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Abstract
SOTA computer vision systems are trained to pre-
dict a fixed set of predetermined object categories.
This restricted form of supervision limits their
generality and usability since additional labeled
data is needed to specify any other visual con-
cept. Learning directly from raw text about im-
ages is a promising alternative which leverages a
much broader source of supervision. We demon-
strate that the simple pre-training task of predict-
ing which caption goes with which image is an
efficient and scalable way to learn SOTA image
representations from scratch on a dataset of 400
million (image, text) pairs collected from the inter-
net. After pre-training, natural language is used to
reference learned visual concepts (or describe new
ones) enabling zero-shot transfer of the model to
downstream tasks. We study performance on over
30 different computer vision datasets, spanning
tasks such as OCR, action recognition in videos,
geo-localization, and many types of fine-grained
object classification. The model transfers non-
trivially to most tasks and is often competitive
with a fully supervised baseline without the need
for any dataset specific training. For instance, we
match the accuracy of the original ResNet50 on
ImageNet zero-shot without needing to use any of
the 1.28 million training examples it was trained
on. We release our code and pre-trained model
weights at https://github.com/OpenAI/CLIP.

1. Introduction and Motivating Work
Pre-training methods which learn directly from raw text
have revolutionized NLP over the last few years (Dai & Le,
2015; Peters et al., 2018; Howard & Ruder, 2018; Radford
et al., 2018; Devlin et al., 2018; Raffel et al., 2019). The
development of “text-to-text” as a standardized input-output
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interface (McCann et al., 2018; Radford et al., 2019; Raffel
et al., 2019) has enabled task-agnostic architectures to zero-
shot transfer to downstream datasets. Flagship systems like
GPT-3 (Brown et al., 2020) are now competitive across
many tasks with bespoke models while requiring little to no
dataset specific training data.

These results suggest that the aggregate supervision acces-
sible to modern pre-training methods within web-scale col-
lections of text surpasses that of high-quality crowd-labeled
NLP datasets. However, in other fields such as computer
vision it is still standard practice to pre-train models on
crowd-labeled datasets such as ImageNet (Deng et al., 2009).
Could scalable pre-training methods which learn directly
from web text result in a similar breakthrough in computer
vision? Prior work is encouraging.

Joulin et al. (2016) demonstrated that CNNs trained to pre-
dict words in image captions can learn representations com-
petitive with ImageNet training. Li et al. (2017) then ex-
tended this approach to predicting phrase n-grams in ad-
dition to individual words and demonstrated the ability of
their system to zero-shot transfer to other image classifi-
cation datasets. Adopting more recent architectures and
pre-training approaches, VirTex (Desai & Johnson, 2020),
ICMLM (Bulent Sariyildiz et al., 2020), and ConVIRT
(Zhang et al., 2020) have recently demonstrated the po-
tential of transformer-based language modeling, masked
language modeling, and contrastive objectives to learn im-
age representations from text.

However, the aforementioned models still under-perform
current SOTA computer vision models such as Big Trans-
fer (Kolesnikov et al., 2019) and the weakly supervised
ResNeXt (Mahajan et al., 2018). A crucial difference is
scale. While Mahajan et al. (2018) and Kolesnikov et al.
(2019) trained for accelerator years on millions to billions
of images, VirTex, ICMLM, and ConVIRT trained for ac-
celerator days on one to two hundred thousand images. We
close this gap and study the behaviors of image models
trained from natural language supervision at large scale. We
demonstrate that a simplified version of ConVIRT trained
from scratch, which we call CLIP, for Contrastive Language-
Image Pre-training, is an efficient and scalable method of
learning from natural language supervision. We find that
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Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.

CLIP learns to perform a wide set of tasks during pre-
training including OCR, geo-localization, action recogni-
tion, and outperforms the best publicly available ImageNet
model while being more computationally efficient. We also
find that zero-shot CLIP models are much more robust than
equivalent accuracy supervised ImageNet models.

2. Approach
At the core of our work is the idea of learning perception
from the supervision contained in natural language paired
with images. In the following subsections we detail our
specific approach.

2.1. Creating a Sufficiently Large Dataset

Existing work has mainly used three datasets, MS-COCO
(Lin et al., 2014), Visual Genome (Krishna et al., 2017), and
YFCC100M (Thomee et al., 2016). While MS-COCO and
Visual Genome are high quality crowd-labeled datasets, they
are small by modern standards with approximately 100,000
training photos each. By comparison, other computer vision
systems are trained on up to 3.5 billion Instagram photos
(Mahajan et al., 2018). YFCC100M, at 100 million photos,
is a possible alternative, but the metadata for each image is
sparse and of varying quality. Many images use automati-
cally generated filenames like 20160716 113957.JPG
as “titles” or contain “descriptions” of camera exposure
settings. After filtering to keep only images with natural
language titles and/or descriptions in English, the dataset
shrunk by a factor of 6 to only 15 million photos. This is
approximately the same size as ImageNet.

A major motivation for natural language supervision is the

large quantities of data of this form available publicly on
the internet. To test this we constructed a new dataset of
400 million (image, text) pairs collected form a variety of
publicly available sources on the Internet. To attempt to
cover as broad a set of visual concepts as possible, we
search for (image, text) pairs as part of the construction
process whose text includes one of a set of 500,000 queries.
We approximately class balance the results by including
up to 20,000 (image, text) pairs per query. The resulting
dataset has a similar total word count as the WebText dataset
used to train GPT-2. We refer to this dataset as WIT for
WebImageText. 1

2.2. Selecting an Efficient Pre-Training Method

Our initial approach, similar to VirTex, jointly trained an
image CNN and text transformer from scratch to predict
the caption of an image. However, we encountered difficul-
ties efficiently scaling this method. In Figure 2 we show
that a 63 million parameter transformer language model,
which already uses twice the compute of its ResNet50 im-
age encoder, learns to recognize ImageNet classes three
times slower than an approach similar to Joulin et al. (2016)
that predicts a bag-of-words encoding of the same text.

Recent work in contrastive representation learning has found
that contrastive objectives can outperform the equivalent
predictive objective (Tian et al., 2019). Noting this finding,

1The base query list is all words occurring at least 100 times in
the English version of Wikipedia. This is augmented with bi-grams
with high pointwise mutual information for the pair (Church &
Hanks, 1990) as well as the names of all Wikipedia articles above a
certain search volume. Finally all WordNet (Miller, 1995) synsets
not already in the query list are added.
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Figure 2. CLIP is much more efficient at zero-shot transfer
than our image caption baseline. Although highly expressive,
we found that transformer-based language models are relatively
weak at zero-shot ImageNet classification. Here, we see that it
learns 3x slower than a baseline which predicts a bag-of-words
(BoW) encoding of the text (Joulin et al., 2016). Swapping the
prediction objective for the contrastive objective of CLIP further
improves efficiency another 4x.

we explored training a system to solve the potentially eas-
ier proxy task of predicting only which text as a whole is
paired with which image and not the exact words of that text.
Starting with the same bag-of-words encoding baseline, we
swapped the predictive objective for a contrastive objective
in Figure 2, observed a further 4x efficiency improvement
in the rate of zero-shot transfer to ImageNet.

Given a batch of N (image, text) pairs, CLIP is trained to
predict which of the N ×N possible (image, text) pairings
across a batch actually occurred. To do this, CLIP learns a
multi-modal embedding space by jointly training an image
encoder and text encoder to maximize the cosine similar-
ity of the image and text embeddings of the N real pairs
in the batch while minimizing the cosine similarity of the
embeddings of the N2−N incorrect pairings. We optimize
a symmetric cross entropy loss over these similarity scores.
In Figure 3 we include pseudocode for the core of an imple-
mentation of CLIP. This batch construction technique and
objective was first introduced as the multi-class N-pair loss
Sohn (2016) and was recently adapted for contrastive (text,
image) representation learning in the domain of medical
imaging by Zhang et al. (2020).

Since over-fitting is not a major concern, the details of train-
ing CLIP are simplified compared to Zhang et al. (2020).
We train CLIP from scratch instead of initializing with pre-
trained weights. We remove the non-linear projection be-
tween the representation and the contrastive embedding
space. We use only a linear projection to map from each en-
coder’s representation to the multi-modal embedding space.

# image_encoder - ResNet or Vision Transformer
# text_encoder  - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, l]       - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t             - learned temperature parameter

# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T)  #[n, d_t]

# joint multimodal embedding [n, d_e]
I_e = l2_normalize(np.dot(I_f, W_i), axis=1)
T_e = l2_normalize(np.dot(T_f, W_t), axis=1)

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss   = (loss_i + loss_t)/2

Figure 3. Numpy-like pseudocode for the core of an implementa-
tion of CLIP.

We also remove the text transformation function tu which
samples a single sentence at uniform from the text since
many of the (image, text) pairs in CLIP’s pre-training dataset
are only a single sentence. We also simplify the image trans-
formation function tv. A random square crop from resized
images is the only data augmentation used during training.
Finally, the temperature parameter which controls the range
of the logits in the softmax, τ , is directly optimized during
training as a log-parameterized multiplicative scalar to avoid
turning as a hyper-parameter.

2.3. Choosing and Scaling a Model

We consider two different architectures for the image en-
coder. For the first, we use ResNet50 (He et al., 2016a)
as the base architecture for the image encoder due to its
widespread adoption and proven performance. We make sev-
eral modifications to the original version using the ResNetD
improvements from He et al. (2019) and the antialiased
rect-2 blur pooling from Zhang (2019). We also replace
the global average pooling layer with an attention pooling
mechanism. The attention pooling is implemented as a sin-
gle layer of “transformer-style” multi-head QKV attention
where the query is conditioned on the global average-pooled
representation of the image. For the second architecture, we
experiment with the recently introduced Vision Transformer
(ViT) (Dosovitskiy et al., 2020). We closely follow their
implementation with only the minor modification of adding
an additional layer normalization to the combined patch
and position embeddings before the transformer and use a
slightly different initialization scheme.
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The text encoder is a Transformer (Vaswani et al., 2017)
with the architecture modifications described in Radford
et al. (2019). As a base size we use a 12-layer 512-wide
model with 8 attention heads. The transformer operates on a
lower-cased byte pair encoding (BPE) representation of the
text (Sennrich et al., 2015). The text sequence is bracketed
with [SOS] and [EOS] tokens and the activations of the
highest layer of the transformer at the [EOS] token are
used as the feature representation of the text which is layer
normalized and then linearly projected into the multi-modal
embedding space. Masked self-attention was used in the text
encoder to preserve the ability to add language modeling as
an auxiliary objective, though exploration of this is left as
future work.

While previous computer vision research has often scaled
models by increasing the width (Mahajan et al., 2018) or
depth (He et al., 2016a) in isolation, for the ResNet image
encoders we adapt the approach of Tan & Le (2019) which
found that allocating additional compute across all of width,
depth, and resolution outperforms allocating it to only one
dimension. We use a simple variant which allocates addi-
tional compute equally to increasing the width, depth, and
resolution of the model. For the text encoder, we only scale
the width of the model to be proportional to the calculated
increase in width of the ResNet and do not scale the depth
at all, as we found CLIP’s performance to be less sensitive
to the text encoder.

2.4. Pre-training

We train a series of 5 ResNets and 3 Vision Transformers.
For the ResNets we train a ResNet50, a ResNet101, and
then 3 more which follow EfficientNet-style model scaling
and use approximately 4x, 16x, and 64x the compute of a
ResNet50. They are denoted as RN50x4, RN50x16, and
RN50x64 respectively. For the Vision Transformers we
train a ViT-B/32, a ViT-B/16, and a ViT-L/14. The largest
ResNet model, RN50x64, took 18 days to train on 592 V100
GPUs while the largest Vision Transformer took 12 days on
256 V100 GPUs. For the ViT-L/14 we also pre-train at a
higher 336 pixel resolution for one additional epoch to boost
performance similar to FixRes (Touvron et al., 2019). We
denote this model as ViT-L/14@336px. Unless otherwise
specified, all results reported in this paper as “CLIP” use
this model which we found to perform best. Full model
hyperparameters and details are in supplementary material.

2.5. Using CLIP

CLIP is pre-trained to predict if an image and a text snip-
pet are paired together in WIT. To apply CLIP to down-
stream tasks, we reuse this capability and study the zero-
shot transfer performance of CLIP on standard computer
vision datasets. Similar to Radford et al. (2019) we motivate

aYahoo ImageNet SUN

Visual N-Grams 72.4 11.5 23.0
CLIP 98.4 76.2 58.5

Table 1. Comparing CLIP to prior zero-shot transfer image classi-
fication work. CLIP improves performance on all three datasets by
a large amount. This improvement reflects many differences since
the development of Visual N-Grams (Li et al., 2017).

this as a way of measuring the task learning capability of a
system (as opposed to its representation learning capability).
For each dataset, we use the names of all the classes in the
dataset as the set of potential text pairings and predict the
most probable (image, text) pair according to CLIP. We addi-
tionally experiment with providing CLIP with text prompts
to help specify the task as well as ensembling multiple of
these templates in order to boost performance. However,
since the vast majority of unsupervised and self-supervised
computer vision research focuses on representation learning,
we also investigate this for CLIP using the common linear
probe protocol.

3. Analysis
3.1. Initial Comparison to Visual N-Grams

To our knowledge, Visual N-Grams (Li et al., 2017) first
studied zero-shot transfer to existing image classification
datasets in the manner described above. It is also the only
other work we are aware of that has studied zero-shot trans-
fer to standard image classification datasets using a task
agnostic pre-trained model. In Table 1 we compare Visual
N-Grams to CLIP. The best CLIP model improves accuracy
on ImageNet from a proof of concept 11.5% to 76.2% and
matches the performance of the original ResNet50 despite
using none of the 1.28 million crowd-labeled training exam-
ples. Additionally, the top-5 accuracy of CLIP models are
noticeably higher and this model has a 95% top-5 accuracy,
matching Inception-V4 (Szegedy et al., 2016). The abil-
ity to match the performance of a strong, fully supervised
baseline in a zero-shot setting suggests CLIP is a signifi-
cant step towards flexible and practical zero-shot computer
vision classifiers. This comparison is not direct because
many differences between CLIP and Visual N-Grams were
not controlled for. As a closer comparison, we trained a
CLIP ResNet50 on the same YFCC100M dataset that Vi-
sual N-Grams was trained on and found it matched their
reported ImageNet performance within a V100 GPU day.
This baseline was also trained from scratch instead of being
initialized from pre-trained ImageNet weights as in Visual
N-Grams.
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Figure 4. Zero-shot CLIP is competitive with a fully super-
vised baseline. Across a 27 dataset eval suite, a zero-shot CLIP
classifier outperforms a fully supervised linear classifier fitted on
ResNet50 features on 16 datasets, including ImageNet.

3.2. Zero-Shot Performance

In computer vision, zero-shot learning usually refers to the
study of generalizing to unseen object categories in image
classification (Lampert et al., 2009). We instead use the
term in a broader sense and study generalization to unseen
datasets. We motivate this as a proxy for performing un-
seen tasks, as aspired to in the zero-data learning paper of
Larochelle et al. (2008). While much research in the field of
unsupervised learning focuses on the representation learn-
ing capabilities of machine learning systems, we motivate
studying zero-shot transfer as a way of measuring the task-
learning capabilities of machine learning systems. In this
view, a dataset evaluates performance on a task on a spe-
cific distribution. However, many popular computer vision
datasets were created by the research community primarily
as benchmarks to guide the development of generic image
classification methods rather than measuring performance
on a specific task. To our knowledge, Visual N-Grams (Li
et al., 2017) first studied zero-shot transfer to existing image
classification datasets in the manner described above

To conduct a more comprehensive analysis, we implement
a much larger evaluation suite detailed in the supplementary
material. In total we expand from the 3 datasets reported in
Visual N-Grams to include over 30 datasets and compare to
over 50 existing computer vision systems to contextualize

results. To start, we look at how well CLIP’s zero-shot clas-
sifiers perform when compared to the a simple off-the-shelf
baseline: fitting a fully supervised, regularized, logistic re-
gression classifier on the features of the canonical ResNet50.
In Figure 4 we show this comparison across 27 datasets.

Zero-shot CLIP outperforms this baseline slightly and wins
on 16 of the 27 datasets. The dataset zero-shot CLIP im-
proves by the most is STL10, a dataset designed to en-
courage unsupervised learning by containing only a limited
number of labeled examples. Zero-shot CLIP, without using
any training examples, achieves 99.3% on this dataset which
appears to be a new SOTA. On fine-grained classification
tasks, we observe a wide spread in performance. On two of
these datasets, Stanford Cars and Food101, zero-shot CLIP
outperforms logistic regression on ResNet50 features by
over 20% while on Flowers102 and FGVCAircraft, zero-
shot CLIP underperforms by over 10%. We suspect these
differences are primarily due to varying amounts of per-task
supervision between WIT and ImageNet. On “general” ob-
ject classification datasets such as ImageNet, CIFAR10, and
PascalVOC2007 performance is relatively similar with a
slight advantage for zero-shot CLIP. Zero-shot CLIP sig-
nificantly outperforms a ResNet50 on two datasets measur-
ing action recognition in videos. On Kinetics700, CLIP
outperforms a ResNet50 by 14.5%. Zero-shot CLIP also
outperforms a ResNet50’s features by 7.7% on UCF101.
We speculate this is due to natural language providing wider
supervision for visual concepts involving verbs, compared
to the noun-centric object supervision in ImageNet.

Looking at where zero-shot CLIP notably underperforms,
we see that zero-shot CLIP is quite weak on several spe-
cialized, complex, or abstract tasks such as satellite image
classification (EuroSAT and RESISC45), lymph node tumor
detection (PatchCamelyon), counting objects in synthetic
scenes (CLEVRCounts), self-driving related tasks such as
German traffic sign recognition (GTSRB), recognizing dis-
tance to the nearest car (KITTI Distance). These results
highlight the poor capability of zero-shot CLIP on more
complex tasks. By contrast, non-expert humans can robustly
perform several of these tasks, such as counting, satellite
image classification, and traffic sign recognition, suggesting
significant room for improvement. However, we caution
that it is unclear whether measuring zero-shot transfer, as
opposed to few-shot transfer, is a meaningful evaluation for
difficult tasks that a learner has no prior experience with,
such as lymph node tumor classification for almost all hu-
mans (and possibly CLIP).

While comparing zero-shot performance to fully supervised
models contextualizes the task-learning capabilities of CLIP,
comparing to few-shot methods is a more direct comparison,
since zero-shot is its limit. In Figure 5, we visualize how
zero-shot CLIP compares to few-shot logistic regression on
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Figure 5. Zero-shot CLIP outperforms few-shot linear probes.
Zero-shot CLIP matches the average performance of a 4-shot linear
classifier trained on the same feature space and nearly matches the
best results of a 16-shot linear classifier across publicly available
models. For both BiT-M and SimCLRv2, the best performing
model is highlighted. Light gray lines are other models in the eval
suite. The 20 datasets with at least 16 examples per class were
used in this analysis.

the features of many image models including the best pub-
licly available ImageNet models, self-supervised learning
methods, and CLIP itself. While one might expect zero-shot
to underperform one-shot, we instead find that zero-shot
CLIP matches the performance of 4-shot logistic regression
on the same feature space. This is likely due to a key dif-
ference between the zero-shot and few-shot approach. First,
CLIP’s zero-shot classifier is generated via natural language
which allows for visual concepts to be directly specified
(“communicated”). By contrast, “normal” supervised learn-
ing must infer concepts indirectly from training examples.
Context-less example-based learning has the drawback that
many different hypotheses can be consistent with the data,
especially in the one-shot case. A single image often con-
tains many different visual concepts. Although a capable
learner is able to exploit visual cues and heuristics, such as
assuming that the concept being demonstrated is the primary
object in an image, there is no guarantee.

When comparing zero-shot CLIP to few-shot logistic re-
gression on the features of other models, zero-shot CLIP
roughly matches the performance of the best performing
16-shot classifier in our evaluation suite, which uses the fea-
tures of a BiT-M ResNet152x2 trained on ImageNet-21K.
We are certain that a BiT-L model trained on JFT-300M
would perform even better but these models have not been
publicly released. That a BiT-M ResNet152x2 performs
best in a 16-shot setting is somewhat surprising since, as
analyzed in Section 3.3, the Noisy Student EfficientNet-L2
outperforms it in a fully supervised setting by almost 5% on
average across 27 datasets.

3.3. Representation Learning

While we have focused on studying the task-learning capa-
bilities of CLIP through zero-shot transfer, it is more com-
mon to study the representation learning capabilities of a
model. We use a linear probe evaluation protocol because it
requires minimal hyper-parameter tuning and has standard-
ized evaluation procedures. Please see the supplementary
material for further details on evaluation.

Figure 6 summarizes our findings. To minimize selection
effects that could raise concerns of confirmation or reporting
bias, we first study performance on the 12 dataset evalua-
tion suite from Kornblith et al. (2019). Models trained with
CLIP scale very well with compute and our largest model
slightly outperforms the best existing model (a Noisy Stu-
dent EfficientNet-L2) on both overall score and compute
efficiency. We also find that CLIP vision transformers are
about 3x more compute efficient than CLIP ResNets, which
allows higher overall performance within our compute bud-
get. These results replicate the findings of Dosovitskiy et al.
(2020) which reported that vision transformers are more
compute efficient than convnets when trained on sufficiently
large datasets. Our best overall model ViT-L/14@336px
outperforms the best existing model across this evaluation
suite by an average of 2.6%.

CLIP models learn a wider set of tasks than has previously
been demonstrated in a single computer vision model trained
end-to-end from random initialization. These tasks include
geo-localization, optical character recognition, facial emo-
tion recognition, and action recognition. None of these
tasks are measured in the evaluation suite of Kornblith et al.
(2019). This could be argued to be a form of selection bias
in Kornblith et al. (2019)’s study towards tasks that overlap
with ImageNet. To address this, we also measure perfor-
mance on a broader 27 dataset evaluation suite. This eval-
uation suite, detailed in Appendix A includes datasets rep-
resenting the aforementioned tasks, German Traffic Signs
Recognition Benchmark (Stallkamp et al., 2011), as well
as several other datasets adapted from VTAB (Zhai et al.,
2019). On this broader evaluation suite, the benefits of CLIP
are more clear. All CLIP models, regardless of scale, outper-
form all evaluated systems in terms of compute efficiency.
The improvement in average score of the best model over
previous systems increases from 2.6% to 5%.

3.4. Robustness to Natural Distribution Shift

In 2015, it was announced that a deep learning model ex-
ceeded human performance on the ImageNet test set (He
et al., 2015). However, research in the subsequent years has
repeatedly found that these models still make many simple
mistakes (Dodge & Karam, 2017; Geirhos et al., 2018; Al-
corn et al., 2019), and new benchmarks testing these systems
has often found their performance to be much lower than
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Figure 6. Linear probe performance of CLIP models in comparison with SOTA computer vision models, including EfficientNet
(Tan & Le, 2019; Xie et al., 2020), MoCo (Chen et al., 2020b), Instagram-pretrained ResNeXt models (Mahajan et al., 2018; Touvron
et al., 2019), BiT (Kolesnikov et al., 2019), ViT (Dosovitskiy et al., 2020), SimCLRv2 (Chen et al., 2020a), BYOL (Grill et al., 2020), and
the original ResNet models (He et al., 2016b). (Left) Scores are averaged over 12 datasets studied by Kornblith et al. (2019). (Right)
Scores are averaged over 27 datasets that contain a wider variety of distributions. Dotted lines indicate models fine-tuned or evaluated on
images at a higher-resolution than pre-training. Please see supplementary material for individual model scores for each dataset.

both human accuracy and ImageNet performance (Recht
et al., 2019; Barbu et al., 2019). Taori et al. (2020) is a re-
cent comprehensive study moving towards quantifying and
understanding this for ImageNet models. Taori et al. (2020)
study how the performance of ImageNet models change
when evaluated on natural distribution shifts. They measure
performance on a set of 7 distribution shifts. Taori et al.
(2020) find that accuracy under distribution shift increases
predictably with ImageNet accuracy and is well modeled
as a linear function of logit-transformed accuracy. Taori
et al. (2020) use this finding to propose that robustness
analysis should distinguish between effective and relative
robustness. Effective robustness measures improvements
in accuracy under distribution shift above what is predicted
by the documented relationship between in-distribution and
out-of-distribution accuracy. Relative robustness captures
any improvement in out-of-distribution accuracy. Taori et al.
(2020) argue that robustness techniques should aim to im-
prove both effective robustness and relative robustness.

However, almost all models studied in Taori et al. (2020) are

trained or fine-tuned on the ImageNet dataset. Is training
or adapting to the ImageNet dataset distribution the cause
of the observed robustness gap? Intuitively, a zero-shot
model should not be able to exploit spurious correlations
or patterns that hold only on a specific distribution, since it
is not trained on that distribution. Thus it is possible that
zero-shot models exhibit higher effective robustness. In
Figure 7, we compare the performance of zero-shot CLIP
with existing ImageNet models on natural distribution shifts.
All zero-shot CLIP models improve effective robustness
by a large amount and reduce the gap between ImageNet
accuracy and accuracy under distribution shift by up to
75%. Zero-shot CLIP models trace a completely distinct
robustness frontier from all 204 prior models studied in
Taori et al. (2020). These results suggest that the recent shift
towards large-scale task and dataset agnostic pre-training
combined with a reorientation towards zero-shot transfer
evaluation (as advocated by Yogatama et al. (2019) and
Linzen (2020)) promotes the development of more robust
systems and provides a more accurate assessment of true
model performance.
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Figure 7. Zero-shot CLIP is much more robust to distribution shift than standard ImageNet models. (Left) An ideal robust model
(dashed line) performs equally well on the ImageNet distribution and on other natural image distributions. Zero-shot CLIP models shrink
this “robustness gap” by up to 75%. Linear fits on logit transformed values are shown with bootstrap estimated 95% confidence intervals.
(Right) Visualizing distribution shift for bananas, a class shared across 5 of the 7 natural distribution shift datasets. The performance of
the best zero-shot CLIP model is compared with a model that has the same performance on the ImageNet validation set, ResNet101.

4. Data Overlap Analysis
A concern with pre-training on a very large internet dataset
is unintentional overlap with downstream evals. We con-
ducted de-duplication analysis to investigate this with full
details in the supplementary material. Out of 35 datasets
studied, 9 datasets have no detected overlap at all. There is
a median overlap of 2.2% and an average overlap of 3.2%.
Due to this small amount of overlap, overall accuracy is
rarely shifted by more than 0.1% with only 7 datasets above
this threshold. Of these, only 2 are statistically significant
after Bonferroni correction. The max detected improve-
ment is only 0.6% on Birdsnap. This echos the findings of
similar duplicate analysis in previous work on large scale
pre-training. Mahajan et al. (2018) and Kolesnikov et al.
(2019) detected similar overlap rates for their models and
also observed minimal changes in overall performance.

5. Broader Impacts
CLIP allows people to design their own classifiers and re-
moves the need for task-specific training data. How these
classes are designed heavily influences both model per-
formance and model biases. For example, we find that
when given a set of labels including Fairface race labels
(Kärkkäinen & Joo, 2019) and a handful of egregious terms
such as “criminal” and “animal” the model tends to classify
images of people aged 0–20 in the egregious category at a
rate of 32.3%. However, when we add the class “child” to
the list of possible classes, this behaviour drops to 8.7%.
We also found discrepancies across gender and race for peo-
ple categorized into the ‘crime’ and ‘non-human’ categories,

highlighting the potential for disparate impact even when
extreme care is taken for thoughtful class design.

Additionally, given that CLIP does not need task-specific
training data, it can unlock certain niche tasks with greater
ease. Some of these tasks may raise privacy or surveillance
related risks, which we explore by testing CLIP’s perfor-
mance on celebrity identification using the CelebA dataset
(Liu et al., 2018). CLIP has a top-1 accuracy of 59.2% for
“in the wild” celebrity image classification when choosing
from 100 candidates and of 43.3% when choosing from
1000 possible choices. Although it’s noteworthy to achieve
these results with task agnostic pre-training, this perfor-
mance is not competitive with widely available production
level models. We explore challenges that CLIP poses in our
supplemental materials and hope that this work motivates
future research on the characterization of the capabilities,
shortcomings, and biases of such models.

6. Limitations
The performance of zero-shot CLIP is often just compet-
itive with the supervised baseline of a linear classifier on
ResNet-50 features. This baseline is now well below the
overall SOTA. Significant work is still needed to improve
the task learning and transfer capabilities of CLIP. We es-
timate around a 1000x increase in compute is required for
zero-shot CLIP to reach overall SOTA performance across
our evaluation suite. This is infeasible to train with cur-
rent hardware. Further research into improving upon the
computational and data efficiency of CLIP will be necessary.

Despite our emphasis on zero-shot transfer, we repeatedly
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queried performance on validation sets to guide develop-
ment. This is unrealistic for true zero-shot scenarios. Similar
concerns have been raised in the field of semi-supervised
learning (Oliver et al., 2018). Another potential issue is our
selection of evaluation datasets. While we report results
on Kornblith et al. (2019)’s 12 dataset evaluation suite as a
standardized collection, our main analysis uses a somewhat
haphazard collection of 27 datasets that is undeniably co-
adapted with the capabilities of CLIP. A new benchmark of
tasks designed to evaluate broad zero-shot transfer capabili-
ties would help address this issue.

We emphasize that specifying image classifiers through nat-
ural language is a flexible interface but this has its own
limitations. Many complex tasks can be difficult to specify
just through text. Actual training examples are undeniably
useful but CLIP does not optimize for few-shot performance
directly. We fall back to fitting linear classifiers on top of
CLIP’s features. This results in a counter-intuitive drop
in performance when transitioning from a zero-shot to a
few-shot setting.

7. Related Work
The idea of learning to perform computer vision tasks from
natural language supervision is by no means new. Rather,
our main contribution is studying its behavior at large scale.
Over 20 years ago Mori et al. (1999) explored improving
content based image retrieval by training a model to predict
the nouns and adjectives in text paired with images. Quat-
toni et al. (2007) demonstrated it was possible to learn more
data efficient image representations via manifold learning in
the weight space of classifiers trained to predict words in im-
age captions. Srivastava & Salakhutdinov (2012) explored
deep representation learning by training multimodal Deep
Boltzmann Machines on top of low-level image and text tag
features. More recent work inspiring CLIP is described in
the Introduction.

Learning from collections of internet images is commonly
investigated in webly supervised learning with Fergus et al.
(2005) demonstrating the ability to train competitive com-
puter vision classifiers by treating image search engine re-
sults as supervision. Of this line of work, Learning Every-
thing about Anything: Webly-Supervised Visual Concept
Learning (Divvala et al., 2014) has a notably similar ambi-
tion and goal as CLIP.

Developments in zero-shot computer vision (Larochelle
et al., 2008; Lampert et al., 2009) were essential for CLIP.
Socher et al. (2013a) demonstrated that connecting image
and language representations enabled zero-shot transfer to
unseen classes on CIFAR10 and Frome et al. (2013) im-
proved and scaled this finding to ImageNet. The idea of
generating a classifier from natural language dates back to

at least Elhoseiny et al. (2013) and a form similar to CLIP’s
zero-shot classifier was explored in Lei Ba et al. (2015).

Natural language supervision has also been explored for
tasks beyond image classification including video under-
standing (Ramanathan et al., 2013; Miech et al., 2019), Re-
inforcement Learning (Hermann et al., 2017), and a burst of
recent work on learning joint models of vision and language
(Lu et al., 2019; Tan & Bansal, 2019; Chen et al., 2019; Li
et al., 2020b; Yu et al., 2020) for complex joint tasks beyond
those studied here including visual question answering.

8. Conclusion
We have investigated whether it is possible to transfer the
success of task-agnostic web-scale pre-training in NLP to
another domain. We find that adopting this formula re-
sults in similar behaviors emerging in the field of computer
vision and discuss the social implications of this line of
research. In order to optimize their training objective, CLIP
models learn to perform a wide variety of tasks during pre-
training. This task learning can then be leveraged via natural
language prompting to enable zero-shot transfer to many
existing datasets. At sufficient scale, the performance of this
approach can be competitive with task-specific supervised
models although there is still room for much improvement.
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