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A. Discussion of Function Space Complexity
To characterize the function space complexity, we first introduce the notions for the eigenvalues of the RKHS. Define L2(Z)
as the space of square-integrable functions on Z w.r.t. Lebesgue measure and define 〈·, ·〉L2 as the inner product on the
space L2(Z). According to Mercer’s Theorem (Steinwart & Christmann, 2008), the kernel function ker(z, z′) has a spectral
expansion as ker(z, z′) =

∑∞
i=1 σi%i(z)%i(z

′) where {%i}i≥1 are a set of orthonormal basis on L2(Z) and {σi}i≥1 are
positive eigenvalues. In this paper, we consider two types of eigenvalues’ properties and make the following assumptions.

Assumption A.1. Assume {σi}i≥1 satisfies one of the following eigenvalue decay conditions for some constant γ > 0:

(a) γ-finite spectrum: we have σi = 0 for all i > γ;

(b) γ-exponential spectral decay: there exist constants C1 > 0 and C2 > 0 such that σi ≤ C1 exp(−C2 · iγ) for all i ≥ 1.

Covering Numbers. Next, we characterize the upper bound of the covering numbers of the Q-function sets Q(c,R,B) and
Q(c,R,B). For any Q1, Q2 ∈ Q(c,R,B), we have

Q1(z) = min
{
c(z) + Π[0,H][〈w1, φ(z)〉] +B ·max{‖φ(z)‖Λ−1

D1

, H/β}+, H
}+

,

Q2(z) = min
{
c(z) + Π[0,H][〈w2, φ(z)〉] +B ·max{‖φ(z)‖Λ−1

D2

, H/β}+, H
}+

,

for some w1,w2 satisfying ‖w1‖H ≤ R and ‖w2‖H ≤ R. Then, due to the fact that the truncation operator is non-expansive,
we have

‖Q1(·)−Q2(·)‖∞ ≤ sup
z
|〈w1 −w2, φ(z)〉H|+B sup

z

∣∣∣‖φ(z)‖Λ−1
D1

− ‖φ(z)‖Λ−1
D2

∣∣∣ .
The above inequality shows that it suffices to bound the covering numbers of of the RKHS norm ball of radius R and
the set of functions of the form ‖φ(z)‖Λ−1

D
. Thus, we define the function class Fλ := {‖φ(·)‖Υ : ‖Υ‖op ≤ 1/λ} since

‖Λ−1
D ‖op ≤ 1/λ according to the definition of ΛD. Let N∞(ε;R,B) be the ε-covering number of Q w.r.t. ‖ · ‖∞,

N∞(ε,H, R) be the ε-covering number of RKHS norm ball of radius R w.r.t. ‖ · ‖∞, and N∞(ε,F , 1/λ) be the ε-covering
number of Fλ w.r.t. ‖ · ‖∞. Thus, we have

N∞(ε;R,B) ≤ N∞(ε/2,H, R) · N∞(ε/(2B),F , 1/λ).

We define the upper bound

N∞(ε;R,B) := N∞(ε/2,H, R) · N∞(ε/(2B),F , 1/λ),

in the main text of this paper. Then, we know

logN∞(ε;R,B) = logN∞(ε/2,H, R) + logN∞(ε/(2B),F , 1/λ).

Moreover, for any Q1, Q2 ∈ Q(c,R,B), we have

Q1(z) = min
{
c(z) + Π[0,H][〈w1, φ(z)〉]−B ·max{‖φ(z)‖Λ−1

D1

, H/β}+, H
}+

,

Q2(z) = min
{
c(z) + Π[0,H][〈w2, φ(z)〉]−B ·max{‖φ(z)‖Λ−1

D2

, H/β}+, H
}+

,

which also implies

‖Q1(·)−Q2(·)‖∞ ≤ sup
z
|〈w1 −w2, φ(z)〉H|+B sup

z

∣∣∣‖φ(z)‖Λ−1
D1

− ‖φ(z)‖Λ−1
D2

∣∣∣ .
Thus, we can bound the covering number N∞(ε;R,B) of Q(c,R,B) in the same way, i.e., N∞(ε;R,B) ≤ N∞(ε;R,B).

According to Yang et al. (2020), we have the following covering number upper bounds
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(a) γ-finite spectrum:

logN∞(ε/2,H, R) ≤ C3γ[log(2R/ε) + C4], logN∞(ε/(2B),F , 1/λ) ≤ C5γ
2[log(2B/ε) + C6];

(b) γ-exponential spectral decay:

logN∞(ε/2,H, R) ≤ C3[log(2R/ε) + C4]1+1/γ , logN∞(ε/(2B),F , 1/λ) ≤ C5[log(2B/ε) + C6]1+2/γ .

Maximal Information Gain. Here we give the definition of maximal information gain and discuss its upper bounds based
on different kernels.

Definition A.2 (Maximal Information Gain (Srinivas et al., 2009)). For any fixed integer C and any σ > 0, we define the
maximal information gain associated with the RKHSH as

Γ(C, λ; ker) = sup
D⊆Z

1

2
log det(I +KD/λ),

where the supremum is taken over all discrete subsets of Z with cardinality no more than C, and KD is the Gram matrix
induced by D ⊆ Z based on the kernel ker.

According to Theorem 5 in Srinivas et al. (2009), we have the maximal information gain characterized as follows

(a) γ-finite spectrum:

Γ(K,λ; ker) ≤ C7γ logK;

(b) γ-exponential spectral decay:

Γ(K,λ; ker) ≤ C7(logK)1+1/γ .

Sample Complexity. Given the above results, for the kernel approximation setting, according to the discussion in the proof
of Corollary 4.4 in Yang et al. (2020), under the parameter settings in Theorem 3.3 or Theorem 4.1, we have that for γ-finite
spectrum setting,

β = O(γH
√

log(γKH)), logN∞(ς∗;RK , 2β) = O(γ2 log(γKH)), Γ(K,λ; ker) = O(γ logK),

which implies after K episodes of exploration, the upper bound in Theorem 3.3 or Theorem 4.1 is

O
(√

H6γ3 log2(γKH)/K

)
.

This result further implies that to obtain an ε-suboptimal policy or ε-approximate NE, it requires Õ(H6γ3/ε2) rounds of
exploration. In addition, for the γ-exponential spectral decay setting, we have

β = O(H
√

log(KH)(logK)1/γ), logN∞(ς∗;RK , 2β) = O((logK)1+2/γ + (log logH)1+2/γ),

Γ(K,λ; ker) = O((logK)1+1/γ),

which implies that after K episodes of exploration, the upper bound in Theorem 3.3 or Theorem 4.1 is

O
(√

H6 log2+3/γ(KH)/K

)
.

Then, to obtain an ε-suboptimal policy or ε-approximate NE, it requires O(H6Cγ log4+6/γ(ε−1)/ε2) = Õ(H6Cγ/ε
2)

episodes of exploration, where Cγ is some constant depending on 1/γ.

The above results also hold for the neural function approximation under both single-agent MDP and Markov game setting if
the kernel kerm satisfies the γ-finite spectrum or γ-exponential spectral decay and the network width m is sufficiently large
such that the error term H2βι ≤ ε. Then, we can similarly obtain the upper bounds in Theorems 3.5 and 4.2.
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Linear and Tabular Cases. For the linear function approximation case, we have a feature map φ(s) ∈ Rd, where d is the
feature dimension. Therefore, the associated kernel can be represented as ker(s, s′) = φ(s)>φ(s′) =

∑d
i=1 φi(s)φi(s

′).
Thus, we know that under the linear setting, the kernel ker has d-finite spectrum. Thus, letting γ = d in the γ-finite spectrum
case, we have

β = O(dH
√

log(dKH)), logN∞(ς∗;RK , 2β) = O(d2 log(dKH)), Γ(K,λ; ker) = O(d logK),

which further implies that to achieve V ∗1 (s1, r)− V π1 (s1, r) ≤ ε, it requires Õ(H6d3/ε2) rounds of exploration. This is
consistent with the result in Wang et al. (2020a) for the single-agent MDP. This result also hold for the Markov game setting.

For the tabular case, since φ(z) = ez is the canonical basis in R|Z|, we have γ = |Z| for the above γ-finite spectrum case.
Therefore, for the single-agent MDP setting, we have |Z| = |S||A|, which implies

β = O(H|S||A|
√

log(|S||A|KH)), logN∞(ς∗;RK , 2β) = O(|S|2|A|2 log(|S||A|KH)),

Γ(K,λ; ker) = O(|S||A| logK).

Then, the sample complexity becomes Õ(H6|S|3|A|3/ε2) to obtain an ε-suboptimal policy. For the two-player Markov
game setting, we have |Z| = |S||A||B|, which implies

β = O(H|S||A||B|
√

log(|S||A||B|KH)), logN∞(ς∗;RK , 2β) = O(|S|2|A|2|B|2 log(|S||A||B|KH)),

Γ(K,λ; ker) = O(|S||A||B| logK).

Then, the sample complexity becomes Õ(H6|S|3|A|3|B|3/ε2) to obtain an ε-approximate NE.

B. Proofs for Single-Agent MDP Setting with Kernel Function Approximation
B.1. Lemmas

Lemma B.1 (Solution of Kernel Ridge Regression). The approximation vector f̂kh ∈ H is obtained by solving the following
kernel ridge regression problem

minimize
f∈H

k−1∑
τ=1

[V kh+1(sτh+1)− f(zτh)〉H]2 + λ‖f‖2H,

such that we have

〈φ(z), f̂kh (z)〉H = ψkh(z)>(λ · I +Kkh)−1ykh,

where we define

ψkh(z) := Φkhφ(z) = [ker(z, z1
h), · · · , ker(z, zk−1

h )]>,

Φkh = [φ(z1
h), φ(z2

h), · · · , φ(zk−1
h )]>,

ykh = [V kh+1(s1
h+1), V kh+1(s2

h+1), · · · , V kh+1(sk−1
h+1)]>,

Kkh := Φkh(Φkh)> =

 ker(z1
h, z

1
h) . . . ker(z1

h, z
k−1
h )

...
. . .

...
ker(zk−1

h , z1
h) . . . ker(zk−1

h , zk−1
h )

 ,
(13)

with denoting z = (s, a) and zτh = (sτh, a
τ
h), and ker(x, y) = 〈φ(z), φ(z′)〉H,∀z, z′ ∈ Z = S ×A.

Proof. We seek to solve the following kernel ridge regression problem in the RKHS

f̂kh = argmin
f∈H

k−1∑
τ=1

[V kh+1(sτh+1)− f(sτh, a
τ
h)〉H]2 + λ‖f‖2H,
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which is equivalent to

f̂kh = argmin
f∈H

k−1∑
τ=1

[V kh+1(sτh+1)− 〈f, φ(sτh, a
τ
h)〉H]2 + λ〈f, f〉H.

By the first-order optimality condition, the above kernel ridge regression problem admits the following closed-form solution

f̂kh = (Λkh)−1(Φkh)>ykh, (14)

where we define

Λkh =

k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)> + λ · IH = λ · IH + (Φkh)>Φkh,

with IH being the identity mapping in RKHS. Thus, by (14), we have

〈f̂kh , φ(z)〉H = 〈(Λkh)−1(Φkh)>ykh, φ(s, a)〉H, ∀(z) ∈ S ×A, (15)

which can be further rewritten in terms of kernel ker as follows

〈f̂kh , φ(z)〉H = 〈(Λkh)−1(Φkh)>ykh, φ(z)〉H
= φ(z)>[λ · IH + (Φkh)>Φkh]−1(Φkh)>ykh

= φ(z)>(Φkh)>[λ · I + Φkh(Φkh)>]−1ykh

= ψkh(z)>(λ · I +Kkh)−1ykh.

(16)

The third equality is by

(Φkh)>[λ · I + Φkh(Φkh)>] = [λ · IH + (Φkh)>Φkh](Φkh)>,

such that

[λ · IH + (Φkh)>Φkh]−1(Φkh)> = (Φkh)>[λ · I + Φkh(Φkh)>]−1, (17)

where I is an identity matrix in R(k−1)×(k−1). The last equality in (16) is by the definitions of ψkh(z) and Kkh in (13). This
completes the proof.

Lemma B.2 (Boundedness of Solution). When λ ≥ 1, for any (k, h) ∈ [K]× [H], f̂kh defined in (14) satisfies

‖f̂kh‖H ≤ H
√

2/λ · log det(I +Kkh/λ) ≤ 2H
√

Γ(K,λ; ker),

where Kkh is defined in (13) and Γ(K,λ; ker) is defined in Definition A.2.

Proof. For any vector f ∈ H, we have

|〈f, f̂kh 〉H| = |f>(Λkh)−1(Φkh)>ykh| =

∣∣∣∣∣f>(Λkh)−1
k−1∑
τ=1

φ(sτh, a
τ
h)V kh+1(sτh+1)

∣∣∣∣∣ ≤ H
k−1∑
τ=1

∣∣f>(Λkh)−1φ(sτh, a
τ
h)
∣∣ ,

where the last inequality is due to |V kh+1(sτh+1)| ≤ H . Then, with Lemma F.2, the rest of the proof is the same as the proof
of Lemma C.5 in Yang et al. (2020), which finishes the proof.

Lemma B.3. With probability at least 1− δ′, we have ∀(h, k) ∈ [H]× [K],∥∥∥∥∥
k−1∑
τ=1

φ(sτh, a
τ
h)[V kh+1(sτh+1)− PhV kh+1(sτh, a

τ
h)]

∥∥∥∥∥
2

(Λk
h)−1

≤ 4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗;RK , BK) + 4H2 log(K/δ′),

where we set ς∗ = H/K and λ = 1 + 1/K.
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Proof. We first define a value function class as follows

V(0, R,B) = {V : V (·) = max
a∈A

Q(·, a) with Q ∈ Q(0, R,B)},

where Q is defined in (10). We denote the covering number of V(0, R,B) w.r.t. the distance dist as NVdist(ε;R,B), where
the distance dist is defined by dist(V1, V2) = sups∈S |V1(s)− V2(s)|. Specifically, for any k × h ∈ [K]× [H], we assume
that there exist constants RK and BK that depend on the number of episodes K such that any V kh ∈ V(0, RK , BK) with
RK = 2H

√
Γ(K,λ; ker) and BK = (1 + 1/H)β since V kh (s) = (rkh + ukh + fkh )(z) = Π[0,H][〈f̂kh , φ(z)〉H] + (1 +

1/H)β ·min{‖φ(z)‖(Λk
h)−1 , H}+ (See the next lemma for the reformulation of the bonus term). By Lemma F.1 with δ′/K,

we have ∥∥∥∥∥
k−1∑
τ=1

φ(sτh, a
τ
h)[V kh+1(sτh+1)− PhV kh+1(sτh, a

τ
h)]

∥∥∥∥∥
2

(Λk
h)−1

≤ sup
V ∈V(0,RK ,BK)

∥∥∥∥∥
k−1∑
τ=1

φ(sτh, a
τ
h)[V (sτh+1)− PhV (sτh, a

τ
h)]

∥∥∥∥∥
2

(Λk
h)−1

≤ 2H2 log det(I +Kk/λ) + 2H2k(λ− 1) + 4H2 log(KNVdist(ε;RK , BK)/δ′) + 8k2ε2/λ

≤ 4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗;RK , BK) + 4H2 log(K/δ′),

where the last inequality is by setting λ = 1 + 1/K and ε = ς∗ = H/K. Moreover, the last inequality is also due to

dist(V1, V2) = sup
s∈S
|V1(s)− V2(s)| = sup

s∈S

∣∣∣∣max
a∈A

Q1(s, a)−max
a∈A

Q2(s, a)

∣∣∣∣
≤ sup

(s,a)∈S×A
|Q1(s, a)−Q2(s, a)| = ‖Q1 −Q2‖∞,

which indicates that NVdist(ς
∗;RK , BK) upper bounded by the covering number of the class Q w.r.t. ‖ · ‖∞, such that

NVdist(ς
∗;RK , BK) ≤ N∞(ς∗;RK , BK).

Here N∞(ε;R,B) denotes the upper bound of the covering number of Q(h,R,B) w.r.t. `∞-norm, which is characterized
in Section A. Further by union bound, we know that the above inequality holds for all k ∈ [K] with probability at least
1− δ′. This completes the proof.

Lemma B.4. We define the event E as that the following inequality holds ∀z = (s, a) ∈ S ×A,∀(h, k) ∈ [H]× [K],

|PhV kh+1(z)− fkh (z)| ≤ ukh(z),

where fkh (z) = min{f̂kh (z), H}+ and ukh(z) = min{wkh(z), H}+ with wkh(z) = βλ−1/2[ker(z, z) − ψkh(z)>(λI +
Kkh)−1ψkh(z)]1/2. Thus, setting β = BK/(1 + 1/H), if BK satisfies

16H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗;RK , BK) + 2 log(K/δ′)

]
≤ B2

K ,∀h ∈ [H],

then we have that with probability at least 1− δ′, the event E happens, i.e.,

Pr(E) ≥ 1− δ′.

Proof. We assume that PhV kh+1(s, a) = 〈f̃kh , φ(s, a)〉H for some f̃kh ∈ H. Then, we bound the difference between fkh (z)

and PhV kh+1(s, a) in the following way

|PhV kh+1(s, a)− fkh (s, a)|

≤ |〈f̃kh , φ(s, a)〉H − ψkh(s, a)>(λ · I +Kkh)−1ykh|

= |λφ(s, a)>(Λkh)−1f̃kh + ψkh(s, a)>(λ · I +Kkh)−1Φkhf̃
k
h − ψkh(s, a)>(λ · I +Kkh)−1ykh|

= |λφ(s, a)>(Λkh)−1f̃kh + ψkh(s, a)>(λ · I +Kkh)−1(Φkhf
k

h − ykh)|,
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where the first inequality is due to non-expansiveness of the operator min{·, H}+ and the definition of f̂kh (z), and the first
equality is due to

φ(s, a) = (Λkh)−1Λkhφ(s, a) = (Λkh)−1(λ · I + (Φkh)>Φkh)φ(s, a)

= λ(Λkh)−1φ(s, a) + (Λkh)−1(Φkh)>Φkhφ(s, a)

= λ(Λkh)−1φ(s, a) + (Φkh)>(λ · I +Kkh)−1Φkhφ(s, a)

= λ(Λkh)−1φ(s, a) + (Φkh)>(λ · I +Kkh)−1ψkh(s, a).

(18)

Thus, we have

|PhV kh+1(s, a, rk)− fkh (s, a)| ≤ λ‖φ(s, a)>(Λkh)−1‖H · ‖f̃kh‖H︸ ︷︷ ︸
Term(I)

+ |ψkh(s, a)>(λ · I +Kkh)−1(Φkhf̃
k
h − ykh)|︸ ︷︷ ︸

Term(II)

. (19)

For Term(I), we have

Term(I) ≤
√
λRQH

√
φ(s, a)>(Λkh)−1 · λI · (Λkh)−1φ(s, a)

≤
√
λRQH

√
φ(s, a)>(Λkh)−1 · Λkh · (Λkh)−1φ(s, a)

≤
√
λRQH

√
φ(s, a)>(Λkh)−1φ(s, a) =

√
λRQH‖φ(s, a)‖(Λk

h)−1 ,

(20)

where the first inequality is due to Assumption 3.2 and the second inequality is by θ>(Φkh)>Φkhθ = ‖Φkhθ‖H ≥ 0 for any
θ ∈ H.

For Term(II), we have

Term(II) =

∣∣∣∣∣φ(s, a)>(Λkh)−1

{
k−1∑
τ=1

φ(sτh, a
τ
h)[V kh+1(sτh+1)− PhV kh+1(sτh, a

τ
h)]

}∣∣∣∣∣
=

∣∣∣∣∣φ(s, a)>(Λkh)−1/2(Λkh)−1/2

{
k−1∑
τ=1

φ(sτh, a
τ
h)[V kh+1(sτh+1)− PhV kh+1(sτh, a

τ
h)]

}∣∣∣∣∣
≤ ‖φ(s, a)‖(Λk

h)−1

∥∥∥∥∥
k−1∑
τ=1

φ(sτh, a
τ
h)[V kh+1(sτh+1)− PhV kh+1(sτh, a

τ
h)]

∥∥∥∥∥
(Λk

h)−1

(21)

By Lemma B.3, we have that with probability at least 1− δ′, the following inequality holds for all k ∈ [K]∥∥∥∥∥
k−1∑
τ=1

φ(sτh, a
τ
h)[V kh+1(sτh+1)− PhV kh+1(sτh, a

τ
h)]

∥∥∥∥∥
(Λk

h)−1

≤ [4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗;RK , BK) + 4H2 log(K/δ′)]1/2.

Thus, Term(II) can be further bounded as

Term(II) ≤
[
4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗;RK , BK) + 4H2 log(K/δ′)

]1/2‖φ(s, a)‖(Λk
h)−1 .

Plugging the upper bounds of Term(I) and Term(II) into (19), we obtain

|PhV kh+1(s, a, rk)− fkh (s, a)|

≤
[√
λRQH + [4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗;RK , BK) + 4H2 log(K/δ′)]1/2

]
‖φ(s, a)‖(Λk

h)−1

≤
[
2λR2

QH
2 + 8H2Γ(K,λ; ker) + 20H2 + 4H2 logN∞(ς∗;RK , BK) + 8H2 log(K/δ′)

]1/2‖φ(s, a)‖(Λk
h)−1

≤ β‖φ(s, a)‖(Λk
h)−1 = βλ−1/2[ker(z, z)− ψkh(s, a)>(λI +Kkh)−1ψkh(s, a)]1/2,
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where ς∗ = H/K, and λ = 1 + 1/K as in Lemma B.3. In the last equality, we also use the identity that

‖φ(s, a)‖2(Λk
h)−1 = λ−1φ(s, a)>φ(s, a)− λ−1ψkh(s, a)>(λ · I +Kkh)−1ψkh(s, a)

= λ−1 ker(z, z)− λ−1ψkh(s, a)>(λI +Kkh)−1ψkh(s, a).
(22)

This is proved by

‖φ(s, a)‖2H = φ(s, a)>[λ(Λkh)−1φ(s, a) + (Φkh)>(λ · I +Kkh)−1Φkhφ(s, a)]

= λφ(s, a)>(Λkh)−1φ(s, a) + ψkh(s, a)>(λ · I +Kkh)−1ψkh(s, a),

where the first equality is by (18).

According to Lemma B.2, we know that f̂kh satisfies ‖f̂kh‖H ≤ H
√

2/λ · log det(I +Kkh/λ) ≤ 2H
√

Γ(K,λ; ker). Then,

one can set RK = 2H
√

Γ(K,λ; ker). Moreover, as we set (1 + 1/H)β = BK , then β = BK/(1 + 1/H). Thus, we let[
2λR2

QH
2 + 8H2Γ(K,λ; ker) + 20H2 + 4H2 logN∞(ς∗;RK , BK) + 8H2 log(K/δ′)

]1/2 ≤ β = BK/(1 + 1/H),

which can be further guaranteed by

16H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗;RK , BK) + 2 log(K/δ′)

]
≤ B2

K

as (1 + 1/H) ≤ 2 and λ = 1 + 1/K ≤ 2.

According to the above result, letting wkh = β‖φ(s, a)‖(Λk
h)−1 = βλ−1/2[ker(z, z)− ψkh(s, a)>(λI +Kkh)−1ψkh(s, a)]1/2,

we have −wkh ≤ PhV kh+1(s, a, rk) − fkh (s, a) ≤ wkh. Note that we also have |PhV kh+1(s, a, rk) − fkh (s, a)| ≤ H due to
0 ≤ fkh (s, a) ≤ H and 0 ≤ PhV kh+1(s, a, rk) ≤ H . Thus, there is |PhV kh+1(s, a, rk) − fkh (s, a)| ≤ min{wkh, H}. This
completes the proof.

Lemma B.5. Conditioned on the event E defined in Lemma B.4, with probability at least 1− δ′, we have

K∑
k=1

V ∗1 (s1, r
k) ≤

K∑
k=1

V k1 (s1) ≤ O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; ker)

)
.

Proof. We first show the first inequality in this lemma, i.e.,
∑K
k=1 V

∗
1 (s1, r

k) ≤
∑K
k=1 V

k
1 (s1). To show this inequality

holds, it suffices to show V ∗h (s, rk) ≤ V kh (s) for all s ∈ S, h ∈ [H]. We prove it by induction.

When h = H + 1, we know V ∗H+1(s, rk) = 0 and V kH+1(s) = 0 such that V ∗H+1(s, rk) = V kH+1(s1). Now we assume that
V ∗h+1(s, rk) ≤ V kh+1(s). Then, conditioned on the event E defined in Lemma B.4, for all s ∈ S, (h, k) ∈ [H]× [K], we
further have

Q∗h(s, a, rk)−Qkh(s, a)

= rkh(s, a) + PhV ∗h+1(s, a, rk)−min{[rkh(s, a) + fkh (s, a) + ukh(s, a)], H}+

≤ min{[PhV ∗h+1(s, a, rk)− fkh (s, a)− ukh(s, a)], 0}
≤ min{[PhV kh+1(s, a)− fkh (s, a)− ukh(s, a)], 0}
≤ 0

(23)

where the first inequality is due to 0 ≤ rkh(s, a) + PhV ∗h+1(s, a, rk) ≤ H and min{x, y}+ ≥ min{x, y}, the second
inequality is by the assumption that V ∗h+1(s, rk) ≤ V kh+1(s), the last inequality is by Lemma B.4 such that PhV kh+1(s, a)−
fkh (s, a) ≤ ukh(s, a) holds for any (s, a) ∈ S ×A and (k, h) ∈ [K]× [H]. The above inequality (23) further leads to

V ∗h (s, rk) = max
a∈A

Q∗h(s, a, rk) ≤ max
a∈A

Qkh(s, a) = V kh (s).

Therefore, we obtain that conditioned on event E , we have

K∑
k=1

V ∗1 (s, rk) ≤
K∑
k=1

V k1 (s).
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Next, we prove the second inequality in this lemma, namely the upper bound of
∑K
k=1 V

k
1 (s1). Specifically, conditioned on

E defined in Lemma B.4, we have

V kh (skh) = Qkh(skh, a
k
h) ≤ fkh (skh, a

k
h) + rkh(skh, a

k
h) + ukh(skh, a

k
h)

≤ PhV kh+1(skh, a
k
h) + ukh(skh, a

k
h) + rkh(skh, a

k
h) + ukh(skh, a

k
h)

≤ PhV kh+1(skh, a
k
h) + (2 + 1/H)wkh

= ζkh + V kh+1(skh+1) + (2 + 1/H)β‖φ(skh, a
k
h)‖(Λk

h)−1 ,

where the second inequality is due to Lemma B.4 and in the last equality, we define

ζkh := PhV kh+1(skh, a
k
h)− V kh+1(skh+1).

Recursively applying the above inequality gives

V k1 (s1) ≤
H∑
h=1

ζkh + (2 + 1/H)β

H∑
h=1

‖φ(skh, a
k
h)‖(Λk

h)−1 ,

where we use the fact that V kH+1(·) = 0. Taking summation on both sides of the above inequality, we have

K∑
k=1

V k1 (s1) =

K∑
k=1

H∑
h=1

ζkh + (2 + 1/H)β

K∑
k=1

H∑
h=1

‖φ(skh, a
k
h)‖(Λk

h)−1 .

By Azuma-Hoeffding inequality, with probability at least 1− δ′, the following inequalities hold

K∑
k=1

H∑
h=1

ζkh ≤ O

(√
H3K log

1

δ′

)
.

On the other hand, by Lemma F.2, we have

K∑
k=1

H∑
h=1

‖φ(skh, a
k
h)‖(Λk

h)−1 =

K∑
k=1

H∑
h=1

√
φ(skh, a

k
h)>(Λkh)−1φ(skh, a

k
h)

≤
H∑
h=1

√√√√K

K∑
k=1

φ(skh, a
k
h)>(Λkh)−1φ(skh, a

k
h)

≤
H∑
h=1

√
2K log det(I + λKKh ) = 2H

√
K · Γ(K,λ; ker).

where the first inequality is by Jensen’s inequality. Thus, conditioned on event E , we obtain that with probability at least
1− δ′, there is

K∑
k=1

V k1 (s1) ≤ O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; ker)

)
,

which completes the proof.

Lemma B.6. We define the event Ẽ as that the following inequality holds ∀z = (s, a) ∈ S ×A,∀h ∈ [H],

|PhVh+1(z)− fh(z)| ≤ uh(z),

where uh(z) = min{wh(z), H}+ withwh(z) = βλ−1/2[ker(z, z)−ψh(z)>(λI+Kh)−1ψh(z)]1/2. Thus, setting β = B̃K ,
if B̃K satisfies

4H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗; R̃K , B̃K) + 2 log(K/δ′)

]
≤ B̃2

K ,∀h ∈ [H],

then we have that with probability at least 1− δ′, the event E happens, i.e.,

Pr(Ẽ) ≥ 1− δ′.
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Proof. The proof of this lemma is nearly the same as the proof of Lemma B.4. We provide the sketch of this proof below.

We assume that the true transition is formulated as PhVh+1(z) = 〈f̃h, φ(z)〉H =: f̃h(z). We have the following definitions

Φh = [φ(s1
h, a

1
h), φ(s2

h, a
2
h), · · · , φ(sKh , a

K
h )]>, Λh =

K∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)> + λ · IH = λ · IH + (Φh)>Φh,

yh = [Vh+1(s1
h+1), Vh+1(s2

h+1), · · · , Vh+1(sKh+1)]>, Kh = ΦhΦ>h , ψh(s, a) = Φhφ(s, a).

Then, we bound the following term

PhVh+1(s, a)− fh(s, a)

≤ |〈f̃h, φ(s, a)〉H − ψh(s, a)>(λ · I +Kh)−1yh|

= |λφ(s, a)>Λ−1
h f̃h + ψh(s, a)>(λ · I +Kh)−1Φhf̃h − ψh(s, a)>(λ · I +Kh)−1yh|

= |λφ(s, a)>Λ−1
h f̃h + ψkh(s, a)>(λ · I +Kh)−1(Φhf̃h − yh)|,

where the first equality is by the same reformulation as (18) such that

φ(s, a) = λΛ−1
h φ(s, a) + (Φh)>(λ · I +Kh)−1ψh(s, a).

Thus, we have

|PhVh+1(s, a)− fh(s, a)| ≤ λ‖φ(s, a)>Λ−1
h ‖H · ‖f̃h‖H︸ ︷︷ ︸

Term(I)

+ |ψh(s, a)>(λ · I +Kh)−1(Φhf̃h − yh)|︸ ︷︷ ︸
Term(II)

. (24)

Analogous to (20), for Term(I) here, we have

Term(I) ≤
√
λRQH‖φ(s, a)‖Λ−1

h
.

Similar to (21), for Term(II), we have

Term(II) ≤ ‖φ(s, a)‖Λ−1
h

∥∥∥∥∥
K∑
τ=1

φ(sτh, a
τ
h)[Vh+1(sτh+1)− PhVh+1(sτh, a

τ
h)]

∥∥∥∥∥
Λ−1

h

.

Then, we need to bound the last factor in the above inequality. Here we apply the similar argument as Lemma B.3. We have
the function class for Vh is

V(rh, R̃K , B̃K) = {V : V (·) = max
a∈A

Q(·, a) with Q ∈ Q(rh, R̃K , B̃K)}.

By Lemma F.1 with δ′, we have∥∥∥∥∥
K∑
τ=1

φ(sτh, a
τ
h)[Vh+1(sτh+1)− PhVh+1(sτh, a

τ
h)]

∥∥∥∥∥
2

(Λh)−1

≤ sup
V ∈V(rh,R̃K ,B̃K)

∥∥∥∥∥
K∑
τ=1

φ(sτh, a
τ
h)[V (sτh+1)− PhV (sτh, a

τ
h)]

∥∥∥∥∥
2

(Λh)−1

≤ 2H2 log det(I +K/λ) + 2H2K(λ− 1) + 4H2 log(NVdist(ε; R̃K , B̃K)/δ′) + 8K2ε2/λ

≤ 4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗; R̃K , B̃K) + 4H2 log(1/δ′),

where the last inequality is by setting λ = 1 + 1/K and ε = ς∗ = H/K, and also due to

NVdist(ς
∗; R̃K , B̃K) ≤ N∞(ς∗; R̃K , B̃K).
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We have that with probability at least 1− δ′, the following inequality holds for all k ∈ [K]∥∥∥∥∥
K∑
τ=1

φ(sτh, a
τ
h)[Vh+1(sτh+1)− PhV kh+1(sτh, a

τ
h)]

∥∥∥∥∥
Λ−1

h

≤ [4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗; R̃K , B̃K) + 4H2 log(K/δ′)]1/2.

Thus, Term(II) can be further bounded as

Term(II) ≤
[
4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗; R̃K , B̃K) + 4H2 log(K/δ′)

]1/2‖φ(s, a)‖(Λk
h)−1 .

Plugging the upper bounds of Term(I) and Term(II) into (24), we obtain

|PhVh+1(s, a)− fh(s, a)|
≤ uh(s, a) ≤ β‖φ(s, a)‖Λ−1

h
= βλ−1/2[ker(z, z)− ψh(s, a)>(λI +Kh)−1ψh(s, a)]1/2,

where we let z = (s, a), ς∗ = H/K, and λ = 1 + 1/K. In the last equality, similar to (22), we have

‖φ(s, a)‖2
Λ−1

h

= λ−1φ(s, a)>φ(s, a)− λ−1φ(s, a)>(Φh)>[λI + Φh(Φh)>]−1Φhφ(s, a)

= λ−1 ker(z, z)− λ−1ψh(s, a)>(λI +Kh)−1ψh(s, a).
(25)

Similar to Lemma B.2, we know that the estimated function fh satisfies ‖fh‖H ≤ H
√

2/λ · log det(I +Kkh/λ) ≤
2H
√

Γ(K,λ; ker). Then, one can set R̃K = 2H
√

Γ(K,λ; ker). Moreover, as we set β = B̃K . Thus, we let[
2λR2

QH
2 + 8H2Γ(K,λ; ker) + 20H2 + 4H2 logN∞(ς∗; R̃K , B̃K) + 8H2 log(K/δ′)

]1/2 ≤ β = B̃K ,

which can be further guaranteed by

4H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗; R̃K , B̃K) + 2 log(K/δ′)

]
≤ B̃2

K

as (1 + 1/H) ≤ 2 and λ = 1 + 1/K ≤ 2. This completes the proof.

Lemma B.7. Conditioned on the event Ẽ as defined in Lemma B.6, we have

V ∗h (s, r) ≤ Vh(s) ≤ rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s)),∀s ∈ S,∀h ∈ [H],

where πh(s) = argmaxa∈AQh(s, a).

Proof. We first prove the first inequality in this lemma. We prove it by induction. For h = H + 1, by the planning algorithm,
we have V ∗H+1(s, r) = VH+1(s) = 0 for any s ∈ S. Then, we assume that V ∗h+1(s, r) ≤ Vh+1(s). Thus, conditioned on
the event Ẽ as defined in Lemma B.6, we have

Q∗h(s, a, r)−Qh(s, a)

= rh(s, a) + PhV ∗h+1(s, a, r)−min{[rh(s, a) + fh(s, a) + uh(s, a)], H}+

≤ min{[PhV ∗h+1(s, a, r)− fh(s, a)− uh(s, a)], 0}
≤ min{[PhVh+1(s, a)− fh(s, a)− uh(s, a)], 0}
≤ 0

where the first inequality is due to 0 ≤ rh(s, a)+PhV ∗h+1(s, a, r) ≤ H and min{x, y}+ ≥ min{x, y}, the second inequality
is by the assumption that V ∗h+1(s, a, r) ≤ Vh+1(s, a), the last inequality is by Lemma B.6 such that |PhVh+1(s, a) −
fh(s, a)| ≤ uh(s, a) holds for any (s, a) ∈ S ×A and (k, h) ∈ [K]× [H]. The above inequality further leads to

V ∗h (s, r) = max
a∈A

Q∗h(s, a, r) ≤ max
a∈A

Qh(s, a) = Vh(s).
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Therefore, we have

V ∗h (s, r) ≤ Vh(s),∀h ∈ [H],∀s ∈ S.

In addition, we prove the second inequality in this lemma. We have

Qh(s, a) = min{[rh(s, a) + fh(s, a) + uh(s, a)], H}+

≤ min{[rh(s, a) + PhVh+1(s, a) + 2uh(s, a)], H}+

≤ rh(s, a) + PhVh+1(s, a) + 2uh(s, a),

where the first inequality is also by Lemma B.6 such that |PhVh+1(s, a)− fh(s, a)| ≤ uh(s, a), and the last inequality is
because of the non-negativity of rh(s, a) + PhVh+1(s, a) + 2uh(s, a). Therefore, we have

Vh(s) = max
a∈A

Qh(s, a) = Qh(s, πh(s)) ≤ rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s)).

This completes the proof.

Lemma B.8. With the exploration and planning phases, we have the following inequality

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k).

Proof. As shown in (25), we know that

wh(s, a) = β‖φ(s, a)‖Λ−1
h

= β

√√√√φ(s, a)>

[
λIH +

K∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)>

]−1

φ(s, a).

On the other hand, by (22), we similarly have

wkh(s, a) = β‖φ(s, a)‖(Λk
h)−1 = β

√√√√φ(s, a)>

[
λIH +

k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)>

]−1

φ(s, a).

Since k − 1 ≤ K and f>φ(sτh, a
τ
h)φ(sτh, a

τ
h)>f = [f>φ(sτh, a

τ
h)]2 ≥ 0, then we know that

Λh = λIH +

K∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)> < λIH +

k−1∑
τ=1

φ(sτh, a
τ
h)φ(sτh, a

τ
h)> = Λkh.

The above relation further implies that Λ−1
h 4 (Λkh)−1 such that φ(s, a)>Λ−1

h φ(s, a) ≤ φ(s, a)>(Λkh)−1φ(s, a). This can
be proved by extending the standard matrix case to the self-adjoint operator here. Thus, we have

wh(s, a) ≤ wkh(s, a).

Since rkh = H · ukh(s, a) = H ·min{wkh(s, a), H}+ and uh(s, a) = min{wh(s, a), H}+, then we have

uh(s, a)/H ≤ rkh(s, a),

such that

V ∗1 (s1, u/H) ≤ V ∗1 (s1, r
k),

and thus

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k).

This completes the proof.
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B.2. Proof of Theorem 3.3

Proof. Conditioned on the event E defined in Lemma B.4 and the event Ẽ defined in Lemma B.6, we have

V ∗1 (s1, r)− V π1 (s1, r) ≤ V1(s1)− V π1 (s1, r), (26)

where the inequality is by Lemma B.7. Further by this lemma, we have

Vh(s)− V πh (s, r) ≤ rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s))−Qπh(s, πh(s), r)

= rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s))− rh(s, πh(s))− PhV πh+1(s, πh(s), r)

= PhVh+1(s, πh(s))− PhV πh+1(s, πh(s), r) + 2uh(s, πh(s)).

Recursively applying the above inequality and making use of V πH+1(s, r) = VH+1(s) = 0 gives

V1(s1)− V π1 (s1, r) ≤ E∀h∈[H]: sh+1∼Ph(·|sh,πh(sh))

[
H∑
h=1

2uh(sh, πh(sh))

∣∣∣∣∣s1

]
= 2H · V π1 (s1, u/H).

Combining this inequality with (26) gives

V ∗1 (s1, r)− V π1 (s1, r) ≤ 2H · V π1 (s1, u/H) ≤ 2H

K

K∑
k=1

V ∗1 (s1, r
k)

≤ 2H

K
O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; ker)

)
= O

(
[
√
H5 log(1/δ′) + β

√
H4 · Γ(K,λ; ker)]/

√
K
)
,

where the second inequality is due to Lemma B.8 and the last inequality is by Lemma B.5.

By union bound, we have P (E ∧ Ẽ) ≥ 1− 2δ′ . Therefore, by setting δ′ = δ/2, we obtain that with probability at least 1− δ

V ∗1 (s1, r)− V π1 (s1, r) ≤ O
(

[
√
H5 log(2/δ) + β

√
H4 · Γ(K,λ; ker)]/

√
K
)
.

Note that E ∧ Ẽ happens when the following two conditions are satisfied, i.e.,

4H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗; R̃K , B̃K) + 2 log(2K/δ)

]
≤ B̃2

K ,

16H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗;RK , BK) + 2 log(2K/δ)

]
≤ B2

K ,∀h ∈ [H],

where β = B̃K , (1 + 1/H)β = BK , λ = 1 + 1/K, R̃K = RK = 2H
√

Γ(K,λ; ker), and ς∗ = H/K. The above
inequalities hold if we further let β satisfy

16H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗;RK , 2β) + 2 log(2K/δ)

]
≤ β2,∀h ∈ [H],

since 2β ≥ (1 + 1/H)β ≥ β such that N∞(ς∗;RK , 2β) ≥ N∞(ς∗;RK , BK) ≥ N∞(ς∗; R̃K , B̃K). Since the above
conditions imply that β ≥ H , further setting δ = 1/(2K2H2), we obtain that

V ∗1 (s1, r)− V π1 (s1, r) ≤ O
(
β
√
H4[Γ(K,λ; ker) + log(KH)]/

√
K
)
,

with further letting

16H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗;RK , 2β) + 6 log(2KH)

]
≤ β2,∀h ∈ [H].

This completes the proof.
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C. Proofs for Single-Agent MDP Setting with Neural Function Approximation
C.1. Lemmas

Lemma C.1 (Lemma C.7 of Yang et al. (2020)). With TH2 = O(m log−6m), then there exists an constant z ≥ 1 such that
the following inequalities hold with probability at least 1− 1/m2 for any z ∈ S ×A and any W ∈ {W : ‖W −W (0)‖ ≤
H
√
K/λ},

|f(z;W )− ϕ(z;W (0))>(W −W (0))| ≤ zK2/3H4/3m−1/6
√

logm,

‖ϕ(z;W )− ϕ(z;W (0))‖ ≤ z(KH2/m)1/6
√

logm, ‖ϕ(z;W )‖ ≤ z.

Lemma C.2. We define the event E as that the following inequality holds ∀(s, a) ∈ S ×A,∀(h, k) ∈ [H]× [K],

|PhV kh+1(s, a)− fkh (s, a)| ≤ ukh(s, a) + βι,∣∣∣‖ϕ(z;W k
h )‖(Λk

h)−1 − ‖ϕ(z;W (0))‖(Λ̃k
h)−1

∣∣∣ ≤ ι,
where ι = 5K7/12H1/6m−1/12 log1/4m and we define

Λkh =

k−1∑
τ=1

ϕ(sτh, a
τ
h;W k

h )ϕ(sτh, a
τ
h;W k

h )> + λ · I, Λ̃kh =

k−1∑
τ=1

ϕ(sτh, a
τ
h;W (0))ϕ(sτh, a

τ
h;W (0))> + λ · I.

Setting (1 + 1/H)β = BK , RK = H
√
K, ς∗ = H/K, and λ = z2(1 + 1/K), ς∗ = H/K, if we set

β2 ≥ 8R2
QH

2(1 +
√
λ/d)2 + 32H2Γ(K,λ; kerm) + 80H2 + 32H2 logN∞(ς∗;RK , BK) + 32H2 log(K/δ′),

and also

m = Ω(K19H14 log3m),

then we have that with probability at least 1− 2/m2 − δ′, the event E happens, i.e.,

Pr(E) ≥ 1− 2/m2 − δ′.

Proof. Recall that we assume PhVh+1 for any V can be expressed as

PhVh+1(z) =

∫
Rd

act′(ω>z) · z>α(ω)dp0(ω),

which thus implies that we have

PhV kh+1(z) =

∫
Rd

act′(ω>z) · z>αkh(ω)dp0(ω),

for some αkh(ω). Our algorithm suggests to estimate PhV kh+1(s, a) via learning the parameters W k
h by solving

W k
h = argmin

W

k−1∑
τ=1

[V kh+1(sτh+1)− f(sτh, a
τ
h;W )]2 + λ‖W −W (0)‖2, (27)

such that we have the estimation of PhV kh+1(s, a) as fkh (z) = Π[0,H][f
k
h (z)] with

f(z;W k
h ) =

1√
2m

2m∑
i=1

vi · act([W k
h ]>i z).
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Furthermore, we have

‖W k
h −W (0)‖2 ≤ 1

λ

(
k−1∑
τ=1

[V kh+1(sτh+1)− f(sτh, a
τ
h;W k

h )]2 + λ‖W k
h −W (0)‖2

)

≤ 1

λ

(
k−1∑
τ=1

[V kh+1(sτh+1)− f(sτh, a
τ
h;W (0))]2 + λ‖W (0) −W (0)‖2

)

=
1

λ

k−1∑
τ=1

[V kh+1(sτh+1)]2 ≤ H2K/λ,

where the second inequality is due to W k
h is the minimizer of the objective function.

We also define a linearization of the function f(z;W ) at the point W (0), which is

flin(z;W ) = f(z;W (0)) + 〈ϕ(z;W (0)),W −W (0)〉 = 〈ϕ(z;W (0)),W −W (0)〉, (28)

where

ϕ(z;W ) = ∇W f(z;W ) = [∇W1
f(z;W ), · · · ,∇W2m

f(z;W )].

Based on this linearization formulation, we similarly define a parameter matrix W k
lin,h that is generated by solving an

optimization problem with the linearied function flin, such that

W k
lin,h = argmin

W

k−1∑
τ=1

[V kh+1(sτh+1)− flin(sτh, a
τ
h;W )]2 + λ‖W −W (0)‖2. (29)

Due to the linear structure of flin(z;W ), one can easily solve the above optimization problem and obtain the closed form
of the solution W k

lin,h, which is

W k
lin,h = W (0) + (Λ̃th)−1(Φ̃kh)>ykh, (30)

where we define Λth, Φkh, and ykh as

Φ̃kh = [ϕ(s1
h, a

1
h;W (0)), · · · , ϕ(sk−1

h , ak−1
h ;W (0))]>,

Λ̃kh =

k−1∑
τ=1

ϕ(sτh, a
τ
h;W (0))ϕ(sτh, a

τ
h;W (0))> + λ · I = λ · I + (Φ̃kh)>Φ̃kh,

ykh = [V kh+1(s1
h+1), V kh+1(s2

h+1), · · · , V kh+1(sk−1
h+1)]>.

Here we also have the upper bound of ‖W k
lin,h −W (0)‖ as

‖W k
lin,h −W (0)‖2 ≤ 1

λ

(
k−1∑
τ=1

[V kh+1(sτh+1)− flin(sτh, a
τ
h;W k

lin,h)]2 + λ‖W k
lin,h −W (0)‖2

)

≤ 1

λ

(
k−1∑
τ=1

[V kh+1(sτh+1)− flin(sτh, a
τ
h;W (0))]2 + λ‖W (0) −W (0)‖2

)

=
1

λ

k−1∑
τ=1

[V kh+1(sτh+1)]2 ≤ H2K/λ,

where the second inequality is due to W k
lin,h is the minimizer of the objective function. Based on the matrix W k

lin,h, we
define the function

fklin,h(z) := Π[0,H][flin(z;W k
lin,h)],
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where Π[0,H][·] is short for min{·, H}+.

Moreover, we further define an approximation of PhV hh+1 as

f̃(z) = Π[0,H]

[
1√
m

m∑
i=1

act′(W (0)
i
>z)z>αi

]
,

where ‖αi‖ ≤ RQH/
√
dm. According to Gao et al. (2019), we have that with probability at least 1 − 1/m2 over the

randomness of initialization, for any (h, k) ∈ [H]× [K], there exists a constant Cact such that∣∣∣∣∣PhV kh+1(z)− 1√
m

m∑
i=1

act′(W (0)
i
>z)z>αi

∣∣∣∣∣ ≤ 10CactRQH
√

log(mKH)/m, ∀z = (s, a) ∈ S ×A.

which further implies that

|PhV kh+1(z)− f̃(z)| ≤ 10CactRQH
√

log(mKH)/m, ∀z = (s, a) ∈ S ×A. (31)

This indicates that f̃(z) can be regarded as a good surrogate of PhV hh+1(z) particularly when m is large, i.e., their difference
10CactRQH

√
log(mKH)/m is small.

Now, based on the above definitions and descriptions, we are ready to present our proof of this lemma. Overall, the basic
idea of proving the upper bound of |PhV kh+1(z)− fkh (z)| is to bound the following difference terms, i.e.,

|fkh (z)− fklin,h(z)| and |fklin,h(z)− f̃(z)|. (32)

As we already have known the upper bound of the term |PhV hh+1(z)− f̃(z)| in (31), one can immediately obtain the upper
bound of |PhV kh+1(z)− fkh (z)| by decomposing it into the two aforementioned terms and bounding them separately.

We first bound the first term in (32), i.e., |fkh (z)− flin(z;W k
lin,h)|, in the following way

|fkh (z)− fklin,h(z)| ≤ |f(z;W k
h )− 〈ϕ(z;W (0)),W k

lin,h −W (0)〉|

≤ |f(z;W k
h )− 〈ϕ(z;W (0)),W k

h −W (0)〉|+ |〈ϕ(z;W (0)),W k
h −W k

lin,h〉|

≤ zK2/3H4/3m−1/6
√

logm+ z ‖W k
h −W k

lin,h‖︸ ︷︷ ︸
Term(I)

,
(33)

where the first inequality is due to the non-expansiveness of projection operation Π[0,H], the third inequality is by Lemma
C.1 that holds with probability at least 1−m−2. Then, we need to bound Term(I) in the above inequality. Specifically, by
the first order optimality condition for the objectives in (27) and (29), we have

λ(W k
h −W (0)) =

k−1∑
τ=1

[V kh+1(sτh+1)− f(zτh;W k
h )]ϕ(zτh;W k

h ) = (Φkh)>(ykh − fkh ),

λ(W k
lin,h −W (0)) =

k−1∑
τ=1

[V kh+1(sτh+1)− 〈ϕ(zτh;W (0)),W k
lin,h −W (0)〉]ϕ(zτh;W (0))

= (Φ̃kh)>ykh − (Φ̃kh)>Φ̃kh(W k
lin,h −W (0)),

where we define

Φkh = [ϕ(s1
h, a

1
h;W k

h ), · · · , ϕ(sk−1
h , ak−1

h ;W k
h )]>,

Λkh =

k−1∑
τ=1

ϕ(sτh, a
τ
h;W k

h )ϕ(sτh, a
τ
h;W k

h )> + λ · I = λ · I + (Φkh)>Φkh,

fkh = [f(z1
h;W k

h ), f(z2
h;W k

h ), · · · , f(zk−1
h ;W k

h )]>.
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Thus, we have

Term(I) = λ−1‖(Φkh)>(ykh − fkh )− (Φ̃kh)>ykh + (Φ̃kh)>Φ̃kh(W k
lin,h −W (0))‖

= λ−1‖(Φkh)>(ykh − fkh )− (Φ̃kh)>ykh + (Φ̃kh)>Φ̃kh(W k
lin,h −W (0))‖

≤ λ−1‖((Φkh)> − (Φ̃kh)>)ykh‖+ λ−1‖(Φkh)>[fkh − Φ̃kh(W k
lin,h −W (0))]‖

+ λ−1‖((Φkh)> − (Φ̃kh)>)Φ̃kh(W k
lin,h −W (0))‖.

According to Lemma C.1, we can bound the last three terms in the above inequality separately as follows

λ−1‖((Φkh)> − (Φ̃kh)>)ykh‖ ≤ λ−1K max
τ∈[k−1]

|[ϕ(zτh;W k
h )− ϕ(zτh;W (0))] · [ykh]τ | ≤ zλ−1K7/6H4/3m−1/6

√
logm,

and similarly,

λ−1‖(Φkh)>[fkh − Φ̃kh(W k
lin,h −W (0))]‖ ≤ λ−1z2K5/3H4/3m−1/6

√
logm,

λ−1‖((Φkh)> − (Φ̃kh)>)Φ̃kh(W k
lin,h −W (0))‖ ≤ λ−3/2z2K5/3H4/3m−1/6

√
logm.

Thus, we have

Term(I) ≤ λ−1(zK7/6 + 2z2K5/3)H4/3m−1/6
√

logm ≤ 3K5/3H4/3m−1/6
√

logm.

where we set λ = z2(1 + 1/K), and use the fact that λ ≥ 1 as z ≥ 1 as well as z2/λ ∈ [1/2, 1] and z/λ ∈ [1/2, 1].
Combining the above upper bound of Term(I) with (33), we obtain

|fkh (z)− fklin,h(z)| ≤ 4zK5/3H4/3m−1/6
√

logm. (34)

Next, we bound the second term in (32), namely |flin(z;W k
lin,h)− f̃(z)|. We further have

1√
m

m∑
i=1

act′(W (0)
i
>z)z>αi

=
1√
2m

m∑
i=1

(v
(0)
i )2

√
2

act′(W (0)
i
>z)z>αi +

1√
2m

m∑
i=1

(v
(0)
i )2

√
2

act′(W (0)
i
>z)z>αi

=
1√
2m

m∑
i=1

(v
(0)
i )2

√
2

act′(W (0)
i
>z)z>αi +

1√
2m

2m∑
i=m+1

(v
(0)
i−m)2

√
2

act′(W (0)
i
>z)z>αi−m

=
1√
2m

m∑
i=1

(v
(0)
i )2

√
2

act′(W (0)
i
>z)z>αi +

1√
2m

2m∑
i=m+1

(v
(0)
i )2

√
2

act′(W (0)
i
>z)z>αi

=
1√
2m

2m∑
i=1

v
(0)
i act′(W (0)

i
>z)z>(W̃i −W (0)

i )

= 〈ϕ(z;W (0)), W̃ −W (0)〉,

where we define

W̃i =

 W
(0)
i +

v
(0)
i√
2
αi, if 1 ≤ i ≤ m,

W
(0)
i +

v
(0)
i√
2
αi−m, if m+ 1 ≤ i ≤ 2m.

Then, we can reformulate f̃(z) as follows

f̃(z) = Π[0,H][〈ϕ(z;W (0)), W̃ −W (0)〉].



On Reward-Free RL with Kernel and Neural Function Approximations

Since ‖αi‖ ≤ RQH/
√
d, then there is ‖W̃ −W (0)‖ ≤ RQH/

√
d. Equivalently, we further have

〈ϕ(z;W (0)), W̃ −W (0)〉 = 〈ϕ(z;W (0)), (Λ̃kh)−1Λ̃kh(W̃ −W (0))〉

= 〈ϕ(z;W (0)), λ(Λ̃kh)−1(W̃ −W (0))〉+ 〈ϕ(z;W (0)), (Λ̃kh)−1(Φ̃kh)>Φ̃kh(W̃ −W (0))〉,
(35)

since Λkh = λI + (Φ̃kh)>Φ̃kh. Thus, by the above equivalent form of f̃(z) in (35), and further with the formulation of
fklin,h(z) according to (28) and (30), we have

|fklin,h(z)− f̃(z)|

≤ |〈ϕ(z;W (0)),W k
lin,h − W̃ 〉|

≤ |〈ϕ(z;W (0)), λ(Λ̃kh)−1(W̃ −W (0))〉|︸ ︷︷ ︸
Term(II)

+ |〈ϕ(z;W (0)), (Λ̃th)−1(Φ̃kh)>[ykh − Φ̃kh(W̃ −W (0))]〉|︸ ︷︷ ︸
Term(III)

.

The first term Term(II) can be bounded as

Term(II) = |〈ϕ(z;W (0)), λ(Λ̃kh)−1(W̃ −W (0))〉|

≤ λ‖ϕ(z;W (0))‖(Λ̃k
h)−1‖W̃ −W (0)‖(Λ̃k

h)−1

≤
√
λ‖ϕ(z;W (0))‖(Λ̃k

h)−1‖W̃ −W (0)‖

≤
√
λRQH/

√
d · ‖ϕ(z;W (0))‖(Λ̃k

h)−1 ,

where the first inequality is by ‖W̃ −W (0)‖(Λ̃k
h)−1 =

√
(W̃ −W (0))>(Λ̃kh)−1(W̃ −W (0)) ≤ 1/

√
λ‖W̃ −W (0)‖2 since

(Λ̃kh)−1 4 1/λ · I and the last inequality is due to ‖W̃ −W (0)‖2 ≤ RQH/
√
d.

Next, we prove the bound of Term(III) in the following way

Term(III) = |〈ϕ(z;W (0)), (Λ̃th)−1(Φ̃kh)>[ykh − Φ̃kh(W̃ −W (0))]〉|

≤ |〈ϕ(z;W (0)), (Λ̃th)−1(Φ̃kh)>[ỹkh − Φ̃kh(W̃ −W (0))]〉|+ |〈ϕ(z;W (0)), (Λ̃th)−1(Φ̃kh)>[ykh − ỹkh]〉|

≤ ‖ϕ(z;W (0))‖(Λ̃k
h)−1 · ‖(Φ̃kh)>[ỹkh − Φ̃kh(W̃ −W (0))]‖(Λ̃k

h)−1 + ‖ϕ(z;W (0))‖(Λ̃k
h)−1 · ‖(Φkh)>[ykh − ỹkh]‖(Λ̃k

h)−1

≤ 10CactRQH
√
K log(mKH)/m‖ϕ(z;W (0))‖(Λ̃k

h)−1 + ‖ϕ(z;W (0))‖(Λ̃k
h)−1 · ‖(Φ̃kh)>[ykh − ỹkh]‖(Λ̃k

h)−1︸ ︷︷ ︸
Term(IV)

,

where we define ỹkh = [PhV kh+1(s1
h+1),PhV kh+1(s2

h+1), · · · ,PhV kh+1(sk−1
h+1)]>. Here, the last inequality is by

‖(Φkh)>[ỹkh − Φ̃kh(W̃ −W (0))]‖(Λ̃k
h)−1

=

√
[ỹkh − Φ̃kh(W̃ −W (0))]>Φ̃kh[λI + (Φ̃kh)>Φ̃kh]−1(Φ̃kh)>[ỹkh − Φ̃kh(W̃ −W (0))]

=

√
[ỹkh − Φ̃kh(W̃ −W (0))]>Φ̃kh(Φ̃kh)>[λI + Φ̃kh(Φ̃kh)>]−1[ỹkh − Φ̃kh(W̃ −W (0))]

≤
√

[ỹkh − Φ̃kh(W̃ −W (0))]>[λI + Φ̃kh(Φ̃kh)>][λI + Φ̃kh(Φ̃kh)>]−1[ỹkh − Φ̃kh(W̃ −W (0))]

= ‖ỹkh − Φ̃kh(W̃ −W (0))‖ ≤ 10CactRQH
√
K log(mKH)/m,

where the second equality is by Woodbury matrix identity, the first inequality is due to [λI + Φ̃kh(Φ̃kh)>]−1 � 0, and the
second inequality is by (31) such that

‖ỹkh − Φ̃kh(W̃ −W (0))‖ ≤
√
k − 1‖ỹkh − Φ̃kh(W̃ −W (0))‖∞

=
√
k − 1 sup

τ∈[k−1]

|PhV kh+1(sτh, a
τ
h)− f̃(sτh, a

τ
h)|

≤ 10CactRQH
√
K log(mKH)/m.
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In order to further bound Term(IV), we define a new Q function based on W k
lin,h, which is

Qklin,h(z) := min{rklin,h(z) + fklin,h(z) + uklin,h(z), H}+,

where rlin,h(s, a) = uklin,h(z)/H , and uklin,h(z) = min{β‖ϕ(z;W (0))‖(Λ̃k
h)−1 , H}. This Q function can be equivalently

reformulated with a normalized feature representation ϑ = ϕ/z as follows

Qklin,h(z) = min{Π[0,H][〈ϑ(z;W (0)),z · (W k
lin,h −W (0))〉] + (1 + 1/H) ·min{β‖ϑ(z;W (0))‖(Ξk

h)−1}, H}+, (36)

where we have

Ξkh := λ/z2 · I + (Θk
h)>Θk

h, Θk
h := Φkh/z.

Note that z‖W k
lin,h −W (0)‖ ≤ zH

√
K/λ ≤ H

√
K since λ = z2(1 + 1/K). Thus, we can see that this new Q function

lies in the space Q(0, RK , BK) as in (10), with RK = H
√
K and BK = (1 + 1/H)β with the kernel function defined as

k̃erm(z, z′) := 〈ϑ(z), ϑ(z′)〉.

Now we try to bound the difference between the Q function Qkh(z) in the exploration algorithm and the one Qklin,h(z),
which is

|Qkh(z)−Qklin,h(z)| ≤ |fkh (z)− fklin,h(z)|+ (1 + 1/H)β
∣∣∣‖ϕ(z;W k

h )‖(Λk
h)−1 − ‖ϕ(z;W (0))‖(Λ̃k

h)−1

∣∣∣ ,
where the inequality is by the contraction of the operator min{·, H}+. The upper bound of the term |fkh (z)− fklin,h(z)| has
already been studied in (34). Then, we focus on bounding the last term. Thus, we have∣∣∣‖ϕ(z;W k

h )‖(Λk
h)−1 − ‖ϕ(z;W (0))‖(Λ̃k

h)−1

∣∣∣
≤
√∣∣∣ϕ(z;W k

h )>(Λkh)−1ϕ(z;W k
h )− ϕ(z;W (0))>(Λ̃kh)−1ϕ(z;W (0))

∣∣∣
≤
√∣∣[ϕ(z;W k

h )− ϕ(z;W (0))]>(Λkh)−1ϕ(z;W k
h )
∣∣+

√∣∣∣ϕ(z;W (0))>((Λkh)−1 − (Λ̃kh)−1)ϕ(z;W k
h )
∣∣∣

+

√∣∣∣ϕ(z;W (0))>(Λ̃kh)−1[ϕ(z;W k
h )− ϕ(z;W (0))]

∣∣∣.
Conditioned on the event that all the inequalities in Lemma C.1 hold, we can bound the last three terms above as follows∣∣∣[ϕ(z;W k

h )− ϕ(z;W (0))]>(Λkh)−1ϕ(z;W k
h )
∣∣∣

≤ ‖ϕ(z;W k
h )− ϕ(z;W (0))‖‖(Λkh)−1‖‖ϕ(z;W k

h )‖ ≤ λ−1z2(KH2/m)1/6
√

logm,∣∣∣ϕ(z;W (0))>(Λ̃kh)−1[ϕ(z;W k
h )− ϕ(z;W (0))]

∣∣∣ ≤ λ−1z2(KH2/m)1/6
√

logm,∣∣∣ϕ(z;W (0))>((Λkh)−1 − (Λ̃kh)−1)ϕ(z;W k
h )
∣∣∣

≤ ‖ϕ(z;W (0))‖‖(Λkh)−1(Λkh − Λ̃kh)(Λ̃kh)−1‖‖ϕ(z;W k
h )‖

≤ λ−2z2‖(Φkh)>Φkh − (Φ̃kh)>Φ̃kh‖fro ≤ λ−2z2(‖(Φkh − Φ̃kh)>Φkh‖fro + ‖(Φ̃kh)>(Φkh − Φ̃kh)‖fro)

≤ λ−2z4K7/6H1/3m−1/6
√

logm,

which thus lead to ∣∣∣‖ϕ(z;W k
h )‖(Λk

h)−1 − ‖ϕ(z;W (0))‖(Λ̃k
h)−1

∣∣∣ ≤ 3K7/12H1/6m−1/12 log1/4m, (37)

and thus

|Qkh(z)−Qklin,h(z)| ≤ 4zK5/3H4/3m−1/6
√

logm+ 3(1 + 1/H)βK7/12H1/6m−1/12 log1/4m,
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where we use the fact that λ = z2(1 + 1/K) ∈ [z2, 2z2]. This further implies that we have the same bound for
|V kh (s)− V klin,h(s)|, .i.e.,

|V kh (s)− V klin,h(s)| ≤ max
a∈A
|Qkh(s, a)−Qklin,h(s, a)|

≤ 4zK5/3H4/3m−1/6
√

logm+ 3(1 + 1/H)βK7/12H1/6m−1/12 log1/4m,
(38)

where we define V klin,h(s) = maxa∈AQ
k
lin,h(s, a).

Now, we are ready to give the upper bound of Term(IV). With probability at least 1− δ′, we have

Term(IV) =

∥∥∥∥∥
k−1∑
τ=1

[V kh+1(sτh+1)− PhV kh+1(zτh)]ϕ(zτh;W (0))

∥∥∥∥∥
(Λ̃k

h)−1

≤

√√√√√∥∥∥∥∥
k−1∑
τ=1

[V klin,h+1(sτh+1)− PhV klin,h+1(zτh)]ϕ(zτh;W (0))

∥∥∥∥∥
2

(Λ̃k
h)−1

+

∥∥∥∥∥
k−1∑
τ=1

{[V kh+1(sτh+1)− V klin,h+1(sτh+1)]− Ph[V kh+1 − V klin,h+1(sτh+1)]}ϕ(zτh;W (0))

∥∥∥∥∥
(Λ̃k

h)−1

≤ [4H2Γ(K,λ′; k̃erm) + 10H2 + 4H2 logN∞(ς∗;RK , BK) + 4H2 log(K/δ′)]1/2

+ 8zK8/3H4/3m−1/6
√

logm+ 12βK19/12H1/6m−1/12 log1/4m.

Here we set λ′ = λ/z2 = (1 + 1/K), ς∗ = H/K, RK = H
√
K, BK = (1 + 1/H)β, and k̃erm(z, z′) = 〈ϑ(z), ϑ(z′)〉.

Here the second inequality is by (36), and also follows the similar proof of Lemma B.3. The last inequality is by (38) and
Lemma C.1, which lead to∥∥∥∥∥

k−1∑
τ=1

{[V kh+1(sτh+1)− V klin,h+1(sτh+1)]− Ph[V kh+1 − V klin,h+1(sτh+1)]}ϕ(zτh;W (0))

∥∥∥∥∥
(Λ̃k

h)−1

≤
k−1∑
τ=1

2[4zK5/3H4/3m−1/6
√

logm+ 3(1 + 1/H)βK7/12H1/6m−1/12 log1/4m]‖ϕ(zτh;W (0))‖(Λ̃k
h)−1

≤ Kz/
√
λ[8zK5/3H4/3m−1/6

√
logm+ 6(1 + 1/H)βK7/12H1/6m−1/12 log1/4m]

≤ 8zK8/3H4/3m−1/6
√

logm+ 12βK19/12H1/6m−1/12 log1/4m.

Now we let β satisfy
√
λRQH/

√
d+ 10CactRQH

√
K log(mKH)/m+ [4H2Γ(K,λ′; k̃erm) + 10H2 + 4H2 logN∞(ς∗;RK , BK)

+ 4H2 log(K/δ′)]1/2 + 8zK8/3H4/3m−1/6
√

logm+ 12βK19/12H1/6m−1/12 log1/4m ≤ β.

To obtain the above relation, it suffices to set

m = Ω(K19H14 log3m)

such that m is sufficient large which results in

10CactRQH
√
K log(mKH)/m+ 8zK8/3H4/3m−1/6

√
logm+ 12βK19/12H1/6m−1/12 log1/4m ≤ RQH + β/2.

Then, there is
√
λRQH/

√
d+RQH + β/2 + [4H2Γ(K,λ; kerm) + 10H2 + 4H2 logN∞(ς∗;RK , BK) + 4H2 log(K/δ′)]1/2 ≤ β,

where Γ(K,λ; kerm) = Γ(K,λ′; k̃erm) with kerm := 〈ϕ(z;W (0)), ϕ(z′;W (0))〉. This inequality can be satisfied if we set
β as

β2 ≥ 8R2
QH

2(1 +
√
λ/d)2 + 32H2Γ(K,λ; kerm) + 80H2 + 32H2 logN∞(ς∗;RK , BK) + 32H2 log(K/δ′).
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If the above conditions hold, we have

|fklin,h(z)− f̃(z)| ≤ β‖ϕ(z;W (0))‖(Λ̃k
h)−1 ≤ wkh + β(3K7/12H1/6m−1/12 log1/4m),

where the inequality is due to (37). Since fklin,h(z) ∈ [0, H] and f̃(z) ∈ [0, H], thus we have |fklin,h(z) − f̃(z)| ≤ H ,
which further gives

|fklin,h(z)− f̃(z)| ≤ min{wkh, H}+ β(3K7/12H1/6m−1/12 log1/4m)

= ukh + β(3K7/12H1/6m−1/12 log1/4m).
(39)

Now we combine (34) and (39) as well as (31) and obtain

|PhV kh+1(z)− fkh (z)|

≤ |PhV kh+1(z)− f̃(z)|+ |fkh (z)− fklin,h(z)|+ |fklin,h(z)− f̃(z)|

≤ 10CactRQH
√

log(mKH)/m+ 4zK5/3H4/3m−1/6
√

logm+ ukh + β(3K7/12H1/6m−1/12 log1/4m)

≤ ukh + β(5K7/12H1/6m−1/12 log1/4m),

with m are sufficiently. We also have
∣∣∣‖ϕ(z;W k

h )‖(Λk
h)−1 − ‖ϕ(z;W (0))‖(Λ̃k

h)−1

∣∣∣ ≤ ι according to (37). The above

inequalities hold with probability at least 1− 2/m2 − δ′ by union bound. This completes the proof.

Lemma C.3. Conditioned on the event E defined in Lemma C.2, with probability at least 1− δ′, we have

K∑
k=1

V ∗1 (s1, r
k) ≤

K∑
k=1

V k1 (s1) + βHKι,

K∑
k=1

V k1 (s1) ≤ O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; kerm)

)
+ βHKι,

where ι = 5K7/12H1/6m−1/12 log1/4m.

Proof. We first show the first inequality in this lemma. We prove V ∗h (s, rk) ≤ V kh (s) + (H + 1−h)ι for all s ∈ S, h ∈ [H]
by induction. When h = H + 1, we know V ∗H+1(s, rk) = 0 and V kH+1(s) = 0 such that V ∗H+1(s, rk) ≤ V kH+1(s1). Now
we assume that V ∗h+1(s, rk) ≤ V kh+1(s) + (H − h)βι. Then, conditioned on the event E defined in Lemma B.4, for all
s ∈ S, (h, k) ∈ [H]× [K], we further have

Q∗h(s, a, rk)−Qkh(s, a)

= rkh(s, a) + PhV ∗h+1(s, a, rk)−min{[rkh(s, a) + fkh (s, a) + ukh(s, a)], H}+

≤ min{[PhV ∗h+1(s, a, rk)− fkh (s, a)− ukh(s, a)], 0}
≤ min{[PhV kh+1(s, a) + β(H − h)ι− fkh (s, a)− ukh(s, a)], 0}
≤ β(H + 1− h)ι,

(40)

where the first inequality is due to 0 ≤ rkh(s, a) + PhV ∗h+1(s, a, rk) ≤ H and min{x, y}+ ≥ min{x, y}, the second
inequality is by the assumption that V ∗h+1(s, rk) ≤ V kh+1(s) + (H − h)βι, the last inequality is by Lemma C.2 such that
|PhV kh+1(s, a) − fkh (s, a)| ≤ ukh(s, a) + βι holds for any (s, a) ∈ S × A and (k, h) ∈ [K] × [H]. The above inequality
(40) further leads to

V ∗h (s, rk) = max
a∈A

Q∗h(s, a, rk) ≤ max
a∈A

Qkh(s, a) = V kh (s) + β(H + 1− h)ι.

Therefore, we obtain that conditioned on event E , we have

K∑
k=1

V ∗1 (s, rk) ≤
K∑
k=1

V k1 (s) + βHKι.
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Next, we prove the second inequality in this lemma. Conditioned on E defined in Lemma C.2, we have

V kh (skh) = Qkh(skh, a
k
h) ≤ max{0, fkh (skh, a

k
h) + rkh(skh, a

k
h) + ukh(skh, a

k
h)}

≤ PhV kh+1(skh, a
k
h) + ukh(skh, a

k
h) + rkh(skh, a

k
h) + ukh(skh, a

k
h)

≤ ζkh + V kh+1(skh+1) + (2 + 1/H)β‖ϕ(skh, a
k
h;W k

h )‖(Λk
h)−1 ,

where we define

ζkh := PhV kh+1(skh, a
k
h)− V kh+1(skh+1).

Recursively applying the above inequality gives

V k1 (s1) ≤
H∑
h=1

ζkh + (2 + 1/H)β

H∑
h=1

‖ϕ(skh, a
k
h;W k

h )‖(Λk
h)−1 ,

where we use the fact that V kH+1(·) = 0. Taking summation on both sides of the above inequality, we have

K∑
k=1

V k1 (s1) =

K∑
k=1

H∑
h=1

ζkh + (2 + 1/H)β

K∑
k=1

H∑
h=1

‖ϕ(skh, a
k
h;W k

h )‖(Λk
h)−1 .

By Azuma-Hoeffding inequality, with probability at least 1− δ′, the following inequalities hold

K∑
k=1

H∑
h=1

ζkh ≤ O

(√
H3K log

1

δ′

)
.

On the other hand, by Lemma F.2, we have

K∑
k=1

H∑
h=1

‖φ(skh, a
k
h)‖(Λk

h)−1 =

K∑
k=1

H∑
h=1

√
ϕ(skh, a

k
h;W k

h )>(Λkh)−1φ(skh, a
k
h;W k

h )

≤
K∑
k=1

H∑
h=1

√
ϕ(skh, a

k
h;W (0))>(Λ̃kh)−1ϕ(skh, a

k
h;W (0)) +HKι

≤
H∑
h=1

√√√√K

K∑
k=1

ϕ(skh, a
k
h;W (0))>(Λ̃kh)−1ϕ(skh, a

k
h;W (0))) +HKι

= 2H
√
K · Γ(K,λ; kerm) +HKι.

where the first inequality is due to Lemma C.2, the second inequality is by Jensen’s inequality. Thus, conditioned on event
E , we obtain that with probability at least 1− δ′, there is

K∑
k=1

V k1 (s1) ≤ O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; ker)

)
+ βHKι,

which completes the proof.

Lemma C.4. We define the event Ẽ as that the following inequality holds ∀(s, a) ∈ S ×A,∀h ∈ [H],

|PhVh+1(s, a)− fh(s, a)| ≤ uh(s, a) + βι,∣∣∣‖ϕ(z;Wh)‖(Λh)−1 − ‖ϕ(z;W (0))‖(Λ̃h)−1

∣∣∣ ≤ ι,
where ι = 5K7/12H1/6m−1/12 log1/4m and we define

Λh =

K∑
τ=1

ϕ(zτh;W k
h )ϕ(zτh;W k

h )> + λ · I, Λ̃h =

K∑
τ=1

ϕ(zτh;W (0))ϕ(zτh;W (0))> + λ · I.
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Setting β = B̃K , R̃K = H
√
K, ς∗ = H/K, and λ = z2(1 + 1/K), ς∗ = H/K, if we set

β2 ≥ 8R2
QH

2(1 +
√
λ/d)2 + 32H2Γ(K,λ; kerm) + 80H2 + 32H2 logN∞(ς∗; R̃K , B̃K) + 32H2 log(K/δ′),

and also

m = Ω(K19H14 log3m),

then we have that with probability at least 1− 2/m2 − δ′, the event Ẽ happens, i.e.,

Pr(Ẽ) ≥ 1− 2/m2 − δ′.

Proof. The proof of this lemma exactly follows our proof of Lemma C.2. There are several minor differences here. In
the proof of this lemma, we set B̃K = β instead of (1 + 1/H)β due to the structure of the planning phase. Moreover, we
use N∞(ε;RK , BK) to denote covering number of the Q function class Q(rh, RK , BK). Since the covering numbers of
Q(rh, RK , BK) and Q(0, RK , BK) are the same where the former one only has an extra bias rh, we use the same notation
N∞(ε;RK , BK) to denote their covering number. Then, the rest of this proof can be completed by using the same argument
as the proof of Lemma C.2.

Lemma C.5. Conditioned on the event Ẽ as defined in Lemma C.4, we have

V ∗h (s, r) ≤ Vh(s) + (H + 1− h)βι,∀s ∈ S,∀h ∈ [H],

Vh(s) ≤ rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s)) + βι,∀s ∈ S,∀h ∈ [H],

where πh(s) = argmaxa∈AQh(s, a).

Proof. We first prove the first inequality in this lemma by induction. For h = H + 1, we have V ∗H+1(s, r) = VH+1(s) = 0

for any s ∈ S. Then, we assume that V ∗h+1(s, r) ≤ Vh+1(s) + (H − h)βι. Thus, conditioned on the event Ẽ as defined in
Lemma C.4, we have

Q∗h(s, a, r)−Qh(s, a)

= rh(s, a) + PhV ∗h+1(s, a, r)−min{[rh(s, a) + fh(s, a) + uh(s, a)], H}+

≤ min{[PhV ∗h+1(s, a, r)− fh(s, a)− uh(s, a)], 0}
≤ min{[PhVh+1(s, a) + (H − h)βι− fh(s, a)− uh(s, a)], 0}
≤ (H + 1− h)βι,

where the first inequality is due to 0 ≤ rh(s, a) + PhV ∗h+1(s, a, r) ≤ H and min{x, y}+ ≥ min{x, y}, the second
inequality is by the assumption that V ∗h+1(s, a, r) ≤ Vh+1(s, a) + (H − h)βι, the last inequality is by Lemma C.4 such that
|PhVh+1(s, a) − fh(s, a)| ≤ uh(s, a) + βι holds for any (s, a) ∈ S × A and (k, h) ∈ [K] × [H]. The above inequality
further leads to

V ∗h (s, r) = max
a∈A

Q∗h(s, a, r) ≤ max
a∈A

Qh(s, a) + (H + 1− h)βι = Vh(s) + (H + 1− h)βι.

Therefore, we have

V ∗h (s, r) ≤ Vh(s) + (H + 1− h)βι,∀h ∈ [H],∀s ∈ S.

We further prove the second inequality in this lemma. We have

Qh(s, a) = min{[rh(s, a) + fh(s, a) + uh(s, a)], H}+

≤ min{[rh(s, a) + PhVh+1(s, a) + 2uh(s, a) + βι], H}+

≤ rh(s, a) + PhVh+1(s, a) + 2uh(s, a) + βι,

where the first inequality is also by Lemma C.4 such that |PhVh+1(s, a)− fh(s, a)| ≤ uh(s, a) + βι, and the last inequality
is because of the non-negativity of rh(s, a) + PhVh+1(s, a) + 2uh(s, a) + βι. Therefore, we have

Vh(s) = max
a∈A

Qh(s, a) = Qh(s, πh(s)) ≤ rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s)) + βι.

This completes the proof.
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Lemma C.6. With the exploration and planning phases, conditioned on the event E and Ẽ , we have the following inequality

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k) + 2Kβι,

where ι = 5K7/12H1/6m−1/12 log1/4m.

Proof. The bonus for the planning phase is uh(s, a) = β‖ϕ(s, a;Wh)‖Λ−1
h

. We also have H · rkh(s, a) = ukh(s, a) =

β‖ϕ(s, a;W k
h )‖(Λk

h)−1 . Conditioned on the event E and Ẽ , according to Lemmas C.2 and C.4, we have∣∣∣‖ϕ(s, a;W k
h )‖(Λk

h)−1 − ‖ϕ(s, a;W (0))‖(Λ̃k
h)−1

∣∣∣ ≤ ι,∣∣∣‖ϕ(s, a;Wh)‖(Λh)−1 − ‖ϕ(s, a;W (0))‖(Λ̃h)−1

∣∣∣ ≤ ι,
such that

uh(s, a)− βι ≤ β‖ϕ(s, a;W (0))‖(Λ̃h)−1 ,

βι+ ukh(s, a) = βι+H · rkh(s, a) ≥ β‖ϕ(s, a;W (0))‖(Λ̃k
h)−1 .

Moreover, since

‖ϕ(s, a;W (0))‖(Λ̃h)−1 =

√√√√ϕ(s, a;W (0))>

[
λI +

K∑
τ=1

ϕ(sτh, a
τ
h;W (0))ϕ(sτh, a

τ
h;W (0))>

]−1

ϕ(s, a;W (0)),

and also

‖ϕ(s, a;W (0))‖(Λ̃k
h)−1 =

√√√√ϕ(s, a;W (0))>

[
λI +

k−1∑
τ=1

ϕ(sτh, a
τ
h;W (0))ϕ(sτh, a

τ
h;W (0))>

]−1

ϕ(s, a;W (0)).

Since k − 1 ≤ K and x>φ(sτh, a
τ
h)φ(sτh, a

τ
h)>x = [x>φ(sτh, a

τ
h)]2 ≥ 0,∀x, then we know that

Λ̃h = λI +

K∑
τ=1

ϕ(sτh, a
τ
h;W (0))ϕ(sτh, a

τ
h;W (0))> < λI +

k−1∑
τ=1

ϕ(sτh, a
τ
h;W (0))ϕ(sτh, a

τ
h;W (0))> = Λ̃kh.

The above relation further implies that Λ̃−1
h 4 (Λ̃kh)−1 such that

ϕ(s, a;W (0))>Λ̃−1
h ϕ(s, a;W (0)) ≤ ϕ(s, a;W (0))>(Λ̃kh)−1ϕ(s, a;W (0)).

Thus, we have

uh(s, a)− βι ≤ H · rkh(s, a) + βι,

such that

V ∗1 (s1, u/H) ≤ V ∗1 (s1, r
k) + 2βι,

and thus

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k) + 2Kβι.

This completes the proof.
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C.2. Proof of Theorem 3.5

Proof. Conditioned on the event E defined in Lemma C.2 and the event Ẽ defined in Lemma C.4, we have

V ∗1 (s1, r)− V π1 (s1, r) ≤ V1(s1)− V π1 (s1, r) +Hβι, (41)

where the inequality is by Lemma C.5. Further by this lemma, we have

Vh(s)− V πh (s, r) ≤ rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s))−Qπh(s, πh(s), r) + βι

= rh(s, πh(s)) + PhVh+1(s, πh(s)) + 2uh(s, πh(s))− rh(s, πh(s))− PhV πh+1(s, πh(s), r) + βι

= PhVh+1(s, πh(s))− PhV πh+1(s, πh(s), r) + 2uh(s, πh(s)) + βι.

Recursively applying the above inequality and making use of V πH+1(s, r) = VH+1(s) = 0 gives

V1(s1)− V π1 (s1, r) ≤ E∀h∈[H]: sh+1∼Ph(·|sh,πh(sh))

[
H∑
h=1

2uh(sh, πh(sh))

∣∣∣∣∣s1

]
+Hβι

= 2H · V π1 (s1, u/H) +Hβι.

Combining with (41) gives

V ∗1 (s1, r)− V π1 (s1, r) ≤ 2H · V π1 (s1, u/H) + 2Hβι ≤ 2H

K

K∑
k=1

V ∗1 (s1, r
k) + 4Hβι

≤ 2H

K
O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; kerm)

)
+H2βι+ 4Hβι

≤ O
(

[
√
H5 log(1/δ′) + β

√
H4 · Γ(K,λ; kerm)]/

√
K +H2βι

)
,

where the second inequality is due to Lemma C.6 and the last inequality is by Lemma C.3.

By union bound, we have P (E ∧ Ẽ) ≥ 1 − 2δ′ − 4/m2 . Therefore, by setting δ′ = 1/(4K2H2), we obtain that with
probability at least 1− 1/(2K2H2)− 4/m2

V ∗1 (s1, r)− V π1 (s1, r) ≤ O
(

[
√
H5 log(1/δ′) + β

√
H4 · Γ(K,λ; kerm)]/

√
K +H2βι

)
≤ O

(
β
√
H4[Γ(K,λ; kerm) + log(KH)]/

√
K +H2βι

)
.

where the last inequality is due to β ≥ H . Note that E ∧ Ẽ happens when the following two conditions are satisfied, i.e.,

β2 ≥ 8R2
QH

2(1 +
√
λ/d)2 + 32H2Γ(K,λ; kerm) + 80H2 + 32H2 logN∞(ς∗;RK , BK) + 32H2 log(K/δ′),

β2 ≥ 8R2
QH

2(1 +
√
λ/d)2 + 32H2Γ(K,λ; kerm) + 80H2 + 32H2 logN∞(ς∗; R̃K , B̃K) + 32H2 log(K/δ′),

where β = B̃K ,(1 + 1/H)β = BK , λ = z(1 + 1/K), R̃K = RK = H
√
K, and ς∗ = H/K. The above inequalities hold

if we further let β satisfy

β2 ≥ 8R2
QH

2(1 +
√
λ/d)2 + 32H2Γ(K,λ; kerm) + 80H2 + 32H2 logN∞(ς∗;RK , 2β) + 96H2 log(2KH),

since 2β ≥ (1 + 1/H)β ≥ β such that N∞(ς∗;RK , 2β) ≥ N∞(ς∗;RK , BK) ≥ N∞(ς∗; R̃K , B̃K). This completes the
proof.

D. Proofs for Markov Game Setting with Kernel Function Approximation
D.1. Lemmas

Lemma D.1. We define the event E as that the following inequality holds ∀(s, a, b) ∈ S ×A× B,∀(h, k) ∈ [H]× [K],

|PhV kh+1(s, a, b)− fkh (s, a, b)| ≤ ukh(s, a, b),
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where ukh(s, a, b) = min{wkh(s, a, b), H}+ with wkh(s, a, b) = βλ−1/2[ker(z, z)−ψkh(s, a, b)>(λI+Kkh)−1ψkh(s, a, b)]1/2

with z = (s, a, b), and

ψkh(z) = Φkhφ(z) = [ker(z, z1
h), · · · , ker(z, zk−1

h )]>,

Φkh = [φ(z1
h), φ(z2

h), · · · , φ(zk−1
h )]>,

ykh = [V kh+1(s1
h+1), V kh+1(s2

h+1), · · · , V kh+1(sk−1
h+1)]>,

Kkh = Φkh(Φkh)> =

 ker(z1
h, z

1
h) . . . ker(z1

h, z
k−1
h )

...
. . .

...
ker(zk−1

h , z1
h) . . . ker(zk−1

h , zk−1
h )

 ,
Thus, setting β = BK/(1 + 1/H), if BK satisfies

16H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗;RK , BK) + 2 log(K/δ′)

]
≤ B2

K ,∀h ∈ [H],

then we have that with probability at least 1− δ′, the event E happens, i.e.,

Pr(E) ≥ 1− δ′.

Proof. According to the exploration algorithm for the game, we can see that by letting a = (a, b) be an action in the
space A× B, Algorithm 3 reduces to Algorithm 1 with the action space A× B and state space S. Now, we also have a
transition in the form of Ph(s|a) and a product policy (πkh ⊗ νkh)(s) such that a ∼ (πkh ⊗ νkh)(s) at state s ∈ S for all
(h, k) ∈ [H]×[K]. Similarly, we haveQkh(s, a, b) = Qkh(s,a) and V kh (s, a, b) = V kh (s,a) as well as ukh(s, a, b) = ukh(s,a)
and ukh(s, a, b) = ukh(s,a) and rkh(s, a, b) = rkh(s,a). Thus, we can simply apply the proof of Lemma B.4 and obtain the
proof for this lemma. This completes the proof.

Lemma D.2. Conditioned on the event E defined in Lemma D.1, with probability at least 1− δ′, we have

K∑
k=1

V ∗1 (s1, r
k) ≤

K∑
k=1

V k1 (s1) ≤ O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; ker)

)
.

Proof. By the reduction of Algorithm 3 to Algorithm 1, we can apply the same proof as the one for Lemma B.5, which
completes the proof.

Lemma D.3. We define the event Ẽ as that the following inequality holds ∀(s, a, b) ∈ S ×A× B,∀h ∈ [H],

|PhV h+1(s, a, b)− fh(s, a, b)| ≤ uh(s, a, b), (42)
|PhV h+1(s, a, b)− f

h
(s, a, b)| ≤ uh(s, a, b), (43)

where uh(s, a, b) = min{wh(s, a, b), H}+ with z = (s, a, b), wh(s, a, b) = βλ−1/2[ker(z, z) − ψh(s, a, b)>(λI +
Kh)−1ψh(s, a, b)]1/2, Kh = ΦhΦ>h , and ψh(s, a) = Φhφ(s, a) with Φh = [φ(z1

h), φ(z2
h), · · · , φ(zKh )]>.

Thus, setting β = B̃K , if B̃K satisfies

4H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗; R̃K , B̃K) + 2 log(2K/δ′)

]
≤ B̃2

K ,∀h ∈ [H],

then we have that with probability at least 1− δ′, the event E happens, i.e.,

Pr(Ẽ) ≥ 1− δ′.

Proof. According to the construction of uh and fh, the proof for the the first inequality in this lemma is nearly the same as
the proof of Lemma B.6 but one difference for computing the covering number of the value function space. Specifically, we
have the function class for V h which is

V(rh, R̃K , B̃K) = {V : V (·) = max
a∼π′

min
b∼ν′

Eπ′,ν′Q(·, a, b) with Q ∈ Q(rh, R̃K , B̃K)}.
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By Lemma F.1 with δ′/2, we have∥∥∥∥∥
K∑
τ=1

φ(sτh, a
τ
h, b

τ
h)[V h+1(sτh+1)− PhV h+1(sτh, a

τ
h, b

τ
h)]

∥∥∥∥∥
2

(Λh)−1

≤ sup
V ∈V(rh,R̃K ,B̃K)

∥∥∥∥∥
K∑
τ=1

φ(sτh, a
τ
h, b

τ
h)[V (sτh+1)− PhV (sτh, a

τ
h, b

τ
h)]

∥∥∥∥∥
2

(Λh)−1

≤ 2H2 log det(I +K/λ) + 2H2K(λ− 1) + 4H2 log(NVdist(ε; R̃K , B̃K)/δ′) + 8K2ε2/λ

≤ 4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗; R̃K , B̃K) + 4H2 log(2/δ′),

where the last inequality is by setting λ = 1 + 1/K and ε = ς∗ = H/K. Here NVdist is the covering number of the function
space V w.r.t. the distance dist(V1, V2) = sups |V1(s)− V2(s)|, and N∞ is the covering number for the function space Q
w.r.t. the infinity norm. In the last inequality, we also use

NVdist(ς
∗; R̃K , B̃K) ≤ N∞(ς∗; R̃K , B̃K),

which is in particular due to

dist(V1, V2) = sup
s∈S
|V1(s)− V2(s)|

= sup
s∈S
|max
π′

min
ν′

Ea∼π′,b∼ν′ [Q1(s, a, b)]−max
π′′

min
ν′′

Ea∼π′′,b∼ν′′ [Q2(s, a, b)]|

≤ sup
s∈S

sup
a∈A

sup
b∈B
|Q1(s, a, b)−Q2(s, a, b)|

= ‖Q1(·, ·, ·)−Q2(·, ·, ·)‖∞,

(44)

where we use the fact that maximin operator is the non-expansive. Thus, we have that with probability at least 1− δ′/2, the
following inequality holds for all k ∈ [K]∥∥∥∥∥

K∑
τ=1

φ(sτh, a
τ
h, b

τ
h)[V h+1(sτh+1)− PhV h+1(sτh, a

τ
h, b

τ
h)]

∥∥∥∥∥
Λ−1

h

≤ [4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗; R̃K , B̃K) + 4H2 log(2K/δ′)]1/2.

Then, the rest of the proof for (42) follows the proof of Lemma B.6.

Next, we give the proof of (43). We define another function class for V h as

V(rh, R̃K , B̃K) = {V : V (·) = max
a∼π′

min
b∼ν′

Eπ′,ν′Q(·, a, b) with Q ∈ Q(rh, R̃K , B̃K)}.

Note that as we can show in the covering number for the function spaces Q and Q have the same covering number upper
bound. Therefore, we use the same notation N∞ for their upper bound. Thus, by the similar argument as (44), we have that
with probability at least 1− δ′/2, the following inequality holds for all k ∈ [K]∥∥∥∥∥

K∑
τ=1

φ(sτh, a
τ
h, b

τ
h)[V h+1(sτh+1)− PhV h+1(sτh, a

τ
h, b

τ
h)]

∥∥∥∥∥
Λ−1

h

≤ [4H2Γ(K,λ; ker) + 10H2 + 4H2 logN∞(ς∗; R̃K , B̃K) + 4H2 log(2K/δ′)]1/2,

where we use the fact that

NVdist(ς
∗; R̃K , B̃K) ≤ N∞(ς∗; R̃K , B̃K).

The rest of the proof are exactly the same as the proof of Lemma B.6.
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In this lemma, we let[
2λR2

QH
2 + 8H2Γ(K,λ; ker) + 20H2 + 4H2 logN∞(ς∗; R̃K , B̃K) + 8H2 log(2K/δ′)

]1/2 ≤ β = B̃K ,

which can be further guaranteed by

4H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗; R̃K , B̃K) + 2 log(2K/δ′)

]
≤ B̃2

K

as (1 + 1/H) ≤ 2 and λ = 1 + 1/K ≤ 2. This completes the proof.

Lemma D.4. Conditioned on the event Ẽ as defined in Lemma D.3, we have

V †h (s, r) ≤ V h(s) ≤ Ea∼πh,b∼br(π)h [(PhV h+1 + rh + 2uh)(s, a, b)],∀s ∈ S,∀h ∈ [H], (45)

V †h (s, r) ≥ V h(s) ≥ Ea∼br(ν)h,b∼νh [(PhV h+1 − rh − 2uh)(s, a, b)],∀s ∈ S,∀h ∈ [H]. (46)

Proof. For the first inequality of (45), we can prove it by induction. We first prove the first inequality in this lemma. We
prove it by induction. For h = H + 1, by the planning algorithm, we have V †H+1(s, r) = VH+1(s) = 0 for any s ∈ S.
Then, we assume that V †h+1(s, r) ≤ V h+1(s). Thus, conditioned on the event Ẽ as defined in Lemma D.3, we have

Q†h(s, a, b, r)−Qh(s, a, b)

= rh(s, a, b) + PhV †h+1(s, a, b, r)−min{[rh(s, a, b) + fh(s, a, b) + uh(s, a, b)], H}+

≤ min{[PhV †h+1(s, a, b, r)− fh(s, a, b)− uh(s, a, b)], 0}
≤ min{[PhV h+1(s, a, b)− fh(s, a, b)− uh(s, a, b)], 0}
≤ 0,

where the first inequality is due to 0 ≤ rh(s, a, b) + PhV †h+1(s, a, b, r) ≤ H and min{x, y}+ ≥ min{x, y}, the second
inequality is by the assumption that V †h+1(s, a, b, r) ≤ V h+1(s, a, b), the last inequality is by Lemma D.3 such that
|PhV h+1(s, a, b)− fh(s, a, b)| ≤ uh(s, a, b) holds for any (s, a, b) ∈ S ×A×B and (k, h) ∈ [K]× [H]. Thus, the above
inequality leads to

V †h (s, r) = max
π′h

min
ν′h

Ea∼π′h,b∼ν′h [Q†h(s, a, b, r)] ≤ max
π′h

min
ν′h

Ea∼π′h,b∼ν′h [Qh(s, a, b)] = V h(s),

which eventually gives

V ∗h (s, r) ≤ Vh(s),∀h ∈ [H],∀s ∈ S.

To prove the second inequality of (45), we have

V h(s) = min
ν′

Ea∼πh,b∼ν′Qh(s, a, b)

≤ Ea∼πh,b∼br(π)hQh(s, a, b)

= Ea∼πh,b∼br(π)h min{(fh + rh + uh)(s, a, b), H}+

≤ Ea∼πh,b∼br(π)h min{(PhV h+1 + rh + 2uh)(s, a, b), H}+

≤ Ea∼πh,b∼br(π)h [(PhV h+1 + rh + 2uh)(s, a, b)],

where the first and the second equality is by the iterations in Algorithm 4, the second inequality is by Lemma D.3, and the
last inequality is due to the non-negativity of (PhV h+1 + rh + 2uh)(s, a, b).

For the inequalities in (46), one can similarly adopt the argument above to give the proof. In fact, from the perspective of
Player 2, this player is trying to find a policy to maximize the cumulative rewards w.r.t. a reward function {−rh(s, a, b)}h∈[H],
while the opponent (Player 1) is trying to minimize the cumulative reward w.r.t. {−rh(s, a, b)}h∈[H]. Thus, the proof of
(46) exactly follows the proof of (45). This completes the proof.
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Lemma D.5. With the exploration and planning phases, we have the following inequalities

K · V π,br(π)
1 (s1, u/H) ≤

K∑
k=1

V ∗1 (s1, r
k), K · V br(ν),ν

1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k).

Proof. First, we have K · V π,br(π)
1 (s1, u/H) ≤ K · V ∗1 (s1, u/H), as well as K · V br(ν),ν

1 (s1, u/H) ≤ K · V ∗1 (s1, u/H)
due to the definition of V ∗1 (·, u/H). Thus, to prove this lemma, we only need to show

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k).

Since the constructions of uh and rkh are the same as the ones for the single-agent case, similar to the proof of Lemma B.8,
we have

uh(s, a)/H ≤ rkh(s, a),

such that

V ∗1 (s1, u/H) ≤ V ∗1 (s1, r
k),

and thus

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k).

Therefore, we eventually obtain

K · V π,br(π)
1 (s1, u/H) ≤ K · V ∗1 (s1, u/H) ≤

K∑
k=1

V ∗1 (s1, r
k),

K · V br(ν),ν
1 (s1, u/H) ≤ K · V ∗1 (s1, u/H) ≤

K∑
k=1

V ∗1 (s1, r
k).

This completes the proof.

D.2. Proof of Theorem 4.1

Proof. Conditioned on the event E defined in Lemma D.1 and the event Ẽ defined in Lemma D.3, we have

V †1 (s1, r)− V π,br(π)
1 (s1, r) ≤ V 1(s1)− V π,br(π)

1 (s1, r), (47)

where the inequality is by Lemma D.4. Further by this lemma, we have

V h(sh)− V π,br(π)
h (sh, r)

≤ Eah∼πh,bh∼br(π)h [(PhV h+1 + rh + 2uh)(sh, ah, bh)]− V π,br(π)
h (sh, r)

= Eah∼πh,bh∼br(π)h [(rh + PhV h+1 + 2uh)(sh, ah, bh)− rh(sh, ah, bh)− PhV π,br(π)
h+1 (sh, ah, bh, r)]

= Eah∼πh,bh∼br(π)h [PhV h+1(sh, ah, bh)− PhV π,br(π)
h+1 (sh, ah, bh, r) + 2uh(sh, ah, bh)]

= Eah∼πh,bh∼br(π)h,sh+1∼Ph(·|sh,ah,bh)[V h+1(sh+1)− V π,br(π)
h+1 (sh+1, r) + 2uh(sh, ah, bh)].

Recursively applying the above inequality and making use of V H+1(s) = V
π,br(π)
H+1 (s, r) = 0 yield

V 1(s1)− V π,br(π)
1 (s1, r) ≤ E∀h∈[H]: ah∼πh,bh∼br(π)h,sh+1∼Ph(·|sh,ah,bh)

[
H∑
h=1

2uh(sh, ah, bh)

∣∣∣∣∣s1

]
= 2H · V π,br(π)

1 (s1, u/H).
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Combining this inequality with (47) gives

V †1 (s1, r)− V π,br(π)
1 (s1, r) ≤ 2H · V π,br(π)

1 (s1, u/H) ≤ 2H

K

K∑
k=1

V ∗1 (s1, r
k)

≤ 2H

K
O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; ker)

)
≤ O

(
[
√
H5 log(1/δ′) + β

√
H4 · Γ(K,λ; ker)]/

√
K
)
,

where the second inequality is due to Lemma D.5 and the last inequality is by Lemma D.2.

Next, we prove the upper bound of the term V
br(ν),ν
1 (s1, r)− V †1 (s1, r). Conditioned on the event E defined in Lemma D.1

and the event Ẽ defined in Lemma D.3, we have

V
br(ν),ν
1 (s1, r)− V †1 (s1, r) ≤ V br(ν),ν

1 (s1, r)− V 1(s1, r), (48)

where the inequality is by Lemma D.4. Further by Lemma D.4, we have

V
br(ν),ν
h (sh, r)− V h(sh)

≤ V br(ν),ν
h (sh, r)− Ea∼br(ν)h,b∼νh [(PhV h+1 − rh − 2uh)(sh, ah, bh)]

= Eah∼br(ν)h,bh∼νh [PhV br(ν),ν
h+1 (sh, ah, bh, r)− PhV h+1(sh, ah, bh) + 2uh(sh, ah, bh)]

= Eah∼br(ν)h,bh∼νh,sh+1∼Ph(·|sh,ah,bh)[V
br(ν),ν
h+1 (sh+1, r)− PhV h+1(sh+1) + 2uh(sh, ah, bh)].

Recursively applying the above inequality yields

V
br(ν),ν
1 (s1, r)− V 1(sh, r) ≤ 2H · V br(ν),ν

1 (s1, u/H).

Combining this inequality with (48) gives

V
br(ν),ν
1 (s1, r)− V †1 (s1, r) ≤ 2H · V br(ν),ν

1 (s1, u/H) ≤ 2H

K

K∑
k=1

V ∗1 (s1, r
k)

≤ 2H

K
O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; ker)

)
≤ O

(
[
√
H5 log(1/δ′) + β

√
H4 · Γ(K,λ; ker)]/

√
K
)
,

where the second inequality is due to Lemma D.5 and the third inequality is by Lemma D.2.

Since Pr(E ∧ Ẽ) ≥ 1 − 2δ′ by union bound, by setting δ′ = 1/(4H2K2), we obtain that with probability at least
1− 1/(2H2K2)

V †1 (s1, r)− V π,br(π)
1 (s1, r) ≤ O

(
[
√

2H5 log(2HK) + β
√
H4 · Γ(K,λ; ker)]/

√
K
)
,

V
br(ν),ν
1 (s1, r)− V †1 (s1, r) ≤ O

(
[
√

2H5 log(2HK) + β
√
H4 · Γ(K,λ; ker)]/

√
K
)
,

such that

V
br(ν),ν
1 (s1, r)− V π,br(π)

1 (s1, r) ≤ O
(

[
√

2H5 log(2HK) + β
√
H4 · Γ(K,λ; ker)]/

√
K
)

≤ O
(
β
√
H4[Γ(K,λ; ker) + log(HK)]/

√
K
)
,

where the last inequality is due to β ≥ H . The event E ∧ Ẽ happens if we further let β satisfy

16H2
[
R2
Q + 2Γ(K,λ; ker) + 5 + logN∞(ς∗;RK , 2β) + 6 log(2HK)

]
≤ β2,∀h ∈ [H],

where λ = 1 + 1/K, R̃K = RK = 2H
√

Γ(K,λ; ker), and ς∗ = H/K. This completes the proof.
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E. Proofs for Markov Game Setting with Neural Function Approximation
E.1. Lemmas

Lemma E.1 (Lemma C.7 of Yang et al. (2020)). With TH2 = O(m log−6m), then there exists an constant z such that the
following inequalities hold with probability at least 1− 1/m2 for any z ∈ S ×A×B and any W ∈ {W : ‖W −W (0)‖ ≤
H
√
K/λ},

|f(z;W )− ϕ(z;W (0))>(W −W (0))| ≤ zK2/3H4/3m−1/6
√

logm,

‖ϕ(z;W )− ϕ(z;W (0))‖ ≤ z(KH2/m)1/6
√

logm, ‖ϕ(z;W )‖ ≤ z,

with z ≥ 1.
Lemma E.2. We define the event E as that the following inequality holds ∀z = (s, a, b) ∈ S ×A×B,∀(h, k) ∈ [H]× [K],

|PhV kh+1(s, a, b)− fkh (s, a, b)| ≤ ukh(s, a, b) + βι,∣∣∣‖ϕ(z;W k
h )‖(Λk

h)−1 − ‖ϕ(z;W (0))‖(Λ̃k
h)−1

∣∣∣ ≤ ι,
where ι = 5K7/12H1/6m−1/12 log1/4m and we define

Λkh =

k−1∑
τ=1

ϕ(zτh;W k
h )ϕ(zτh;W k

h )> + λ · I, Λ̃kh =

k−1∑
τ=1

ϕ(zτh;W (0))ϕ(zτh;W (0))> + λ · I.

Setting (1 + 1/H)β = BK , RK = H
√
K, ς∗ = H/K, and λ = z2(1 + 1/K), ς∗ = H/K, if we set

β2 ≥ 8R2
QH

2(1 +
√
λ/d)2 + 32H2Γ(K,λ; kerm) + 80H2 + 32H2 logN∞(ς∗;RK , BK) + 32H2 log(K/δ′),

and also

m = Ω(K19H14 log3m),

then we have that with probability at least 1− 2/m2 − δ′, the event E happens, i.e.,

Pr(E) ≥ 1− 2/m2 − δ′.

Proof. By letting a = (a, b) be an action in the spaceA×B, Algorithm 3 reduces to Algorithm 1 with the action spaceA×B
and state space S . We have Qkh(s, a, b) = Qkh(s,a), V kh (s, a, b) = V kh (s,a), ukh(s, a, b) = ukh(s,a), ukh(s, a, b) = ukh(s,a)
and rkh(s, a, b) = rkh(s,a). Simply applying the proof of Lemma C.2 yields the proof for this lemma.

Lemma E.3. Conditioned on the event E defined in Lemma E.2, with probability at least 1− δ′, we have

K∑
k=1

V ∗1 (s1, r
k) ≤

K∑
k=1

V k1 (s1) + βHKι,

K∑
k=1

V k1 (s1) ≤ O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; kerm)

)
+ βHKι,

where ι = 5K7/12H1/6m−1/12 log1/4m.

Proof. By the reduction of Algorithm 3 to Algorithm 1, we can apply the same proof for Lemma C.3, which completes the
proof.

Lemma E.4. We define the event Ẽ as that the following inequality holds ∀(s, a, b) ∈ S ×A× B,∀h ∈ [H],

|PhV h+1(s, a, b)− fh(s, a, b)| ≤ uh(s, a) + βι,

|PhV h+1(s, a, b)− f
h
(s, a, b)| ≤ uh(s, a) + βι,∣∣∣‖ϕ(z;Wh)‖(Λh)−1 − ‖ϕ(z;W (0))‖(Λ̃h)−1

∣∣∣ ≤ ι,∣∣∣‖ϕ(z;Wh)‖(Λh)−1 − ‖ϕ(z;W (0))‖(Λ̃h)−1

∣∣∣ ≤ ι.
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where ι = 5K7/12H1/6m−1/12 log1/4m, and we define fh(z) = Π[0,H][f(z;Wh)] and f
h
(z) = Π[0,H][f(z;Wh)] as

well as

Λh =

K∑
τ=1

ϕ(zτh;Wh)ϕ(zτh;Wh)> + λ · I, Λh =

K∑
τ=1

ϕ(zτh;Wh)ϕ(zτh;Wh)> + λ · I,

Λ̃h =

K∑
τ=1

ϕ(zτh;W (0))ϕ(zτh;W (0))> + λ · I.

Setting β = B̃K , R̃K = H
√
K, ς∗ = H/K, and λ = z2(1 + 1/K), ς∗ = H/K, if we set

β2 ≥ 8R2
QH

2(1 +
√
λ/d)2 + 32H2Γ(K,λ; kerm) + 80H2 + 32H2 logN∞(ς∗; R̃K , B̃K) + 32H2 log(2K/δ′),

and also

m = Ω(K19H14 log3m),

then we have that with probability at least 1− 2/m2 − δ′, the event Ẽ happens, i.e.,

Pr(Ẽ) ≥ 1− 2/m2 − δ′.

Proof. The proof of this lemma follows our proof of Lemmas C.2 and C.4 and apply some similar ideas from the proof of
Lemma D.3. Particularly, to deal with the upper bounds of the estimation errors of PhV h+1 and PhV h+1, we define the two
value function space V and V and show their covering numbers similar to the proof of Lemma D.3. Then, we further use the
proof of Lemma C.4, which is derived from the proof of Lemma C.2, to show the eventual results in this lemma. In the
proof of this lemma, we set B̃K = β instead of (1 + 1/H)β due to the structure of the planning phase. This completes the
proof.

Lemma E.5. Conditioned on the event Ẽ as defined in Lemma E.4, we have

V †h (s, r) ≤ V h(s) + (H + 1− h)βι,∀s ∈ S,∀h ∈ [H],

V h(s) ≤ Ea∼πh,b∼br(π)h [(PhV h+1 + rh + 2uh)(s, a, b)] + βι,∀s ∈ S,∀h ∈ [H],
(49)

V †h (s, r) ≥ V h(s)− (H + 1− h)βι,∀s ∈ S,∀h ∈ [H],

V h(s) ≥ Ea∼br(ν)h,b∼νh [(PhV h+1 − rh − 2uh)(s, a, b)]− βι,∀s ∈ S,∀h ∈ [H].
(50)

Proof. We prove the first inequality in (49) by induction. For h = H + 1, we have V †H+1(s, r) = V H+1(s) = 0 for any
s ∈ S . Then, we assume that V †h+1(s, r) ≤ V h+1(s) + (H − h)βι. Thus, conditioned on the event Ẽ as defined in Lemma
E.4, we have

Q†h(s, a, b, r)−Qh(s, a, b)

= rh(s, a, b) + PhV †h+1(s, a, b, r)−min{[rh(s, a, b) + fh(s, a, b) + uh(s, a, b)], H}+

≤ min{[PhV †h+1(s, a, b, r)− fh(s, a, b)− uh(s, a, b)], 0}
≤ min{[PhVh+1(s, a, b) + (H − h)βι− fh(s, a, b)− uh(s, a, b)], 0}
≤ (H + 1− h)βι,

where the first inequality is due to 0 ≤ rh(s, a, b) + PhV †h+1(s, a, b, r) ≤ H and min{x, y}+ ≥ min{x, y}, the second
inequality is by the assumption that V †h+1(s, a, b, r) ≤ V h+1(s, a, b) + (H − h)βι, the last inequality is by Lemma E.4
such that |PhV h+1(s, a, b)− fh(s, a, b)| ≤ uh(s, a, b) + βι holds for any (s, a, b) ∈ S ×A× B and (k, h) ∈ [K]× [H].
The above inequality further leads to

V †h (s, r) = max
π′h

min
ν′h

Ea∼π′h,b∼ν′h [Q†h(s, a, b, r)] ≤ max
π′h

min
ν′h

Ea∼π′h,b∼ν′h [Qh(s, a, b)] + (H + 1− h)βι

= V h(s) + (H + 1− h)βι.
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Therefore, we have

V †h (s, r) ≤ V h(s) + (H + 1− h)βι,∀h ∈ [H],∀s ∈ S.

We further prove the second inequality in (49). We have

Qh(s, a, b) = min{[rh(s, a, b) + fh(s, a, b) + uh(s, a, b)], H}+

≤ min{[rh(s, a, b) + PhV h+1(s, a, b) + 2uh(s, a, b) + βι], H}+

≤ rh(s, a, b) + PhV h+1(s, a, b) + 2uh(s, a, b) + βι,

where the first inequality is also by Lemma E.4 such that |PhV h+1(s, a, b)− fh(s, a, b)| ≤ uh(s, a, b) + βι, and the last
inequality is because of the non-negativity of rh(s, a, b) + PhVh+1(s, a, b) + 2uh(s, a, b) + βι. Therefore, we have

V h(s) = min
ν′

Ea∼πh,b∼ν′Qh(s, a, b)

≤ Ea∼πh,b∼br(π)hQh(s, a, b)

≤ Ea∼πh,b∼br(π)h [rh(s, a, b) + PhV h+1(s, a, b) + 2uh(s, a, b)] + βι.

For the inequalities in (50), we can prove them in the same way to proving (49). In fact, Player 2 is trying to find a policy to
maximize the cumulative rewards w.r.t. a reward function {−rh(s, a, b)}h∈[H], while the opponent (Player 1) is trying to
minimize the cumulative reward w.r.t. {−rh(s, a, b)}h∈[H]. Thus, one can also convert the results in (49) into (50) by this
trick. This completes the proof.

Lemma E.6. With the exploration and planning phases, conditioned on the event E defined in Lemma E.2 and the event Ẽ
defined in Lemma E.4, we have the following inequalities

K · V π,br(π)
1 (s1, u/H) ≤

K∑
k=1

V ∗1 (s1, r
k) + 2Kβι, K · V br(ν),ν

1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k) + 2Kβι.

Proof. First, we have K · V π,br(π)
1 (s1, u/H) ≤ K · V ∗1 (s1, u/H) as well as K · V br(ν),ν

1 (s1, u/H) ≤ K · V ∗1 (s1, u/H)
according to the definition of V ∗1 . Thus, to prove this lemma, we only need to show

K · V ∗1 (s1, u/H) ≤
K∑
k=1

V ∗1 (s1, r
k) + 2Kβι, K · V ∗1 (s1, u/H) ≤

K∑
k=1

V ∗1 (s1, r
k) + 2Kβι.

Because the constructions of uh and rkh are the same as the ones for the single-agent case, similar to the proof of Lemma
C.6, and according to Lemmas E.2 and E.4, we have

uh(s, a, b)− βι ≤ H · rkh(s, a, b) + βι, uh(s, a, b)− βι ≤ H · rkh(s, a, b) + βι

such that

V ∗1 (s1, u/H) ≤ V ∗1 (s1, r
k) + 2βι, V ∗1 (s1, u/H) ≤ V ∗1 (s1, r

k) + 2βι,

Therefore, we eventually obtain

K · V π,br(π)
1 (s1, u/H) ≤ K · V ∗1 (s1, u/H) ≤

K∑
k=1

V ∗1 (s1, r
k) + 2βι,

K · V br(ν),ν
1 (s1, u/H) ≤ K · V ∗1 (s1, u/H) ≤

K∑
k=1

V ∗1 (s1, r
k) + 2βι.

This completes the proof.



On Reward-Free RL with Kernel and Neural Function Approximations

E.2. Proof of Theorem 4.2

Proof. Conditioned on the event E defined in Lemma E.2 and the event Ẽ defined in Lemma E.4, we have

V †1 (s1, r)− V π,br(π)
1 (s1, r) ≤ V 1(s1)− V π,br(π)

1 (s1, r) +Hβι, (51)

where the inequality is by Lemma E.5. Further by this lemma, we have

V h(sh)− V π,br(π)
h (sh, r)

≤ Eah∼πh,bh∼br(π)h [(PhV h+1 + rh + 2uh)(sh, ah, bh)]− V π,br(π)
h (sh, r) + βι

= Eah∼πh,bh∼br(π)h [(rh + PhV h+1 + 2uh)(sh, ah, bh)− rh(sh, ah, bh)− PhV π,br(π)
h+1 (sh, ah, bh, r)] + βι

= Eah∼πh,bh∼br(π)h [PhV h+1(sh, ah, bh)− PhV π,br(π)
h+1 (sh, ah, bh, r) + 2uh(sh, ah, bh)] + βι

= Eah∼πh,bh∼br(π)h,sh+1∼Ph(·|sh,ah,bh)[V h+1(sh+1)− V π,br(π)
h+1 (sh+1, r) + 2uh(sh, ah, bh)] + βι.

Recursively applying the above inequality and making use of V H+1(s, r) = V
π,br(π)
H+1 (s) = 0 gives

V 1(s1)− V π,br(π)
1 (s1, r) ≤ E∀h∈[H]: ah∼πh,bh∼br(π)h,sh+1∼Ph(·|sh,ah,bh)

[
H∑
h=1

2uh(sh, ah, bh)

∣∣∣∣∣s1

]
= 2H · V π,br(π)

1 (s1, u/H) +Hβι.

Combining with (51) gives

V †1 (s1, r)− V π,br(π)
1 (s1, r) ≤ 2H · V π,br(π)

1 (s1, u/H) + 2Hβι ≤ 2H

K

K∑
k=1

V ∗1 (s1, r
k) + 4Hβι

≤ 2H

K
O
(√

H3K log(1/δ′) + β
√
H2K · Γ(K,λ; kerm)

)
+H2βι+ 4Hβι

≤ O
(

[
√
H5 log(1/δ′) + β

√
H4 · Γ(K,λ; kerm)]/

√
K +H2βι

)
,

where the second inequality is due to Lemma E.6 and the last inequality is by Lemma E.3.

Next, we give the upper bound of V br(ν),ν
1 (s1, r)− V †1 (s1, r). Conditioned on the event E defined in Lemma E.2 and the

event Ẽ defined in Lemma E.4, we have

V
br(ν),ν
1 (s1, r)− V †1 (s1, r) ≤ V br(ν),ν

1 (s1, r)− V 1(s1) +Hβι, (52)

where the inequality is by Lemma E.5. Further by this lemma, we have

V
br(ν),ν
h (sh, r)− V h(sh)

≤ V br(ν),ν
h (sh, r)− Ea∼br(ν)h,b∼νh [(PhV h+1 − rh − 2uh)(sh, ah, bh)] + βι

= Eah∼br(ν)h,bh∼νh [PhV br(ν),ν
h+1 (sh, ah, bh, r)− PhV h+1(sh, ah, bh) + 2uh(sh, ah, bh)] + βι

= Eah∼br(ν)h,bh∼νh,sh+1∼Ph(·|sh,ah,bh)[V
br(ν),ν
h+1 (sh+1, r)− PhV h+1(sh+1) + 2uh(sh, ah, bh)] + βι.

Recursively applying the above inequality gives

V
br(ν),ν
1 (s1, r)− V 1(s1) ≤ 2H · V br(ν),ν

1 (s1, u/H) +Hβι.

Combining with (52) gives

V
br(ν),ν
1 (s1, r)− V †1 (s1, r) ≤ 2H · V π1 (s1, u/H) + 2Hβι ≤ 2H

K

K∑
k=1

V ∗1 (s1, r
k) + 4Hβι

≤ O
(

[
√
H5 log(1/δ′) + β

√
H4 · Γ(K,λ; kerm)]/

√
K +H2βι

)
,
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where the second inequality is due to Lemma E.6 and the last inequality is by Lemma E.3. Thus, we eventually have

V
br(ν),ν
1 (s1, r)− V π,br(π)

1 (s1, r) ≤ O
([√

H5 log(1/δ′) + β
√
H4 · Γ(K,λ; kerm)

]
/
√
K +H2βι

)
.

Moreover, we also have P (E ∧ Ẽ) ≥ 1− 2δ′ − 4/m2 by union bound. Therefore, since β ≥ H as shown in Lemmas E.2
and E.4, setting δ′ = 1/(4K2H2), we obtain that with probability at least 1− 1/(2K2H2)− 4/m2,

V ∗1 (s1, r)− V π1 (s1, r) ≤ O
(
β
√
H4[Γ(K,λ; kerm) + log(KH)]/

√
K +H2βι

)
.

The event E ∧ Ẽ happens if we further let β satisfy

β2 ≥ 8R2
QH

2(1 +
√
λ/d)2 + 32H2Γ(K,λ; kerm) + 80H2 + 32H2 logN∞(ς∗;RK , 2β) + 96H2 log(2KH).

where guarantees the conditions in Lemmas E.2 and E.4 hold. This completes the proof.

F. Other Supporting Lemmas
Lemma F.1 (Lemma E.2 of Yang et al. (2020)). Let {sτ}∞τ=1 and {φτ}∞τ=1 be S-valued andH-valued stochastic processes
adapted to filtration {Fτ}∞τ=0, respectively, where we assume that ‖φτ‖ ≤ 1 for all τ ≥ 1. Moreover, for any t ≥ 1, we let
Kt ∈ Rt×t be the Gram matrix of {φτ}τ∈[t] and define an operator Λt : H 7→ H as Λt = λI +

∑t
τ=1 φτφ

>
τ with λ > 1.

Let V ⊆ {V : S 7→ [0, H]} be a class of bounded functions on S. Then for any δ ∈ (0, 1), with probability at least 1− δ,
we have simultaneously for all t ≥ 1 that

sup
V ∈V

∥∥∥∥∥
t∑

τ=1

φτ{V (sτ )− E[V (sτ )|Fτ−1]}

∥∥∥∥∥
2

Λ−1
t

≤ 2H2 log det(I +Kt/λ) + 2H2t(λ− 1) + 4H2 log(Nε/δ) + 8t2ε2/λ,

where Nε is the ε-covering number of V with respect to the distance dist(·, ·) := supS |V1(s)− V2(s)|.
Lemma F.2 (Lemma E.3 of Yang et al. (2020)). Let {φt}t≥1 be a sequence in the RKHSH. Let Λ0 : H 7→ H be defined as
λI where λ ≥ 1 and I is the identity mapping onH. For any t ≥ 1, we define a self-adjoint and positive-definite operator
Λt by letting Λt = Λ0 +

∑t
j=1 φjφ

>
j . Then, for any t ≥ 1, we have

t∑
j=1

min{1, φjΛ−1
j−1φ

>
j } ≤ 2 log det(I +Kt/λ),

where Kt ∈ Rt×t is the Gram matrix obtained from {φj}j∈[t], i.e., for any j, j′ ∈ [t], the (j, j′)-th entry of Kt is 〈φj , φj〉H.
Moreover, if we further have supt≥0{‖φt‖H} ≤ 1, then it holds that

log det(I +Kt/λ) ≤
t∑

j=1

φ>j Λ−1
j−1φj ≤ 2 log det(I +Kt/λ).


