, b\right)\left(\sqrt{\frac{\left|\mathcal{S}_{2}\right| \log \left(\left|\mathcal{S}_{2}\right||\mathcal{B}| H K / \delta^{\prime}\right)}{\max \left\{N_{h}^{k}\left(s^{2}, b\right), 1\right\}}}+\frac{\log \left(\left|\mathcal{S}_{2}\right||\mathcal{B}| H K / \delta^{\prime}\right)}{\max \left\{N_{h}^{k}\left(s^{2}, b\right), 1\right\}}\right)\right]
$$

and

$$
\mathcal{E}_{2}=\mathcal{O}\left(\operatorname{poly}\left(H,\left|\mathcal{S}_{2}\right|,|\mathcal{B}|\right) \cdot \log \frac{\left|\mathcal{S}_{2}\right||\mathcal{B}| H K}{\delta^{\prime}}\right)
$$

where $\operatorname{poly}\left(H,\left|\mathcal{S}_{2}\right|,|\mathcal{B}|\right)$ denotes the polynomial dependency on $H,\left|\mathcal{S}_{2}\right|,|\mathcal{B}|$.

C. Proofs for Section 4

Lemma C.1. At the k-th episode, the difference between value functions $V_{1}^{\mu^{*}, \nu^{k}}\left(s_{1}\right)$ and $V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)$ is

$$
\begin{align*}
& V_{1}^{\mu^{*}, \nu^{k}}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)=\bar{V}_{1}^{k}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right) \\
& \quad+\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}}\left[\left\langle\mu_{h}^{*}\left(\cdot \mid s_{h}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}\right), U_{h}^{k}\left(s_{h}, \cdot\right)\right\rangle_{\mathcal{A}} \mid s_{1}\right] \\
& \quad+\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}, \nu^{k}}\left[\bar{\varsigma}_{h}^{k}\left(s_{h}, a_{h}, b_{h}\right) \mid s_{1}\right] \tag{35}
\end{align*}
$$

where s_{h}, a_{h}, b_{h} are random variables for state and actions, $U_{h}^{k}(s, a):=\left\langle\bar{Q}_{h}^{k}(s, a, \cdot), \nu_{h}^{k}(\cdot \mid s)\right\rangle_{\mathcal{B}}$, and we define the model prediction error of Q-function as

$$
\begin{equation*}
\bar{\varsigma}_{h}^{k}(s, a, b)=r_{h}(s, a, b)+\mathcal{P}_{h} \bar{V}_{h+1}^{k}(s, a)-\bar{Q}_{h}^{k}(s, a, b) \tag{36}
\end{equation*}
$$

Proof. We start the proof by decomposing the value function difference as

$$
\begin{equation*}
V_{1}^{\mu^{*}, \nu^{k}}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)=V_{1}^{\mu^{*}, \nu^{k}}\left(s_{1}\right)-\bar{V}_{1}^{k}\left(s_{1}\right)+\bar{V}_{1}^{k}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right) \tag{37}
\end{equation*}
$$

Note that the term $\bar{V}_{1}^{k}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)$ is the bias between the estimated value function $\bar{V}_{1}^{k}\left(s_{1}\right)$ generated by Algorithm 2 and the value function $V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)$ under the true transition model \mathcal{P} at the k-th episode.
We focus on analyzing the other term $V_{1}^{\mu^{*}, \nu^{k}}\left(s_{1}\right)-\bar{V}_{1}^{k}\left(s_{1}\right)$ in this proof. For any h and s, we have

$$
\begin{align*}
& V_{h}^{\mu^{*}, \nu^{k}}(s)-\bar{V}_{h}^{k}(s) \\
&= {\left[\mu_{h}^{*}(\cdot \mid s)\right]^{\top} Q_{h}^{\mu^{*}, \nu^{k}}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)-\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \bar{Q}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s) } \\
&= {\left[\mu_{h}^{*}(\cdot \mid s)\right]^{\top} Q_{h}^{\mu^{*}, \nu^{k}}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)-\left[\mu_{h}^{*}(\cdot \mid s)\right]^{\top} \bar{Q}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s) } \\
&+\left[\mu_{h}^{*}(\cdot \mid s)\right]^{\top} \bar{Q}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)-\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \bar{Q}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s) \tag{38}\\
&= {\left[\mu_{h}^{*}(\cdot \mid s)\right]^{\top}\left[Q_{h}^{\mu^{*}, \nu^{k}}(s, \cdot, \cdot)-\bar{Q}_{h}^{k}(s, \cdot, \cdot)\right] \nu_{h}^{k}(\cdot \mid s) } \\
&+\left[\mu_{h}^{*}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \bar{Q}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)
\end{align*}
$$

where the first inequality is by the definition of $V_{h}^{\mu^{*}, \nu^{k}}$ in (1) and the definition of \bar{V}_{h}^{k} in Line 2 of Algorithm 2. Moreover, by the definition of $Q_{h}^{\mu^{*}, \nu^{k}}(s, \cdot, \cdot)$ in (2) and the model prediction error $\bar{\varsigma}_{h}^{k}$ for Player one in (36), we have

$$
\begin{aligned}
& {\left[\mu_{h}^{*}(\cdot \mid s)\right]^{\top}\left[Q_{h}^{\mu^{*}, \nu^{k}}(s, \cdot, \cdot)-\bar{Q}_{h}^{k}(s, \cdot, \cdot)\right] \nu_{h}^{k}(\cdot \mid s)} \\
& \quad=\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} \mu_{h}^{*}(a \mid s)\left[\sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}_{h}\left(s^{\prime} \mid s, a\right)\left[V_{h+1}^{\mu^{*}, \nu^{k}}\left(s^{\prime}\right)-\bar{V}_{h+1}^{k}\left(s^{\prime}\right)\right]+\bar{\zeta}_{h}^{k}(s, a, b)\right] \nu_{h}^{k}(b \mid s) \\
& \quad=\sum_{a \in \mathcal{A}} \sum_{s^{\prime} \in \mathcal{S}} \mu_{h}^{*}(a \mid s) \mathcal{P}_{h}\left(s^{\prime} \mid s, a\right)\left[V_{h+1}^{\mu^{*}, \nu^{k}}\left(s^{\prime}\right)-\bar{V}_{h+1}^{k}\left(s^{\prime}\right)\right]+\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} \mu_{h}^{*}(a \mid s) \bar{\varsigma}_{h}^{k}(s, a, b) \nu_{h}^{k}(b \mid s)
\end{aligned}
$$

where the last equality holds due to $\sum_{b \in \mathcal{B}} \nu_{h}^{k}(b \mid s)=1$. Combining this equality with (38) gives

$$
\begin{align*}
V_{h}^{\mu^{*}, \nu^{k}}(s)-\bar{V}_{h}^{k}(s)= & \sum_{a \in \mathcal{A}} \sum_{s^{\prime} \in \mathcal{S}} \mu_{h}^{*}(a \mid s) \mathcal{P}_{h}\left(s^{\prime} \mid s, a\right)\left[V_{h+1}^{\mu^{*}, \nu^{k}}\left(s^{\prime}\right)-\bar{V}_{h+1}^{k}\left(s^{\prime}\right)\right] \\
& +\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} \mu_{h}^{*}(a \mid s) \bar{\varsigma}_{h}^{k}(s, a, b) \nu_{h}^{k}(b \mid s) \tag{39}\\
& +\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}}\left[\mu_{h}^{*}(a \mid s)-\mu_{h}^{k}(a \mid s)\right] \bar{Q}_{h}^{k}(s, a, b) \nu_{h}^{k}(b \mid s)
\end{align*}
$$

Note that (39) indicates a recursion of the value function difference $V_{h}^{\mu^{*}, \nu^{k}}(s)-\bar{V}_{h}^{k}(s)$. Since we define $V_{H+1}^{\mu^{*}, \nu^{k}}(s)=0$ and $\bar{V}_{H+1}^{k}(s)=0$, by recursively applying (39) from $h=1$ to H, we obtain

$$
\begin{align*}
V_{1}^{\mu^{*}, \nu^{k}} & \left(s_{1}\right)-\bar{V}_{1}^{k}\left(s_{1}\right) \\
= & \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}\right)\right]^{\top} \bar{\varsigma}_{h}^{k}\left(s_{h}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}\right) \mid s_{1}\right\} \tag{40}\\
& +\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}\right)\right]^{\top} \bar{Q}_{h}^{k}\left(s_{h}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}\right) \mid s_{1}\right\}
\end{align*}
$$

where s_{h} are a random variables denoting the state at the h-th step following a distribution determined jointly by μ^{*}, \mathcal{P}.

Further combining (40) with (37), we eventually have

$$
\begin{aligned}
& V_{1}^{\mu^{*}, \nu^{k}}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right) \\
&= \bar{V}_{1}^{k}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)+\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}\right)\right]^{\top} \bar{\varsigma}_{h}^{k}\left(s_{h}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}\right) \mid s_{1}\right\} \\
&+\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}}\left\{\left[\mu_{h}^{*}\left(\cdot \mid s_{h}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}\right)\right]^{\top} \bar{Q}_{h}^{k}\left(s_{h}, \cdot, \cdot\right) \nu_{h}^{k}\left(\cdot \mid s_{h}\right) \mid s_{1}\right\} \\
&= \bar{V}_{1}^{k}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)+\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}, \nu^{k}}\left[\bar{\varsigma}_{h}^{k}\left(s_{h}, a_{h}, b_{h}\right) \mid s_{1}\right] \\
&+\sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}}\left[\left\langle\mu_{h}^{*}\left(\cdot \mid s_{h}\right)-\mu_{h}^{k}\left(\cdot \mid s_{h}\right), U_{h}^{k}\left(s_{h}, \cdot\right)\right\rangle_{\mathcal{A}} \mid s_{1}\right]
\end{aligned}
$$

where s_{h}, a_{h}, b_{h} are a random variables denoting the state and actions at the h-th step following a distribution determined jointly by $\mu^{*}, \mathcal{P}, \nu^{k}$, and $U_{h}^{k-1}(s, a):=\left\langle\bar{Q}_{h}^{k-1}(s, a, \cdot), \nu_{h}^{k-1}(\cdot \mid s)\right\rangle_{\mathcal{B}}$. This completes our proof.

Lemma C.2. At the k-th episode, with probability at least $1-2 \delta$, the difference between the value functions $V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)$ and $V_{1}^{\mu^{k}, \nu^{*}}\left(s_{1}\right)$ is bound as

$$
\begin{align*}
& V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{*}}\left(s_{1}\right) \leq 2 \sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left|q_{h}^{\mu^{k}, \mathcal{P}}(s)-d_{h}^{k}(s)\right| \\
& \quad+\sum_{h=1}^{H} \sum_{s \in \mathcal{S}} d_{h}^{k}(s)\left\langle W_{h}^{k}(s, \cdot), \nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{*}(\cdot \mid s)\right\rangle_{\mathcal{B}} \\
& \quad+2 \sum_{h=1}^{H} \mathbb{E}_{\mu^{k}, \mathcal{P}, \nu^{k}}\left[\beta_{h}^{r, k}\left(s_{h}, a_{h}, b_{h}\right) \mid s_{1}\right] \tag{41}
\end{align*}
$$

where s_{h}, a_{h}, b_{h} are random variables for state and actions, and $W_{h}^{k}(s, b)=\left\langle\widetilde{r}_{h}^{k}(s, \cdot, b), \mu_{h}^{k}(\cdot \mid s)\right\rangle_{\mathcal{A}}$.
Proof. We start our proof from analyzing the difference for any h and s as follows

$$
\begin{align*}
V_{h}^{\mu^{k}, \nu^{k}} & (s)-V_{h}^{\mu^{k}, \nu^{*}}(s) \\
= & {\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} Q_{h}^{\mu^{k}, \nu^{k}}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)-\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} Q_{h}^{\mu^{k}, \nu^{*}}(s, \cdot, \cdot) \nu_{h}^{*}(\cdot \mid s) } \\
= & {\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} Q_{h}^{\mu^{k}, \nu^{k}}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)-\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} Q_{h}^{\mu^{k}, \nu^{k}}(s, \cdot, \cdot) \nu_{h}^{*}(\cdot \mid s) } \tag{42}\\
& +\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} Q_{h}^{\mu^{k}, \nu^{k}}(s, \cdot, \cdot) \nu_{h}^{*}(\cdot \mid s)-\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} Q_{h}^{\mu^{k}, \nu^{*}}(s, \cdot, \cdot) \nu_{h}^{*}(\cdot \mid s) \\
= & {\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} Q_{h}^{\mu^{k}, \nu^{k}}(s, \cdot, \cdot)\left[\nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{*}(\cdot \mid s)\right] } \\
& +\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top}\left[Q_{h}^{\mu^{k}, \nu^{k}}(s, \cdot, \cdot)-Q_{h}^{\mu^{k}, \nu^{*}}(s, \cdot, \cdot)\right] \nu_{h}^{*}(\cdot \mid s),
\end{align*}
$$

where the first equality is by the Bellman equation for $V_{h}^{\mu, \nu}(s)$ in (1). Moreover, by the Bellman equation for $Q_{h}^{\mu, \nu}$ in (2), we can expand the last term in (42) as

$$
\begin{align*}
& {\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top}\left[Q_{h}^{\mu^{k}, \nu^{k}}(s, \cdot, \cdot)-Q_{h}^{\mu^{k}, \nu^{*}}(s, \cdot, \cdot)\right] \nu_{h}^{*}(\cdot \mid s)} \\
& \quad=\sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} \mu_{h}^{k}(a \mid s) \sum_{s^{\prime} \in \mathcal{S}} \mathcal{P}_{h}\left(s^{\prime} \mid s, a\right)\left[V_{h+1}^{\mu^{k}, \nu^{k}}\left(s^{\prime}\right)-V_{h+1}^{\mu^{k}, \nu^{*}}\left(s^{\prime}\right)\right] \nu_{h}^{*}(b \mid s) \tag{43}\\
& \quad=\sum_{a \in \mathcal{A}} \sum_{s^{\prime} \in \mathcal{S}} \mu_{h}^{k}(a \mid s) \mathcal{P}_{h}\left(s^{\prime} \mid s, a\right)\left[V_{h+1}^{\mu^{k}, \nu^{k}}\left(s^{\prime}\right)-V_{h+1}^{\mu^{k}, \nu^{*}}\left(s^{\prime}\right)\right]
\end{align*}
$$

where the last equality holds due to $\sum_{b \in \mathcal{B}} \nu_{h}^{*}(b \mid s)=1$. Combining (43) with (42) gives

$$
\begin{align*}
V_{h}^{\mu^{k}, \nu^{k}}(s)-V_{h}^{\mu^{k}, \nu^{*}}(s)= & \sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} \mu_{h}^{k}(a \mid s) Q_{h}^{\mu^{k}, \nu^{k}}(s, a, b)\left[\nu_{h}^{k}(b \mid s)-\nu_{h}^{*}(b \mid s)\right] \\
& +\sum_{a \in \mathcal{A}} \sum_{s^{\prime} \in \mathcal{S}} \mu_{h}^{k}(a \mid s) \mathcal{P}_{h}\left(s^{\prime} \mid s, a\right)\left[V_{h+1}^{\mu^{k}, \nu^{k}}\left(s^{\prime}\right)-V_{h+1}^{\mu^{k}, \nu^{*}}\left(s^{\prime}\right)\right] \tag{44}
\end{align*}
$$

Note that (44) indicates a recursion of the value function difference $V_{h}^{\mu^{k}, \nu^{k}}(s)-V_{h}^{\mu^{k}, \nu^{*}}(s)$. Since we define $V_{H+1}^{\mu, \nu}(s)=0$ for any μ and ν, by recursively applying (44) from $h=1$ to H, we obtain

$$
\begin{equation*}
V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{*}}\left(s_{1}\right)=\sum_{h=1}^{H} \mathbb{E}_{\mu^{k}, \mathcal{P}}\left\{\left[\mu_{h}^{k}\left(\cdot \mid s_{h}\right)\right]^{\top} Q_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}, \cdot, \cdot\right)\left[\nu_{h}^{k}\left(\cdot \mid s_{h}\right)-\nu_{h}^{*}\left(\cdot \mid s_{h}\right)\right] \mid s_{1}\right\} \tag{45}
\end{equation*}
$$

where s_{h} are a random variables following a distribution determined jointly by μ^{k}, \mathcal{P}. Note that since we have defined the distribution of s_{h} under μ^{k} and \mathcal{P} as

$$
q_{h}^{\mu^{k}, \mathcal{P}}(s)=\operatorname{Pr}\left(s_{h}=s \mid \mu^{k}, \mathcal{P}, s_{1}\right)
$$

we can rewrite (45) as

$$
\begin{equation*}
V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{*}}\left(s_{1}\right)=\sum_{h=1}^{H} \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} q_{h}^{\mu^{k}, \mathcal{P}}(s) \mu_{h}^{k}(a \mid s) Q_{h}^{\mu^{k}, \nu^{k}}(s, a, b)\left[\nu_{h}^{k}(b \mid s)-\nu_{h}^{*}(b \mid s)\right] \tag{46}
\end{equation*}
$$

By plugging the Bellman equation for Q-function as (2) into (46), we further expand (46) as

$$
\begin{aligned}
V_{1}^{\mu^{k}, \nu^{k}} & \left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{*}}\left(s_{1}\right) \\
& =\sum_{h=1}^{H} \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} q_{h}^{\mu^{k}, \mathcal{P}}(s) \mu_{h}^{k}(a \mid s)\left[r_{h}(s, a, b)+\left\langle\mathcal{P}_{h}(\cdot \mid s, a), V_{h+1}^{\mu^{k}, \nu^{k}}(\cdot)\right\rangle\right]\left[\nu_{h}^{k}(b \mid s)-\nu_{h}^{*}(b \mid s)\right] \\
= & \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} q_{h}^{\mu^{k}, \mathcal{P}}(s) \mu_{h}^{k}(a \mid s)\left[r_{h}(s, a, b)\right]\left[\nu_{h}^{k}(b \mid s)-\nu_{h}^{*}(b \mid s)\right] \\
= & \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} q_{h}^{\mu^{k}, \mathcal{P}}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} r_{h}(s, \cdot, \cdot)\left[\nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{*}(\cdot \mid s)\right]
\end{aligned}
$$

where the second equality by

$$
\begin{aligned}
\sum_{h=1}^{H} & \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \sum_{b \in \mathcal{B}} q_{h}^{\mu^{k}, \mathcal{P}}(s) \mu_{h}^{k}(a \mid s)\left\langle\mathcal{P}_{h}(\cdot \mid s, a), V_{h+1}^{\mu^{k}, \nu^{k}}(\cdot)\right\rangle_{\mathcal{S}}\left[\nu_{h}^{k}(b \mid s)-\nu_{h}^{*}(b \mid s)\right] \\
& =\sum_{h=1}^{H} \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} q_{h}^{\mu^{k}, \mathcal{P}}(s) \mu_{h}^{k}(a \mid s)\left\langle\mathcal{P}_{h}(\cdot \mid s, a), V_{h+1}^{\mu^{k}, \nu^{k}}(\cdot)\right\rangle_{\mathcal{S}} \sum_{b \in \mathcal{B}}\left[\nu_{h}^{k}(b \mid s)-\nu_{h}^{*}(b \mid s)\right] \\
& =0 .
\end{aligned}
$$

In particular, the last equality above is due to

$$
\sum_{b \in \mathcal{B}}\left[\nu_{h}^{k}(b \mid s)-\nu_{h}^{*}(b \mid s)\right]=1-1=0
$$

Thus, we have

$$
\begin{equation*}
V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{*}}\left(s_{1}\right)=\sum_{h=1}^{H} \sum_{s \in \mathcal{S}} q_{h}^{\mu^{k}, \mathcal{P}}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} r_{h}(s, \cdot, \cdot)\left[\nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{*}(\cdot \mid s)\right] . \tag{47}
\end{equation*}
$$

Now we define the following term associated with estimation $\widehat{\mathcal{P}}^{k}, \widehat{r}^{h}$, policies μ^{k}, ν^{k}, and the initial state s_{1} as

$$
\underline{V}_{1}^{k}\left(s_{1}\right):=\sum_{h=1}^{H} \sum_{s \in \mathcal{S}} q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \widetilde{r}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s), ~, ~ \text {, }}
$$

with \widetilde{r} defined in Line 3 of Algorithm 3, which is

$$
\widetilde{r}_{h}^{k}(s, a, b)=\max \left\{\widehat{r}_{h}^{k}(s, a, b)-\beta_{h}^{r, k}(s, a, b), 0\right\}
$$

Thus, we have the following decomposition

$$
\begin{align*}
& V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{*}}\left(s_{1}\right) \\
&= V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)-\underline{V}_{1}^{k}\left(s_{1}\right)+\underline{V}_{1}^{k}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{*}}\left(s_{1}\right) \\
&= \underbrace{\sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left\{q_{h}^{\mu^{k}, \mathcal{P}}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} r_{h}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)-q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \widetilde{r}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)\right\}}_{\text {Term(I) }} \tag{48}\\
&+\underbrace{\sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left\{q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \widetilde{r}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)-q_{h}^{\mu^{k}, \mathcal{P}}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} r_{h}(s, \cdot, \cdot) \nu_{h}^{*}(\cdot \mid s)\right\}}_{\text {Term(II) }} .
\end{align*}
$$

We first bound Term(I) as

$$
\begin{aligned}
\operatorname{Term}(\mathrm{I})= & \sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left\{q_{h}^{\mu^{k}, \mathcal{P}}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} r_{h}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)-q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \widetilde{r}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)\right\} \\
= & \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} q_{h}^{\mu^{k}, \mathcal{P}}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top}\left[r_{h}(s, \cdot, \cdot)-\widetilde{r}_{h}^{k}(s, \cdot, \cdot)\right] \nu_{h}^{k}(\cdot \mid s) \\
& +\sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left[q_{h}^{\mu^{k}, \mathcal{P}}(s)-q_{h}^{\left.\mu^{k}, \widehat{\mathcal{P}}^{k}(s)\right]\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \widetilde{r}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)}\right. \\
\leq & 2 \sum_{h=1}^{H} \mathbb{E}_{\mu^{k}, \mathcal{P}, \nu^{k}}\left[\beta_{h}^{r, k}(s, a, b)\right]+\sum_{h=1}^{H} \sum_{s \in \mathcal{S}} \mid q_{h}^{\mu^{k}, \mathcal{P}}(s)-q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}(s) \mid}
\end{aligned}
$$

where the inequality is due to $\left|\widehat{r}_{h}^{k}(s, a, b)-r_{h}(s, a, b)\right| \leq \beta_{h}^{r, k}(s, a, b)$ with probability at least $1-\delta$ because of Lemma C. 4 such that we have

$$
\begin{aligned}
r_{h}(s, a, b)-\widetilde{r}_{h}^{k}(s, a, b) & =r_{h}(s, a, b)-\max \left\{\widehat{r}_{h}^{k}(s, a, b)-\beta_{h}^{r, k}(s, a, b), 0\right\} \\
& =\min \left\{r_{h}(s, a, b)-\widehat{r}_{h}^{k}(s, a, b)+\beta_{h}^{r, k}(s, a, b), r_{h}(s, a, b)\right\} \\
& \leq r_{h}(s, a, b)-\widehat{r}_{h}^{k}(s, a, b)+\beta_{h}^{r, k}(s, a, b) \leq 2 \beta_{h}^{r, k}(s, a, b)
\end{aligned}
$$

which yields

$$
\sum_{s \in \mathcal{S}} q_{h}^{\mu^{k}, \mathcal{P}}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top}\left[r_{h}(s, \cdot, \cdot)-\widetilde{r}_{h}^{k}(s, \cdot, \cdot)\right] \nu_{h}^{k}(\cdot \mid s) \leq 2 \mathbb{E}_{\mu^{k}, \mathcal{P}, \nu^{k}}\left[\beta_{h}^{r, k}(s, a, b)\right]
$$

and we also have

$$
\begin{aligned}
\left|\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \widetilde{r}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)\right| & \leq\left|\sum_{a} \sum_{b} \mu_{h}^{k}(a \mid s) \widetilde{r}_{h}^{k}(s, a, b) \nu_{h}^{k}(b \mid s)\right| \\
& \leq \sum_{a} \sum_{b} \mu_{h}^{k}(a \mid s) \cdot\left|\widetilde{r}_{h}^{k}(s, a, b)\right| \cdot \nu_{h}^{k}(b \mid s) \leq 1
\end{aligned}
$$

because of $\widetilde{r}_{h}^{k}(s, a, b)=\max \left\{\widehat{r}_{h}^{k}(s, a, b)-\beta_{h}^{r, k}(s, a, b), 0\right\} \leq \widehat{r}_{h}^{k}(s, a, b) \leq 1$. Therefore, with probability at least $1-\delta$, we have

$$
\begin{equation*}
\operatorname{Term}(\mathrm{I}) \leq 2 \sum_{h=1}^{H} \mathbb{E}_{\mu^{k}, \mathcal{P}, \nu^{k}}\left[\beta_{h}^{r, k}\left(s_{h}, a_{h}, b_{h}\right)\right]+\sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left|q_{h}^{\mu^{k}, \mathcal{P}}(s)-q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}}(s)\right| \tag{49}
\end{equation*}
$$

Next, we bound Term(II) in the following way

$$
\begin{aligned}
\operatorname{Term}(\mathrm{II})= & \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \widetilde{r}_{h}^{k}(s, \cdot, \cdot)\left[\nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{*}(\cdot \mid s)\right] \\
& +\sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left[q_{h}^{\left.\mu^{k}, \widehat{\mathcal{P}}^{k}(s)-q_{h}^{\mu^{k}, \mathcal{P}}(s)\right]\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \widetilde{r}_{h}^{k}(s, \cdot, \cdot) \nu_{h}^{k}(\cdot \mid s)}\right. \\
& +\sum_{h=1}^{H} \sum_{s \in \mathcal{S}} q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top}\left[\widetilde{r}_{h}^{k}(s, \cdot, \cdot)-r_{h}(s, \cdot, \cdot)\right] \nu_{h}^{k}(\cdot \mid s)} .
\end{aligned}
$$

Here the first term in the above equality is associated with the mirror descent step in Algorithm 3. The second term can be similarly bounded by $\sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left|q_{h}^{\mu^{k}, \mathcal{P}}(s)-q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}}(s)\right|$. With probability at least $1-\delta$, the third term is bounded as

$$
\begin{aligned}
\sum_{h=1}^{H} & \sum_{s \in \mathcal{S}} q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top}\left[\widetilde{r}_{h}^{k}(s, \cdot, \cdot)-r_{h}(s, \cdot, \cdot)\right] \nu_{h}^{k}(\cdot \mid s) \\
& =\sum_{h=1}^{H} \sum_{s \in \mathcal{S}} q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}(s) \sum_{a, b} \mu_{h}^{k}(a \mid s)\left[\widetilde{r}_{h}^{k}(s, a, b)-r_{h}(s, a, b)\right] \nu_{h}^{k}(b \mid s)} \\
& =\sum_{h=1}^{H} \sum_{s \in \mathcal{S}} q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}}(s) \sum_{a, b} \mu_{h}^{k}(a \mid s) \max \left\{\widehat{r}_{h}^{k-1}(s, a, b)-r_{h}(s, a, b)-\beta_{h}^{r, k-1},-r_{h}(s, a, b)\right\} \nu_{h}^{k}(b \mid s) \\
& \leq 0
\end{aligned}
$$

since $\widehat{r}_{h}^{k-1}(s, a, b)-r_{h}(s, a, b)-\beta_{h}^{r, k-1} \leq 0$ with probability at least $1-\delta$ by Lemma C.4, which reflects the 'optimism' of the algorithm. Thus, with probability at least $1-\delta$, we have

$$
\begin{align*}
\operatorname{Term}(\mathrm{II}) \leq & \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \widetilde{r}_{h}^{k}(s, \cdot, \cdot)\left[\nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{*}(\cdot \mid s)\right]} \tag{50}\\
& +\sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left|q_{h}^{\mu^{k}, \mathcal{P}}(s)-q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}}(s)\right|
\end{align*}
$$

Combining (49), (50) with (48), we obtain that with probability at least $1-2 \delta$, the following inequality holds

$$
\begin{aligned}
V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{*}}\left(s_{1}\right) \leq & \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}}(s)\left[\mu_{h}^{k}(\cdot \mid s)\right]^{\top} \widetilde{r}_{h}^{k}(s, \cdot, \cdot)\left[\nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{*}(\cdot \mid s)\right] \\
& +2 \sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left|q_{h}^{\mu^{k}, \mathcal{P}}(s)-q_{h}^{\mu^{k}, \widehat{\mathcal{P}}^{k}}(s)\right|+2 \sum_{h=1}^{H} \mathbb{E}_{\mu^{k}, \mathcal{P}, \nu^{k}}\left[\beta_{h}^{r, k}\left(s_{h}, a_{h}, b_{h}\right)\right]
\end{aligned}
$$

This completes our proof.
Lemma C.3. With setting $\eta=\sqrt{\log |\mathcal{A}| /\left(K H^{2}\right)}$, the mirror ascent steps of Algorithm 2 lead to

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}}\left[\left\langle\mu_{h}^{*}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s), U_{h}^{k}(s, \cdot)\right\rangle_{\mathcal{A}}\right] \leq \mathcal{O}\left(\sqrt{H^{4} K \log |\mathcal{A}|}\right)
$$

Proof. As shown in (13), the mirror ascent step at the k-th episode is to solve the following maximization problem

$$
\underset{\mu \in \Delta(\mathcal{A} \mid \mathcal{S}, H)}{\operatorname{maximize}} \sum_{h=1}^{H}\left\langle\mu_{h}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s), U_{h}^{k}(s, \cdot)\right\rangle_{\mathcal{A}}-\frac{1}{\eta} \sum_{h=1}^{H} D_{\mathrm{KL}}\left(\mu_{h}(\cdot \mid s), \mu_{h}^{k}(\cdot \mid s)\right),
$$

with $U_{h}^{k}(s, a)=\left\langle\bar{Q}_{h}^{k}(s, a, \cdot), \nu_{h}^{k}(\cdot \mid s)\right\rangle_{\mathcal{B}}$. We can further equivalently rewrite this maximization problem to a minimization problem as

$$
\underset{\mu \in \Delta(\mathcal{A} \mid \mathcal{S}, H)}{\operatorname{minimize}}-\sum_{h=1}^{H}\left\langle\mu_{h}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s), U_{h}^{k}(s, \cdot)\right\rangle_{\mathcal{A}}+\frac{1}{\eta} \sum_{h=1}^{H} D_{\mathrm{KL}}\left(\mu_{h}(\cdot \mid s), \mu_{h}^{k}(\cdot \mid s)\right)
$$

Note that the closed-form solution $\mu_{h}^{k+1}(a \mid s)=\left(Y_{h}^{k}\right)^{-1} \mu_{h}^{k}(a \mid s) \exp \left\{\eta\left\langle\bar{Q}_{h}^{k}(s, a, \cdot), \nu_{h}^{k}(\cdot \mid s)\right\rangle_{\mathcal{B}}\right\}$ to this minimization problem is guaranteed to stay in the relative interior of its feasible set $\Delta(\mathcal{A} \mid \mathcal{S}, H)$ when initialize $\mu_{h}^{0}(\cdot \mid s)=\mathbf{1} /|\mathcal{A}|$. Thus, we can apply Lemma C. 12 and obtain that for any $\mu=\left\{\mu_{h}\right\}_{h=1}^{H}$, the following inequality holds

$$
\begin{aligned}
& -\eta\left\langle\mu_{h}^{k+1}(\cdot \mid s), U_{h}^{k}(s, \cdot)\right\rangle_{\mathcal{A}}+\eta\left\langle\mu_{h}(\cdot \mid s), U_{h}^{k}(s, \cdot)\right\rangle_{\mathcal{A}} \\
& \quad \leq D_{\mathrm{KL}}\left(\mu_{h}(\cdot \mid s), \mu_{h}^{k}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\mu_{h}(\cdot \mid s), \mu_{h}^{k+1}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\mu_{h}^{k+1}(\cdot \mid s), \mu_{h}^{k}(\cdot \mid s)\right)
\end{aligned}
$$

Then, by rearranging the terms, we have

$$
\begin{align*}
& \eta\left\langle\mu_{h}^{*}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s), U_{h}^{k}(s, \cdot)\right\rangle_{\mathcal{A}} \\
& \quad \leq D_{\mathrm{KL}}\left(\mu_{h}^{*}(\cdot \mid s), \mu_{h}^{k}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\mu_{h}^{*}(\cdot \mid s), \mu_{h}^{k+1}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\mu_{h}^{k+1}(\cdot \mid s), \mu_{h}^{k}(\cdot \mid s)\right) \tag{51}\\
& \quad+\eta\left\langle\mu_{h}^{k+1}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s), U_{h}^{k}(s, \cdot)\right\rangle_{\mathcal{A}}
\end{align*}
$$

Due to Pinsker's inequality, we have

$$
-D_{\mathrm{KL}}\left(\mu_{h}^{k+1}(\cdot \mid s), \mu_{h}^{k}(\cdot \mid s)\right) \leq-\frac{1}{2}\left\|\mu_{h}^{k+1}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s)\right\|_{1}^{2}
$$

Moreover, by Cauchy-Schwarz inequality, we have

$$
\eta\left\langle\mu_{h}^{k+1}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s), U_{h}^{k}(s, \cdot)\right\rangle_{\mathcal{A}} \leq \eta H\left\|\mu_{h}^{k+1}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s)\right\|_{1}
$$

Thus, we have

$$
\begin{align*}
& -D_{\mathrm{KL}}\left(\mu_{h}^{k+1}(\cdot \mid s), \mu_{h}^{k}(\cdot \mid s)\right)+\eta\left\langle\mu_{h}^{k+1}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s), U_{h}^{k}(s, \cdot)\right\rangle_{\mathcal{A}} \\
& \quad \leq-\frac{1}{2}\left\|\mu_{h}^{k+1}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s)\right\|_{1}^{2}+\eta H\left\|\mu_{h}^{k+1}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s)\right\|_{1} \tag{52}\\
& \quad \leq \frac{1}{2} \eta^{2} H^{2}
\end{align*}
$$

where the last inequality is by viewing $\left\|\mu_{h}^{k+1}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s)\right\|_{1}$ as a variable x and finding the maximal value of $-1 / 2$. $x^{2}+\eta H x$ to obtain the upper bound $1 / 2 \cdot \eta^{2} H^{2}$.

Thus, combing (52) with (51), the policy improvement step in Algorithm 2 implies

$$
\eta\left\langle\mu_{h}^{*}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s), U_{h}^{k}(s, \cdot)\right\rangle_{\mathcal{A}} \leq D_{\mathrm{KL}}\left(\mu_{h}^{*}(\cdot \mid s), \mu_{h}^{k}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\mu_{h}^{*}(\cdot \mid s), \mu_{h}^{k+1}(\cdot \mid s)\right)+\frac{1}{2} \eta^{2} H^{2}
$$

which further leads to

$$
\begin{aligned}
& \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}}\left[\left\langle\mu_{h}^{*}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s), U_{h}^{k}(s, \cdot)\right\rangle_{\mathcal{A}}\right] \\
& \quad \leq \frac{1}{\eta} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}}\left[D_{\mathrm{KL}}\left(\mu_{h}^{*}(\cdot \mid s), \mu_{h}^{k}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\mu_{h}^{*}(\cdot \mid s), \mu_{h}^{k+1}(\cdot \mid s)\right)\right]+\frac{1}{2} \eta H^{3}
\end{aligned}
$$

Moreover, we take summation from $k=1$ to K of both sides and then obtain

$$
\begin{aligned}
& \sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}}\left[\left\langle\mu_{h}^{*}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s), U_{h}^{k}(s, \cdot)\right\rangle_{\mathcal{A}}\right] \\
& \quad \leq \frac{1}{\eta} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}}\left[D_{\mathrm{KL}}\left(\mu_{h}^{*}(\cdot \mid s), \mu_{h}^{1}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\mu_{h}^{*}(\cdot \mid s), \mu_{h}^{K+1}(\cdot \mid s)\right)\right]+\frac{1}{2} \eta K H^{3} \\
& \quad \leq \frac{1}{\eta} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}}\left[D_{\mathrm{KL}}\left(\mu_{h}^{*}(\cdot \mid s), \mu_{h}^{1}(\cdot \mid s)\right)\right]+\frac{1}{2} \eta K H^{3}
\end{aligned}
$$

where the last inequality is non-negativity of KL divergence. By the initialization in Algorithm 2, it is guaranteed that $\mu_{h}^{1}(\cdot \mid s)=\mathbf{1} /|\mathcal{A}|$, which thus leads to $D_{\mathrm{KL}}\left(\mu_{h}^{*}(\cdot \mid s), \mu_{h}^{1}(\cdot \mid s)\right) \leq \log |\mathcal{A}|$. Then, with setting $\eta=\sqrt{\log |\mathcal{A}| /\left(K H^{2}\right)}$, we bound the last term as

$$
\frac{1}{\eta} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}}\left[D_{\mathrm{KL}}\left(\mu_{h}^{*}(\cdot \mid s), \mu_{h}^{1}(\cdot \mid s)\right)\right]+\frac{1}{2} \eta K H^{3} \leq \mathcal{O}\left(\sqrt{H^{4} K \log |\mathcal{A}|}\right)
$$

which gives

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}}\left[\left\langle\mu_{h}^{*}(\cdot \mid s)-\mu_{h}^{k}(\cdot \mid s), U_{h}^{k}(s, \cdot)\right\rangle_{\mathcal{A}}\right] \leq \mathcal{O}\left(\sqrt{H^{4} K \log |\mathcal{A}|}\right)
$$

This completes the proof.
Lemma C.4. For any $k \in[K], h \in[H]$ and all $(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}$, with probability at least $1-\delta$, we have

$$
\left|\widehat{r}_{h}^{k}(s, a, b)-r_{h}(s, a, b)\right| \leq \sqrt{\frac{4 \log (|\mathcal{S} \| \mathcal{A}||\mathcal{B}| H K / \delta)}{\max \left\{N_{h}^{k}(s, a, b), 1\right\}}}
$$

Proof. The proof for this theorem is a direct application of Hoeffding's inequality. For $k \geq 1$, the definition of \widehat{r}_{h}^{k} in (11) indicates that $\widehat{r}_{h}^{k}(s, a, b)$ is the average of $N_{h}^{k}(s, a, b)$ samples of the observed rewards at (s, a, b) if $N_{h}^{k}(s, a, b)>0$. Then, for fixed $k \in[K], h \in[H]$ and state-action tuple $(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}$, when $N_{h}^{k}(s, a, b)>0$, according to Hoeffding's inequality, with probability at least $1-\delta^{\prime}$ where $\delta^{\prime} \in(0,1]$, we have

$$
\left|\widehat{r}_{h}^{k}(s, a, b)-r_{h}(s, a, b)\right| \leq \sqrt{\frac{\log \left(2 / \delta^{\prime}\right)}{2 N_{h}^{k}(s, a, b)}}
$$

where we also use the facts that the observed rewards $r_{h}^{k} \in[0,1]$ for all k and h, and $\mathbb{E}\left[\widehat{r}_{h}^{k}\right]=r_{h}$ for all k and h. For the case where $N_{h}^{k}(s, a, b)=0$, by (11), we know $\widehat{r}_{h}^{k}(s, a, b)=0$ such that $\left|\widehat{r}_{h}^{k}(s, a, b)-r_{h}(s, a, b)\right|=\left|r_{h}(s, a, b)\right| \leq 1$. On the other hand, we have $\sqrt{2 \log \left(2 / \delta^{\prime}\right)} \geq 1>\left|\widehat{r}_{h}^{k}(s, a, b)-r_{h}(s, a, b)\right|$. Thus, combining the above results, with probability at least $1-\delta^{\prime}$, for fixed $k \in[K], h \in[H]$ and state-action tuple $(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}$, we have

$$
\left|\widehat{r}_{h}^{k}(s, a, b)-r_{h}(s, a, b)\right| \leq \sqrt{\frac{2 \log \left(2 / \delta^{\prime}\right)}{\max \left\{N_{h}^{k}(s, a, b), 1\right\}}}
$$

Moreover, by the union bound, letting $\delta=|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K \delta^{\prime} / 2$, assuming $K>1$, with probability at least $1-\delta$, for any $k \in[K], h \in[H]$ and any state-action tuple $(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}$, we have

$$
\left|\hat{r}_{h}^{k}(s, a, b)-r_{h}(s, a, b)\right| \leq \sqrt{\frac{4 \log (|\mathcal{S} \| \mathcal{A}||\mathcal{B}| H K / \delta)}{\max \left\{N_{h}^{k}(s, a, b), 1\right\}}}
$$

This completes the proof.

In (12), we set $\beta_{h}^{r, k}(s, a, b)=\sqrt{\frac{4 \log (|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K / \delta)}{\max \left\{N_{h}^{k}(s, a, b), 1\right\}}}$, which equals the bound in Lemma C.4.
Lemma C.5. For any $k \in[K], h \in[H]$ and all $(s, a) \in \mathcal{S} \times \mathcal{A}$, with probability at least $1-\delta$, we have

$$
\left\|\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a)\right\|_{1} \leq \sqrt{\frac{2|\mathcal{S}| \log (|\mathcal{S}||\mathcal{A}| H K / \delta)}{\max \left\{N_{h}^{k}(s, a), 1\right\}}}
$$

Proof. For $k \geq 1$, we have $\left\|\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a)\right\|_{1}=\max _{\|\mathbf{z}\|_{\infty} \leq 1}\left\langle\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a), \mathbf{z}\right\rangle_{\mathcal{S}}$ by the duality. We construct an ε-covering net for the set $\left\{\mathbf{z} \in \mathbb{R}^{|\mathcal{S}|}:\|\mathbf{z}\|_{\infty} \leq 1\right\}$ with the distance induced by $\|\cdot\|_{\infty}$, denoted as $\mathcal{N}_{\varepsilon}$, such that for any $\mathbf{z} \in \mathbb{R}^{|\mathcal{S}|}$, there always exists $\mathbf{z}^{\prime} \in \mathcal{N}_{\varepsilon}$ satisfying $\left\|\mathbf{z}-\mathbf{z}^{\prime}\right\|_{\infty} \leq \varepsilon$. The covering number is $\left|\mathcal{N}_{\varepsilon}\right|=1 / \varepsilon^{|\mathcal{S}|}$. Thus, we know that for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and any \mathbf{z} with $\|\mathbf{z}\|_{\infty} \leq 1$, there exists $\mathbf{z}^{\prime} \in \mathcal{N}_{\varepsilon}$ such that $\left\|\mathbf{z}^{\prime}-\mathbf{z}\right\|_{\infty} \leq \varepsilon$ and

$$
\begin{aligned}
& \left\langle\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a), \mathbf{z}\right\rangle_{\mathcal{S}} \\
& \quad=\left\langle\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a), \mathbf{z}^{\prime}\right\rangle_{\mathcal{S}}+\left\langle\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a), \mathbf{z}-\mathbf{z}^{\prime}\right\rangle_{\mathcal{S}} \\
& \quad \leq\left\langle\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a), \mathbf{z}^{\prime}\right\rangle_{\mathcal{S}}+\varepsilon\left\|\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a)\right\|_{1}
\end{aligned}
$$

such that we further have

$$
\begin{align*}
& \left\|\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a)\right\|_{1} \\
& \quad=\max _{\|\mathbf{z}\|_{\infty} \leq 1}\left\langle\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a), \mathbf{z}\right\rangle_{\mathcal{S}} \tag{53}\\
& \quad \leq \max _{\mathbf{z}^{\prime} \in \mathcal{N}_{\varepsilon}}\left\langle\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a), \mathbf{z}^{\prime}\right\rangle_{\mathcal{S}}+\varepsilon\left\|\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a)\right\|_{1} .
\end{align*}
$$

By Hoeffding's inequality and union bound over all $\mathbf{z}^{\prime} \in \mathcal{N}_{\varepsilon}$, when $N_{h}^{k}(s, a)>0$, with probability at least $1-\delta^{\prime}$ where $\delta^{\prime} \in(0,1]$,

$$
\begin{equation*}
\max _{\mathbf{z}^{\prime} \in \mathcal{N}_{\varepsilon}}\left\langle\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a), \mathbf{z}^{\prime}\right\rangle_{\mathcal{S}} \leq \sqrt{\frac{|\mathcal{S}| \log (1 / \varepsilon)+\log \left(1 / \delta^{\prime}\right)}{2 N_{h}^{k}(s, a)}} \tag{54}
\end{equation*}
$$

Letting $\varepsilon=1 / 2$, by (53) and (54), with probability at least $1-\delta^{\prime}$, we have

$$
\left\|\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a)\right\|_{1} \leq 1 \sqrt{\frac{|\mathcal{S}| \log 2+\log \left(1 / \delta^{\prime}\right)}{2 N_{h}^{k}(s, a)}}
$$

When $N_{h}^{k}(s, a)=0$, we have $\left\|\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a)\right\|_{1}=\left\|\mathcal{P}_{h}(\cdot \mid s, a)\right\|_{1}=1$ such that $2 \sqrt{\frac{|\mathcal{S}| \log 2+\log \left(1 / \delta^{\prime}\right)}{2}}>1=$ $\left\|\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a)\right\|_{1}$ always holds. Thus, with probability at least $1-\delta^{\prime}$,

$$
\left\|\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a)\right\|_{1} \leq 2 \sqrt{\frac{|\mathcal{S}| \log 2+\log \left(1 / \delta^{\prime}\right)}{2 \max \left\{N_{h}^{k}(s, a), 1\right\}}} \leq \sqrt{\frac{2|\mathcal{S}| \log \left(2 / \delta^{\prime}\right)}{\max \left\{N_{h}^{k}(s, a), 1\right\}}}
$$

Then, by union bound, assuming $K>1$, letting $\delta=|\mathcal{S}||\mathcal{A}| H K \delta^{\prime} / 2$, with probability at least $1-\delta$, for any $(s, a) \in \mathcal{S} \times \mathcal{A}$ and any $h \in[H]$ and $k \in[K]$, we have

$$
\left\|\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)-\mathcal{P}_{h}(\cdot \mid s, a)\right\|_{1} \leq \sqrt{\frac{2|\mathcal{S}| \log (|\mathcal{S} \| \mathcal{A}| H K / \delta)}{\max \left\{N_{h}^{k}(s, a), 1\right\}}}
$$

This completes the proof.
In (12), we set $\beta_{h}^{\mathcal{P}, k}(a, b)=\sqrt{\frac{2 H^{2}|\mathcal{S}| \log (|\mathcal{S}||\mathcal{A}| H K / \delta)}{\max \left\{N_{h}^{k}(s, a), 1\right\}}}$, which equals the product of the upper bound in Lemma C. 5 and the factor H.

Lemma C.6. With probability at least $1-2 \delta$, Algorithm 2 ensures that

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}, \nu^{k}}\left[\bar{\varsigma}_{h}^{k}\left(s_{h}, a_{h}, b_{h}\right) \mid s_{1}\right] \leq 0
$$

Proof. We prove the upper bound of the model prediction error term. We can decompose the instantaneous prediction error at the h-step of the k-th episode as

$$
\begin{equation*}
\bar{\varsigma}_{h}^{k}(s, a, b)=r_{h}(s, a, b)+\left\langle\mathcal{P}_{h}(\cdot \mid s, a), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\bar{Q}_{h}^{k}(s, a, b), \tag{55}
\end{equation*}
$$

where the equality is by the definition of the prediction error in (36). By plugging in the definition of \bar{Q}_{h}^{k} in Line (2) of Algorithm 2, for any (s, a, b), we bound the following term as

$$
\begin{align*}
& r_{h}(s, a, b)+\left\langle\mathcal{P}_{h}(\cdot \mid s, a), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\bar{Q}_{h}^{k}(s, a, b) \\
& \quad \leq r_{h}(s, a, b)+\left\langle\mathcal{P}_{h}(\cdot \mid s, a), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\min \left\{\widehat{r}_{h}^{k}(s, a, b)+\left\langle\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\beta_{h}^{k}, H-h+1\right\} \\
& \quad \leq \max \left\{r_{h}(s, a, b)-\widehat{r}_{h}^{k}(s, a, b)+\left\langle\mathcal{P}_{h}(\cdot \mid s, a)-\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\beta_{h}^{k}, 0\right\}, \tag{56}
\end{align*}
$$

where the inequality holds because

$$
\begin{aligned}
& r_{h}(s, a, b)+\left\langle\mathcal{P}_{h}\left(\cdot \mid s_{h}, a_{h}\right), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}} \\
& \quad \leq r_{h}(s, a, b)+\left\|\mathcal{P}_{h}\left(\cdot \mid s_{h}, a_{h}\right)\right\|_{1}\left\|\bar{V}_{h+1}^{k}(\cdot)\right\|_{\infty} \leq 1+\max _{s^{\prime} \in \mathcal{S}}\left|\bar{V}_{h+1}^{k}\left(s^{\prime}\right)\right| \leq 1+H-h
\end{aligned}
$$

since $\left\|\mathcal{P}_{h}\left(\cdot \mid s_{h}, a_{h}\right)\right\|_{1}=1$ and also the truncation step as shown in Line 2 of Algorithm 2 for \bar{Q}_{h+1}^{k} such that for any $s^{\prime} \in \mathcal{S}$

$$
\begin{align*}
\left|\bar{V}_{h+1}^{k}\left(s^{\prime}\right)\right| & =\left|\left[\mu_{h+1}^{k}\left(\cdot \mid s^{\prime}\right)\right]^{\top} \bar{Q}_{h+1}^{k}\left(s^{\prime}, \cdot, \cdot\right) \nu_{h+1}^{k}\left(\cdot \mid s^{\prime}\right)\right| \\
& \leq\left\|\mu_{h+1}^{k}\left(\cdot \mid s^{\prime}\right)\right\|_{1}\left\|\bar{Q}_{h+1}^{k}\left(s^{\prime}, \cdot, \cdot\right) \nu_{h+1}^{k}\left(\cdot \mid s^{\prime}\right)\right\|_{\infty} \\
& \leq \max _{a, b}\left|\bar{Q}_{h+1}^{k}\left(s^{\prime}, a, b\right)\right| \tag{57}\\
& \leq H-h
\end{align*}
$$

Combining (55) and (56) gives

$$
\begin{equation*}
\bar{\varsigma}_{h}^{k}(s, a, b) \leq \max \left\{r_{h}(s, a, b)-\widehat{r}_{h}^{k}(s, a, b)+\left\langle\mathcal{P}_{h}(\cdot \mid s, a)-\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\beta_{h}^{k}, 0\right\} . \tag{58}
\end{equation*}
$$

Note that as shown in (12), we have

$$
\beta_{h}^{k}(s, a, b)=\beta_{h}^{r, k}(s, a, b)+\beta_{h}^{\mathcal{P}, k}(s, a)
$$

Then, with probability at least $1-\delta$, we have

$$
\begin{aligned}
& r_{h}(s, a, b)-\widehat{r}_{h}^{k}(s, a, b)-\beta_{h}^{r, k}(s, a, b) \\
& \quad \leq\left|r_{h}(s, a, b)-\widehat{r}_{h}^{k}(s, a, b)\right|-\beta_{h}^{r, k}(s, a, b) \\
& \quad \leq \beta_{h}^{r, k}(s, a, b)-\beta_{h}^{r, k}(s, a, b)=0
\end{aligned}
$$

where the last inequality is by Lemma C. 4 and the setting of the bonus for the reward. Moreover, with probability at least $1-\delta$, we have

$$
\begin{aligned}
& \left\langle\mathcal{P}_{h}(\cdot \mid s, a)-\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\beta_{h}^{\mathcal{P}, k}(s, a) \\
& \quad \leq\left\|\mathcal{P}_{h}(\cdot \mid s, a)-\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)\right\|_{1}\left\|\bar{V}_{h+1}^{k}(\cdot)\right\|_{\infty}-\beta_{h}^{\mathcal{P}, k}(s, a) \\
& \quad \leq H\left\|\mathcal{P}_{h}(\cdot \mid s, a)-\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a)\right\|_{1}-\beta_{h}^{\mathcal{P}, k}(s, a) \\
& \quad \leq \beta_{h}^{\mathcal{P}, k}(s, a)-\beta_{h}^{\mathcal{P}, k}(s, a)=0
\end{aligned}
$$

where the first inequality is by Cauchy-Schwarz inequality, the second inequality is due to $\max _{s^{\prime} \in \mathcal{S}}\left\|\bar{V}_{h+1}^{k}\left(s^{\prime}\right)\right\|_{\infty} \leq H$ as shown in (57), and the last inequality is by the setting of $\beta_{h}^{\mathcal{P}, k}$ and also Lemma C.5. Thus, with probability at least $1-2 \delta$, the following inequality holds

$$
r_{h}(s, a, b)-\widehat{r}_{h}^{k}(s, a, b)+\left\langle\mathcal{P}_{h}(\cdot \mid s, a)-\widehat{\mathcal{P}}_{h}^{k}(\cdot \mid s, a), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}-\beta_{h}^{k}(s, a, b) \leq 0
$$

Combining the above inequality with (58), we have that with probability at least $1-2 \delta$, for any $h \in[H]$ and $k \in[K]$, the following inequality holds

$$
\bar{\zeta}_{h}^{k}(s, a, b) \leq 0, \quad \forall(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}
$$

which leads to

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{*}, \mathcal{P}, \nu^{k}}\left[\bar{\zeta}_{h}^{k}\left(s_{h}, a_{h}, b_{h}\right) \mid s_{1}\right] \leq 0
$$

This completes the proof.
Lemma C.7. With probability at least $1-\delta$, Algorithm 2 ensures that

$$
\sum_{k=1}^{K} \bar{V}_{1}^{k}\left(s_{1}\right)-\sum_{k=1}^{K} V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right) \leq \widetilde{\mathcal{O}}\left(\sqrt{|\mathcal{S}|^{2}|\mathcal{A}| H^{4} K}+\sqrt{|\mathcal{S}||\mathcal{A}||\mathcal{B}| H^{2} K}\right)
$$

Proof. We assume that a trajectory $\left\{\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}, s_{h+1}^{k}\right)\right\}_{h=1}^{H}$ for all $k \in[K]$ is generated according to the policies μ^{k}, ν^{k}, and the true transition model \mathcal{P}. Thus, we expand the bias term at the h-th step of the k-th episode, which is

$$
\begin{align*}
& \bar{V}_{h}^{k}\left(s_{h}^{k}\right)-V_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}^{k}\right) \\
& \quad=\left[\mu_{h}^{k}\left(\cdot \mid s_{h}^{k}\right)\right]^{\top}\left[\bar{Q}_{h}^{k}\left(s_{h}^{k}, \cdot, \cdot\right)-Q_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}^{k}, \cdot, \cdot\right)\right] \nu_{h}^{k}\left(\cdot \mid s_{h}^{k}\right) \\
&=\zeta_{h}^{k}+\bar{Q}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-Q_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \tag{59}\\
&=\zeta_{h}^{k}+\left\langle\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right), \bar{V}_{h+1}^{k}(\cdot)-V_{h+1}^{\mu^{k}, \nu^{k}}(\cdot)\right\rangle_{\mathcal{S}}-\bar{\varsigma}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \\
&=\zeta_{h}^{k}+\xi_{h}^{k}+\bar{V}_{h+1}^{k}\left(s_{h+1}^{k}\right)-V_{h+1}^{\mu^{k}, \nu^{k}}\left(s_{h+1}^{k}\right)-\bar{\varsigma}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)
\end{align*}
$$

where the first equality is by Line 2 of Algorithm 2 and (1), the third equality is by plugging in (2) and (36). Specifically, in the above equality, we introduce two martingale difference sequence, namely, $\left\{\zeta_{h}^{k}\right\}_{h \geq 0, k \geq 0}$ and $\left\{\xi_{h}^{k}\right\}_{h \geq 0, k \geq 0}$, which are defined as

$$
\begin{aligned}
\zeta_{h}^{k} & :=\left[\mu_{h}^{k}\left(\cdot \mid s_{h}^{k}\right)\right]^{\top}\left[\bar{Q}_{h}^{k}\left(s_{h}^{k}, \cdot, \cdot\right)-Q_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}^{k}, \cdot, \cdot\right)\right] \nu_{h}^{k}\left(\cdot \mid s_{h}^{k}\right)-\left[\bar{Q}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-Q_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)\right] \\
\xi_{h}^{k} & :=\left\langle\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right), \bar{V}_{h+1}^{k}(\cdot)-V_{h+1}^{\mu^{k}, \nu^{k}}(\cdot)\right\rangle_{\mathcal{S}}-\left[\bar{V}_{h+1}^{k}\left(s_{h+1}^{k}\right)-V_{h+1}^{\mu^{k}, \nu^{k}}\left(s_{h+1}^{k}\right)\right]
\end{aligned}
$$

such that

$$
\mathbb{E}_{a_{h}^{k} \sim \mu_{h}^{k}\left(\cdot \mid s_{h}^{k}\right), b_{h}^{k} \sim \nu_{h}^{k}\left(\cdot \mid s_{h}^{k}\right)}\left[\zeta_{h}^{k} \mid \mathcal{F}_{h}^{k}\right]=0, \quad \mathbb{E}_{s_{h+1}^{k} \sim \mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right)}\left[\xi_{h}^{k} \mid \widetilde{\mathcal{F}}_{h}^{k}\right]=0
$$

with \mathcal{F}_{h}^{k} being the filtration of all randomness up to $(h-1)$-th step of the k-th episode plus s_{h}^{k}, and $\widetilde{\mathcal{F}}_{h}^{k}$ being the filtration of all randomness up to $(h-1)$-th step of the k-th episode plus $s_{h}^{k}, a_{h}^{k}, b_{h}^{k}$.
We can observe that the equality (59) construct a recursion for $\bar{V}_{h}^{k}\left(s_{h}^{k}\right)-V_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}^{k}\right)$. Moreover, we also have $\bar{V}_{H+1}^{k}(\cdot)=\mathbf{0}$ and $V_{H+1}^{\mu^{k}, \nu^{k}}(\cdot)=\mathbf{0}$. Thus, recursively apply (59) from $h=1$ to H leads to the following equality

$$
\begin{equation*}
\bar{V}_{1}^{k}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)=\sum_{h=1}^{H} \zeta_{h}^{k}+\sum_{h=1}^{H} \xi_{h}^{k}-\sum_{h=1}^{H} \bar{\varsigma}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \tag{60}
\end{equation*}
$$

Moreover, by (36) and Line 2 of Algorithm 2, we have

$$
\begin{aligned}
-\bar{\varsigma}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)= & -r_{h}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-\left\langle\mathcal{P}_{h}\left(\cdot \mid s_{h}, a_{h}\right), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}} \\
& +\min \left\{\widehat{r}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)+\left\langle\widehat{\mathcal{P}}_{h}^{k}\left(\cdot \mid s_{h}, a_{h}\right), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}+\beta_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right), H-h+1\right\} .
\end{aligned}
$$

Then, we can further bound $-\bar{\zeta}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)$ as follows

$$
\begin{aligned}
-\bar{\varsigma}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \leq & -r_{h}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-\left\langle\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}+\widehat{r}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \\
& +\left\langle\widehat{\mathcal{P}}_{h}^{k}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}+\beta_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \\
\leq & \left|\widehat{r}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-r_{h}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)\right| \\
& +\left|\left\langle\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right)-\widehat{\mathcal{P}}_{h}^{k}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}\right|+\beta_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)
\end{aligned}
$$

where the first inequality is due to $\min \{x, y\} \leq x$. Additionally, we have

$$
\begin{aligned}
& \left|\left\langle\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right)-\widehat{\mathcal{P}}_{h}^{k}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right), \bar{V}_{h+1}^{k}(\cdot)\right\rangle_{\mathcal{S}}\right| \\
& \quad \leq\left\|\bar{V}_{h+1}^{k}(\cdot)\right\|_{\infty}\left\|\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right)-\widehat{\mathcal{P}}_{h}^{k}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right)\right\|_{1} \\
& \quad \leq H\left\|\mathcal{P}_{h}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right)-\widehat{\mathcal{P}}_{h}^{k}\left(\cdot \mid s_{h}^{k}, a_{h}^{k}\right)\right\|_{1}
\end{aligned}
$$

where the first inequality is by Cauchy-Schwarz inequality and the second inequality is by (57). Thus, putting the above together, we obtain

$$
\begin{aligned}
-\bar{\zeta}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) & \leq\left|\widehat{r}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-r_{h}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)\right|+H\left\|\bar{V}_{h+1}^{k}(\cdot)-\bar{V}_{h+1}^{k}(\cdot)\right\|_{1}+\beta_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \\
& \leq 2 \beta_{h}^{r, k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)+2 \beta_{h}^{\mathcal{P}, k}\left(s_{h}^{k}, a_{h}^{k}\right)
\end{aligned}
$$

where the second inequality is by Lemma C.4, Lemma C.5, and the decomposition of the bonus term β_{h}^{k} as (12). Due to Lemma C. 4 and Lemma C.5, by union bound, for any $h \in[H], k \in[K]$ and $\left(s_{h}, a_{h}, b_{h}\right) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}$, the above inequality holds with probability with probability at least $1-2 \delta$. Therefore, by (60), with probability at least $1-2 \delta$, we have

$$
\begin{align*}
& \sum_{k=1}^{K}\left[\bar{V}_{1}^{k}\left(s_{1}\right)-V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right)\right] \\
& \quad \leq \sum_{k=1}^{K} \sum_{h=1}^{H} \zeta_{h}^{k}+\sum_{k=1}^{K} \sum_{h=1}^{H} \xi_{h}^{k}+2 \sum_{k=1}^{K} \sum_{h=1}^{H} \beta_{h}^{r, k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)+2 \sum_{k=1}^{K} \sum_{h=1}^{H} \beta_{h}^{\mathcal{P}, k}\left(s_{h}^{k}, a_{h}^{k}\right) \tag{61}
\end{align*}
$$

By Azuma-Hoeffding inequality, with probability at least $1-\delta$, the following inequalities hold

$$
\begin{aligned}
& \sum_{k=1}^{K} \sum_{h=1}^{H} \zeta_{h}^{k} \leq \mathcal{O}\left(\sqrt{H^{3} K \log \frac{1}{\delta}}\right), \\
& \sum_{k=1}^{K} \sum_{h=1}^{H} \xi_{h}^{k} \leq \mathcal{O}\left(\sqrt{H^{3} K \log \frac{1}{\delta}}\right),
\end{aligned}
$$

where we use the facts that $\left|\bar{Q}_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)-Q_{h}^{\mu^{k}, \nu^{k}}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)\right| \leq 2 H$ and $\left|\bar{V}_{h+1}^{k}\left(s_{h+1}^{k}\right)-V_{h+1}^{\mu^{k}, \nu^{k}}\left(s_{h+1}^{k}\right)\right| \leq 2 H$. Next, we need to bound $\sum_{k=1}^{K} \sum_{h=1}^{H} \beta_{h}^{r, k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)$ and $\sum_{k=1}^{K} \sum_{h=1}^{H} \beta_{h}^{\mathcal{P}, k}\left(s_{h}^{k}, a_{h}^{k}\right)$ in (61). We show that

$$
\begin{aligned}
\sum_{k=1}^{K} \sum_{h=1}^{H} \beta_{h}^{r, k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) & =C \sum_{k=1}^{K} \sum_{h=1}^{H} \sqrt{\frac{\log (|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K / \delta)}{\max \left\{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right), 1\right\}}} \\
& =C \sum_{k=1}^{K} \sum_{h=1}^{H} \sqrt{\frac{\log (|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K / \delta)}{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)}} \\
& \leq C \sum_{h=1}^{H} \sum_{\substack{(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B} \\
N_{h}^{K}(s, a, b)>0}}^{N_{h}^{K}(s, a, b)} \sum_{n=1}^{H} \sqrt{\frac{\log (|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K / \delta)}{n}},
\end{aligned}
$$

where the second equality is because $\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right)$ is visited such that $N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \geq 1$. In addition, we have

$$
\begin{aligned}
& \sum_{h=1}^{H} \sum_{\substack{(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B} \\
N_{h}^{K}(s, a, b)>0}} \sum_{n=1}^{N_{h}^{K}(s, a, b)} \sqrt{\frac{\log (|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K / \delta)}{n}} \\
& \quad \leq \sum_{h=1}^{H} \sum_{\substack{(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}}} \mathcal{O}\left(\sqrt{N_{h}^{K}(s, a, b) \log \frac{|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K}{\delta}}\right) \\
& \quad \leq \mathcal{O}\left(H \sqrt{K|\mathcal{S}||\mathcal{A}||\mathcal{B}| \log \frac{|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K}{\delta}}\right)
\end{aligned}
$$

where the last inequality is based on the consideration that $\sum_{(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}} N_{h}^{K}(s, a, b)=K$ such that $\sum_{(s, a, b) \in \mathcal{S} \times \mathcal{A} \times \mathcal{B}} \sqrt{N_{h}^{K}(s, a, b)} \leq \mathcal{O}(\sqrt{K|\mathcal{S}||\mathcal{A}||\mathcal{B}|})$ when K is sufficiently large. Putting the above together, we obtain

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \beta_{h}^{r, k}\left(s_{h}^{k}, a_{h}^{k}, b_{h}^{k}\right) \leq \mathcal{O}\left(H \sqrt{K|\mathcal{S}||\mathcal{A}||\mathcal{B}| \log \frac{|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K}{\delta}}\right)
$$

Similarly, we have

$$
\begin{aligned}
\sum_{k=1}^{K} \sum_{h=1}^{H} \beta_{h}^{\mathcal{P}, k}\left(s_{h}^{k}, a_{h}^{k}\right) & =\sum_{k=1}^{K} \sum_{h=1}^{H} \sqrt{\frac{H^{2}|\mathcal{S}| \log (|\mathcal{S}||\mathcal{A}| H K / \delta)}{\max \left\{N_{h}^{k}\left(s_{h}^{k}, a_{h}^{k}\right), 1\right\}}} \\
& \leq \sum_{h=1}^{H} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}} \mathcal{O}\left(\sqrt{N_{h}^{K}(s, a) H^{2}|\mathcal{S}| \log \frac{|\mathcal{S}||\mathcal{A}| H K}{\delta}}\right) \\
& \leq \sum_{h=1}^{H} \sum_{(s, a) \in \mathcal{S} \times \mathcal{A}} \mathcal{O}\left(\sqrt{\sum_{b \in B} N_{h}^{K}(s, a, b) H^{2}|\mathcal{S}| \log \frac{|\mathcal{S}||\mathcal{A}| H K}{\delta}}\right) \\
& \leq \mathcal{O}\left(H \sqrt{K|\mathcal{S}|^{2}|\mathcal{A}| H^{2} \log \frac{|\mathcal{S}||\mathcal{A}| H K}{\delta}}\right)
\end{aligned}
$$

where the second inequality is due to $\sum_{b \in \mathcal{B}} N_{h}^{K}(s, a, b)=N_{h}^{K}(s, a)$, and the last inequality is based on the consider-
 sufficiently large.
Thus, by (61), with probability at least $1-\delta$, we have

$$
\sum_{k=1}^{K} \bar{V}_{1}^{k}\left(s_{1}\right)-\sum_{k=1}^{K} V_{1}^{\mu^{k}, \nu^{k}}\left(s_{1}\right) \leq \widetilde{\mathcal{O}}\left(\sqrt{|\mathcal{S}|^{2}|\mathcal{A}| H^{4} K}+\sqrt{|\mathcal{S}||\mathcal{A}||\mathcal{B}| H^{2} K}\right)
$$

where $\widetilde{\mathcal{O}}$ hides logarithm terms. This completes the proof.
Lemma C.8. With setting $\gamma=\sqrt{|\mathcal{S}| \log |\mathcal{B}| / K}$, the mirror descent steps of Algorithm 3 lead to

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} d_{h}^{k}(s)\left\langle W_{h}^{k}(s, \cdot), \nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{*}(\cdot \mid s)\right\rangle \leq \mathcal{O}\left(\sqrt{H^{2}|\mathcal{S}| K \log |\mathcal{B}|}\right)
$$

Proof. Similar to the proof of Lemma C.3, and also by Lemma C.12, for any $\nu=\left\{\nu_{h}\right\}_{h=1}^{H}$ and $s \in \mathcal{S}$, the mirror descent step in Algorithm 3 leads to

$$
\begin{aligned}
& \gamma d_{h}^{k}(s)\left\langle W_{h}^{k}(s, \cdot), \nu_{h}^{k+1}(\cdot \mid s)\right\rangle_{\mathcal{B}}-\gamma d_{h}^{k}(s)\left\langle W_{h}^{k}(s, \cdot), \nu_{h}(\cdot \mid s)\right\rangle_{\mathcal{B}} \\
& \quad \leq D_{\mathrm{KL}}\left(\nu_{h}(\cdot \mid s), \nu_{h}^{k}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\nu_{h}(\cdot \mid s), \nu_{h}^{k+1}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\nu_{h}^{k+1}(\cdot \mid s), \nu_{h}^{k}(\cdot \mid s)\right)
\end{aligned}
$$

according to (14), where $W_{h}^{k}(s, a)=\left\langle\nu_{h}^{k}(\cdot \mid s), \widetilde{r}_{h}^{k}(s, a, \cdot)\right\rangle$. Then, by rearranging the terms, we have

$$
\begin{align*}
\gamma d_{h}^{k}(s) & \left\langle W_{h}^{k}(s, \cdot), \nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{*}(\cdot \mid s)\right\rangle_{\mathcal{B}} \\
\leq & D_{\mathrm{KL}}\left(\nu_{h}^{*}(\cdot \mid s), \nu_{h}^{k}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\nu_{h}^{*}(\cdot \mid s), \nu_{h}^{k+1}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\nu_{h}^{k+1}(\cdot \mid s), \nu_{h}^{k}(\cdot \mid s)\right) \tag{62}\\
& \quad-\gamma d_{h}^{k}(s)\left\langle W_{h}^{k}(s, \cdot), \nu_{h}^{k+1}(\cdot \mid s)-\nu_{h}^{k}(\cdot \mid s)\right\rangle_{\mathcal{B}} .
\end{align*}
$$

Due to Pinsker's inequality, we have

$$
\begin{equation*}
-D_{\mathrm{KL}}\left(\nu_{h}^{k+1}(\cdot \mid s), \nu_{h}^{k}(\cdot \mid s)\right) \leq-\frac{1}{2}\left\|\nu_{h}^{k+1}(\cdot \mid s)-\nu_{h}^{k}(\cdot \mid s)\right\|_{1}^{2} \tag{63}
\end{equation*}
$$

Moreover, we have

$$
\begin{align*}
& -\gamma d_{h}^{k}(s)\left\langle W_{h}^{k}(s, \cdot), \nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{k+1}(\cdot \mid s)\right\rangle_{\mathcal{B}} \\
& \quad \leq \gamma d_{h}^{k}(s)\left\|W_{h}^{k}(s, \cdot)\right\|_{\infty}\left\|\nu_{h}^{k+1}(\cdot \mid s)-\nu_{h}^{k}(\cdot \mid s)\right\|_{1} \tag{64}\\
& \quad \leq \gamma d_{h}^{k}(s)\left\|\nu_{h}^{k+1}(\cdot \mid s)-\nu_{h}^{k}(\cdot \mid s)\right\|_{1}
\end{align*}
$$

where the last inequality is by

$$
\begin{aligned}
\left\|W_{h}^{k}(s, \cdot)\right\|_{\infty} & =\max _{b \in \mathcal{B}} W_{h}^{k}(s, b) \\
& \leq \max _{s \in \mathcal{S}, b \in \mathcal{B}} W_{h}^{k}(s, b) \\
& \leq \max _{s \in \mathcal{S}, b \in \mathcal{B}}\left\langle\widetilde{r}_{h}^{k-1}(s, \cdot, b), \mu_{h}^{k}(\cdot \mid s)\right\rangle \\
& \leq \max _{s \in \mathcal{S}, b \in \mathcal{B}}\left\|\widetilde{r}_{h}^{k-1}(s, \cdot, b)\right\|_{\infty}\left\|\mu_{h}^{k}(\cdot \mid s)\right\|_{1} \leq 1
\end{aligned}
$$

due to the definition of W_{h}^{k} and $\widetilde{r}_{h}^{k}(s, a, b)=\max \left\{\widehat{r}_{h}^{k}(s, a, b)-\beta_{h}^{r, k}, 0\right\} \leq \widehat{r}_{h}^{k}(s, a, b) \leq 1$. Combining (63) and (64) gives

$$
\begin{aligned}
& -D_{\mathrm{KL}}\left(\nu_{h}^{k+1}(\cdot \mid s), \nu_{h}^{k}(\cdot \mid s)\right)-\gamma d_{h}^{k}(s)\left\langle W_{h}^{k}(s, \cdot), \nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{k+1}(\cdot \mid s)\right\rangle \\
& \quad \leq-\frac{1}{2}\left\|\nu_{h}^{k+1}(\cdot \mid s)-\nu_{h}^{k}(\cdot \mid s)\right\|_{1}^{2}+\gamma d_{h}^{k}(s)\left\|\nu_{h}^{k+1}(\cdot \mid s)-\nu_{h}^{k}(\cdot \mid s)\right\|_{1} \\
& \quad \leq \frac{1}{2}\left[d_{h}^{k}(s)\right]^{2} \gamma^{2} \leq \frac{1}{2} d_{h}^{k}(s) \gamma^{2}
\end{aligned}
$$

where the second inequality is obtained via solving $\max _{x}\left\{-1 / 2 \cdot x^{2}+\gamma d_{h}^{k}(s) \cdot x\right\}$ if letting $x=\left\|\nu_{h}^{k+1}(\cdot \mid s)-\nu_{h}^{k}(\cdot \mid s)\right\|_{1}$. Plugging the above inequality into (62) gives

$$
\gamma d_{h}^{k}(s)\left\langle W_{h}^{k}(s, \cdot), \nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{*}(\cdot \mid s)\right\rangle_{\mathcal{B}} \leq D_{\mathrm{KL}}\left(\nu_{h}^{*}(\cdot \mid s), \nu_{h}^{k}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\nu_{h}^{*}(\cdot \mid s), \nu_{h}^{k+1}(\cdot \mid s)\right)+\frac{1}{2} d_{h}^{k}(s) \gamma^{2}
$$

Thus, the policy improvement step implies

$$
\begin{aligned}
\sum_{h=1}^{H} & \sum_{s \in \mathcal{S}} d_{h}^{k}(s)\left\langle W_{h}^{k}(s, \cdot), \nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{*}(\cdot \mid s)\right\rangle_{\mathcal{B}} \\
& \leq \frac{1}{\gamma} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left[D_{\mathrm{KL}}\left(\nu_{h}^{*}(\cdot \mid s), \nu_{h}^{k}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\nu_{h}^{*}(\cdot \mid s), \nu_{h}^{k+1}(\cdot \mid s)\right)\right]+\frac{1}{\gamma} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} \frac{1}{2} d_{h}^{k}(s) \gamma^{2} \\
& \leq \frac{1}{\gamma} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left[D_{\mathrm{KL}}\left(\nu_{h}^{*}(\cdot \mid s), \nu_{h}^{k}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\nu_{h}^{*}(\cdot \mid s), \nu_{h}^{k+1}(\cdot \mid s)\right)\right]+\frac{1}{2} H \gamma
\end{aligned}
$$

Further summing on both sides of the above inequality from $k=1$ to K gives

$$
\begin{aligned}
\sum_{k=1}^{K} & \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} d_{h}^{k}(s)\left\langle W_{h}^{k}(s, \cdot), \nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{*}(\cdot \mid s)\right\rangle_{\mathcal{B}} \\
& \leq \frac{1}{\gamma} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left[D_{\mathrm{KL}}\left(\nu_{h}^{*}(\cdot \mid s), \nu_{h}^{1}(\cdot \mid s)\right)-D_{\mathrm{KL}}\left(\nu_{h}^{*}(\cdot \mid s), \nu_{h}^{K+1}(\cdot \mid s)\right)\right]+\frac{1}{2} H K \gamma \\
& \leq \frac{1}{\gamma} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} D_{\mathrm{KL}}\left(\nu_{h}^{*}(\cdot \mid s), \nu_{h}^{1}(\cdot \mid s)\right)+\frac{1}{2} H K \gamma .
\end{aligned}
$$

Note that by the initialization in Algorithm 3, it is guaranteed that $\nu_{h}^{1}(\cdot \mid s)=\mathbf{1} /|\mathcal{B}|$, which thus leads to $D_{\mathrm{KL}}\left(\mu_{h}^{*}(\cdot \mid s), \mu_{h}^{1}(\cdot \mid s)\right) \leq \log |\mathcal{B}|$. By setting $\gamma=\sqrt{|\mathcal{S}| \log |\mathcal{B}| / K}$, we further bound the term as

$$
\frac{1}{\gamma} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} D_{\mathrm{KL}}\left(\nu_{h}^{*}(\cdot \mid s), \nu_{h}^{1}(\cdot \mid s)\right)+\frac{1}{2} H K \gamma \leq \mathcal{O}\left(\sqrt{H^{2}|\mathcal{S}| K \log |\mathcal{B}|}\right)
$$

which gives

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} d_{h}^{k}(s)\left\langle W_{h}^{k}(s, \cdot), \nu_{h}^{k}(\cdot \mid s)-\nu_{h}^{*}(\cdot \mid s)\right\rangle_{\mathcal{B}} \leq \mathcal{O}\left(\sqrt{H^{2}|\mathcal{S}| K \log |\mathcal{B}|}\right)
$$

This completes the proof.

Before giving the next lemma, we first present the following definition for the proof of the next lemma.
Definition C. 9 (Confidence Set). Define the following confidence set for transition models

$$
\begin{aligned}
& \Upsilon^{k}:=\left\{\widetilde{\mathcal{P}}:\left|\widetilde{\mathcal{P}}_{h}\left(s^{\prime} \mid s, a\right)-\widehat{\mathcal{P}}_{h}^{k}\left(s^{\prime} \mid s, a\right)\right| \leq \epsilon_{h}^{k},\left\|\widetilde{\mathcal{P}}_{h}(\cdot \mid s, a)\right\|_{1}=1\right. \\
&\text { and } \left.\widetilde{\mathcal{P}}_{h}\left(s^{\prime} \mid s, a\right) \geq 0, \forall\left(s, a, s^{\prime}\right) \in \mathcal{S} \times \mathcal{A} \times \mathcal{S}, \forall k \in[K]\right\}
\end{aligned}
$$

where we define

$$
\epsilon_{h}^{k}:=2 \sqrt{\frac{\widehat{\mathcal{P}}_{h}^{k}\left(s^{\prime} \mid s, a\right) \log \left(|\mathcal{S} \| \mathcal{A}| H K / \delta^{\prime}\right)}{\max \left\{N_{h}^{k}(s, a)-1,1\right\}}}+\frac{14 \log \left(|\mathcal{S}||\mathcal{A}| H K / \delta^{\prime}\right)}{3 \max \left\{N_{h}^{k}(s, a)-1,1\right\}}
$$

with $N_{h}^{k}(s, a):=\sum_{\tau=1}^{k} \mathbf{1}\left\{(s, a)=\left(s_{h}^{\tau}, a_{h}^{\tau}\right)\right\}$, and $\widehat{\mathcal{P}}^{k}$ being the empirical transition model.
Lemma C.10. With probability at least $1-\delta$, the difference between $q^{\mu^{k}, \mathcal{P}}$ and d^{k} are bounded as

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left|q_{h}^{\mu^{k}, \mathcal{P}}(s)-d_{h}^{k}(s)\right| \leq \widetilde{\mathcal{O}}\left(H^{2}|\mathcal{S}| \sqrt{|\mathcal{A}| K}\right)
$$

Proof. By the definition of state distribution, we first have

$$
\begin{aligned}
\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left|q_{h}^{\mu^{k}, \mathcal{P}}(s)-d_{h}^{k}(s)\right| & =\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left|\sum_{a \in \mathcal{A}} w_{h}^{k}(s, a)-\sum_{a \in \mathcal{A}} \widehat{w}_{h}^{k}(s, a)\right| \\
& \leq \sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}}\left|w_{h}^{k}(s, a)-\widehat{w}_{h}^{k}(s, a)\right|
\end{aligned}
$$

where $\widehat{w}_{h}^{k}(s, a)$ is the occupancy measure under the empirical transition model $\widehat{\mathcal{P}}^{k}$ and the policy μ^{k}. Then, since $\widehat{\mathcal{P}}^{k} \in \Upsilon^{k}$ always holds for any k, by Lemma C. 15 , we can bound the last term of the bound inequality such that with probability at least $1-6 \delta^{\prime}$,

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left|q_{h}^{\mu^{k}, \mathcal{P}}(s)-d_{h}^{k}(s)\right| \leq \mathcal{E}_{1}+\mathcal{E}_{2}
$$

Next, we compute the order of \mathcal{E}_{1} by Lemma C.14. With probability at least $1-2 \delta^{\prime}$, we have

$$
\begin{aligned}
\mathcal{E}_{1} & =\mathcal{O}\left[\sum_{h=2}^{H} \sum_{h^{\prime}=1}^{h-1} \sum_{k=1}^{K} \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} w_{h}^{k}(s, a)\left(\sqrt{\frac{|\mathcal{S}| \log \left(|\mathcal{S}||\mathcal{A}| H K / \delta^{\prime}\right)}{\max \left\{N_{h}^{k}(s, a), 1\right\}}}+\frac{\log \left(|\mathcal{S}||\mathcal{A}| H K / \delta^{\prime}\right)}{\max \left\{N_{h}^{k}(s, a), 1\right\}}\right)\right] \\
& =\mathcal{O}\left[\sum_{h=2}^{H} \sum_{h^{\prime}=1}^{h-1} \sqrt{|\mathcal{S}|}\left(\sqrt{|\mathcal{S}||\mathcal{A}| K}+|\mathcal{S}||\mathcal{A}| \log K+\log \frac{H}{\delta^{\prime}}\right) \log \frac{|\mathcal{S}||\mathcal{A}| H K}{\delta^{\prime}}\right] \\
& =\mathcal{O}\left[\left(H^{2}|\mathcal{S}| \sqrt{|\mathcal{A}| K}+H^{2}|\mathcal{S}|^{3 / 2}|\mathcal{A}| \log K+H^{2} \sqrt{|\mathcal{S}|} \log \frac{H}{\delta^{\prime}}\right) \log \frac{|\mathcal{S}||\mathcal{A}| H K}{\delta^{\prime}}\right] \\
& =\widetilde{\mathcal{O}}\left(H^{2}|\mathcal{S}| \sqrt{|\mathcal{A}| K}\right),
\end{aligned}
$$

where we ignore $\log K$ terms when K is sufficiently large such that \sqrt{K} dominates, and $\widetilde{\mathcal{O}}$ hides logarithm dependence on $|\mathcal{S}|,|\mathcal{A}|, H, K$, and $1 / \delta^{\prime}$. On the other hand, \mathcal{E}_{2} also depends on $\operatorname{ploy}(H,|\mathcal{S}|,|\mathcal{A}|)$ except the factor $\log \frac{|\mathcal{S}||\mathcal{A}| H K}{\delta^{\prime}}$ as shown in Lemma C.15. Thus, \mathcal{E}_{2} can be ignored comparing to \mathcal{E}_{1} if K is sufficiently large. Therefore, we eventually obtain that with probability at least $1-8 \delta^{\prime}$, the following inequality holds

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left|q_{h}^{\mu^{k}, \mathcal{P}}(s)-d_{h}^{k}(s)\right| \leq \widetilde{\mathcal{O}}\left(H^{2}|\mathcal{S}| \sqrt{|\mathcal{A}| K}\right)
$$

We let $\delta=8 \delta^{\prime}$ such that $\log \frac{|\mathcal{S} \||\mathcal{A}| H K}{\delta^{\prime}}=\log \frac{8|\mathcal{S}||\mathcal{A}| H K}{\delta}$ without changing the order as shown above. Then, with probability at least $1-\delta$, we have $\sum_{k=1}^{K} \sum_{h=1}^{H} \sum_{s \in \mathcal{S}}\left|q_{h}^{\mu^{k}, \mathcal{P}}(s)-d_{h}^{k}(s)\right| \leq \widetilde{\mathcal{O}}\left(H^{2}|\mathcal{S}| \sqrt{|\mathcal{A}| K}\right)$. This completes the proof.

Lemma C.11. With probability at least $1-\delta$, the following inequality holds

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{k}, \mathcal{P}, \nu^{k}}\left[\beta_{h}^{r, k}\left(s_{h}, a_{h}, b_{h}\right) \mid s_{1}\right] \leq \widetilde{\mathcal{O}}\left(\sqrt{|\mathcal{S}||\mathcal{A}||\mathcal{B}| H^{2} K}\right)
$$

Proof. Since we have

$$
\begin{aligned}
\sum_{k=1}^{K} & \sum_{h=1}^{H} \mathbb{E}_{\mu^{k}, \mathcal{P}, \nu^{k}}\left[\beta_{h}^{r, k}\left(s_{h}, a_{h}, b_{h}\right) \mid s_{1}\right] \\
& =\sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{k}, \mathcal{P}, \nu^{k}}\left[C \sqrt{\frac{\log (|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K / \delta)}{N_{h}^{k}(s, a, b)}}\right] \\
& =C \sqrt{\log \frac{|\mathcal{S}||\mathcal{A}||\mathcal{B}| H K}{\delta}} \sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{k}, \mathcal{P}, \nu^{k}}\left[\sqrt{\frac{1}{N_{h}^{k}(s, a, b)}}\right]
\end{aligned}
$$

then we can apply Lemma C. 16 and obtain

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{k}, \mathcal{P}, \nu^{k}}\left[\beta_{h}^{r, k}\left(s_{h}, a_{h}, b_{h}\right) \mid s_{1}\right] \leq \widetilde{\mathcal{O}}\left(\sqrt{|\mathcal{S}||\mathcal{A}||\mathcal{B}| H^{2} K}\right)
$$

with probability at least $1-\delta$. Here $\widetilde{\mathcal{O}}$ hides logarithm dependence on $|\mathcal{S}|,|\mathcal{A}|,|\mathcal{B}|, H, K$, and $1 / \delta$. This completes the proof.

C.1. Other Supporting Lemmas

Lemma C.12. Let $f: \Lambda \mapsto \mathbb{R}$ be a convex function, where Λ is the probability simplex defined as $\Lambda:=\left\{\mathbf{x} \in \mathbb{R}^{d}:\|\mathbf{x}\|_{1}=\right.$ 1 and $\left.\mathbf{x}_{i} \geq 0, \forall i \in[d]\right\}$. For any $\alpha \geq 0, \mathbf{z} \in \Lambda$, and $\mathbf{y} \in \Lambda^{\circ}$ where $\Lambda^{\circ} \subset \Lambda$ with only relative interior points of Λ, supposing $\mathbf{x}^{\mathrm{opt}}=\operatorname{argmin}_{\mathbf{x} \in \Lambda} f(\mathbf{x})+\alpha D_{\mathrm{KL}}(\mathbf{x}, \mathbf{y})$, then the following inequality holds

$$
f\left(\mathbf{x}^{\mathrm{opt}}\right)+\alpha D_{\mathrm{KL}}\left(\mathbf{x}^{\mathrm{opt}}, \mathbf{y}\right) \leq f(\mathbf{z})+\alpha D_{\mathrm{KL}}(\mathbf{z}, \mathbf{y})-\alpha D_{\mathrm{KL}}\left(\mathbf{z}, \mathbf{x}^{\mathrm{opt}}\right)
$$

This lemma is for mirror descent algorithms, whose proof can be found in existing works (Tseng, 2008; Nemirovski et al., 2009; Wei et al., 2019).
Lemma C.13. With probability at least $1-4 \delta^{\prime}$, the true transition model \mathcal{P} satisfies that for any $k \in[K]$,

$$
\mathcal{P} \in \Upsilon^{k}
$$

This lemma implies that the estimated transition model $\widehat{\mathcal{P}}_{h}^{k}\left(s^{\prime} \mid s, a\right)$ by (11) is closed to the true transition model $\mathcal{P}_{h}\left(s^{\prime} \mid s, a\right)$ with high probability. The upper bound for their difference is by empirical Bernstein's inequality and the union bound.

The next lemma is modified from Lemma 10 in Jin \& Luo (2019).
Lemma C.14. We let $w_{h}^{k}(s, a)$ denote the occupancy measure at the h-th step of the k-th episode under the true transition model \mathcal{P} and the current policy μ^{k}. Then, with probability at least $1-2 \delta^{\prime}$ we have for all $h \in[H]$, the following inequalities hold

$$
\sum_{k=1}^{K} \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \frac{w_{h}^{k}(s, a)}{\max \left\{N_{h}^{k}(s, a), 1\right\}}=\mathcal{O}\left(|\mathcal{S}||\mathcal{A}| \log K+\log \frac{H}{\delta^{\prime}}\right)
$$

and

$$
\sum_{k=1}^{K} \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} \frac{w_{h}^{k}(s, a)}{\sqrt{\max \left\{N_{h}^{k}(s, a), 1\right\}}}=\mathcal{O}\left(\sqrt{|\mathcal{S}||\mathcal{A}| K}+|\mathcal{S}||\mathcal{A}| \log K+\log \frac{H}{\delta^{\prime}}\right)
$$

Furthermore, by Lemma C. 13 and Lemma C.14, we give the following lemma to characterize the difference of two occupancy measures, which is modified from parts of the proof of Lemma 4 in Jin \& Luo (2019).
Lemma C.15. Let $w_{h}^{k}(s, a)$ be the occupancy measure at the h-th step of the k-th episode under the true transition model \mathcal{P} and the current policy μ^{k}, and $\widetilde{w}_{h}^{k}(s, a)$ be the occupancy measure at the h-th step of the k-th episode under any transition model $\widetilde{\mathcal{P}}^{k} \in \Upsilon^{k}$ and the current policy μ^{k} for any k. Then, with probability at least $1-6 \delta^{\prime}$ we have for all $h \in[H]$, the following inequalities hold

$$
\sum_{k=1}^{K} \sum_{h=1}^{K} \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}}\left|\widetilde{w}_{h}^{k}(s, a)-w_{h}^{k}(s, a)\right| \leq \mathcal{E}_{1}+\mathcal{E}_{2}
$$

where \mathcal{E}_{1} and \mathcal{E}_{2} are in the level of

$$
\mathcal{E}_{1}=\mathcal{O}\left[\sum_{h=2}^{H} \sum_{h^{\prime}=1}^{h-1} \sum_{k=1}^{K} \sum_{s \in \mathcal{S}} \sum_{a \in \mathcal{A}} w_{h}^{k}(s, a)\left(\sqrt{\frac{|\mathcal{S}| \log \left(|\mathcal{S}||\mathcal{A}| H K / \delta^{\prime}\right)}{\max \left\{N_{h}^{k}(s, a), 1\right\}}}+\frac{\log \left(|\mathcal{S}||\mathcal{A}| H K / \delta^{\prime}\right)}{\max \left\{N_{h}^{k}(s, a), 1\right\}}\right)\right]
$$

and

$$
\mathcal{E}_{2}=\mathcal{O}\left(\operatorname{poly}(H,|\mathcal{S}|,|\mathcal{A}|) \cdot \log \frac{|\mathcal{S}||\mathcal{A}| H K}{\delta^{\prime}}\right)
$$

where $\operatorname{poly}(H,|\mathcal{S}|,|\mathcal{A}|)$ denotes the polynomial dependency on $H,|\mathcal{S}|,|\mathcal{A}|$.
Lemma C.16. With probability at least $1-\delta$, the following inequality hold

$$
\sum_{k=1}^{K} \sum_{h=1}^{H} \mathbb{E}_{\mu^{k}, \mathcal{P}, \nu^{k}}\left[\sqrt{\frac{1}{\max \left\{N_{h}^{k}(s, a, b), 1\right\}}}\right] \leq \widetilde{\mathcal{O}}\left(\sqrt{|\mathcal{S}||\mathcal{A}||\mathcal{B}| H^{2} K}+|\mathcal{S}||\mathcal{A}||\mathcal{B}| H\right)
$$

where $\widetilde{\mathcal{O}}$ hides logarithm terms.

Provably Efficient Fictitious Play Policy Optimization for Zero-Sum Markov Games with Structured Transitions
Proof. The zero-sum Markov game with single controller in this paper can interpreted as a regular MDP learning problem with policies $w_{h}^{k}(a, b \mid s)=\mu_{h}^{k}(a \mid s) \nu_{h}^{k}(b \mid s)$ and a transition model $\mathcal{P}_{h}\left(s^{\prime} \mid s, a, b\right)=\mathcal{P}_{h}\left(s^{\prime} \mid s, a\right)$ with a joint action (a, b) in the action space of size $|\mathcal{A}||\mathcal{B}|$. Thus, we apply Lemma 19 of Efroni et al. (2020), which extends lemmas in Zanette \& Brunskill (2019); Efroni et al. (2019) to MDP with non-stationary dynamics by adding a factor of H, to obtain our lemma. This completes the proof.

