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A. GPL action-value computation
Here, we show for completeness that the expression for the
learner’s action value in Equation 9 is exactly the expecta-
tion introduced in Equation 4 when other agents policy is
approximated by the agent model from Equation 8 and the
joint action value factorizes as in Equation 5. The indices
indicating the parameters of the action value function and
the agent model are left out for brevity.

Q̄(st, a
i) = Ea−i∼q(.|st)[Q(st, a)|ai = ait]

=
∑

a−i∈A−i

Q(st, a)q(a−i|st, ai)

=
∑

a−i∈A−i

(
∑
aj∈Aj

Qj(aj |st)

+
∑

aj∈Aj ,a
k∈Ak

Qj,k(aj , ak|st))q(a−i|st, ai)

= Qi(ai|st)
+
∑

aj∈Aj ,j 6=i

(
Qj(aj |st) +Qi,j(ai, aj |st)

)
q(aj |st)

+
∑

aj∈Aj ,a
k∈Ak,j,k 6=i

Qj,k(aj , ak|st)q(aj |st)q(ak|st),

(14)

where in the first step we used the definition of the expecta-
tion and in the second step we substituted in Equation 5 for
the joint action value model. In the third step we substituted
in the agent model from Equation 8 and marginalized out
actions from the agent model q that are not part of the corre-
sponding action value factor. Note that Equation 14 is valid
regardless of the number of teammates in the environment.

B. Environment details
We provide additional details to reproduce the environments
used in the experiments. Source code and installation in-
structions for these environments are included as part of the
supplementary materials.

B.1. Wolfpack

In the Wolfpack environment, we train preys to avoid cap-
ture via the DQN algorithm (Mnih et al., 2015). Each prey
receives an RGB image of the 17×25 grid centered around
the its location. If the 17×25 image patch exceeds the
boundaries of the grid world, we draw blue grid cells repre-
senting the grid world boundaries while also padding black
colored grid cells outside the visualized boundaries to create
the input image. The input image is subsequently used by a
convolutional neural network to compute the action value
estimates. We then train six convolutional neural networks

using Independent DQN (Tampuu et al., 2017) to control
two preys and four wolves. During training prey are given a
penalty of -1 each time they are captured while the wolves
follow the same reward structure used to train GPL agents
in Wolfpack.

At the end of training value networks of the wolves are dis-
carded and the value networks of the prey are used for our
experiment. We finally provide Wolfpack as a single-agent
reinforcement learning environment which can readily be
used for open teamwork. An example image representing a
state of the Wolfpack environment is provided in Figure 4a.
In our Wolfpack implementation, other teammates and prey
are treated as non-playable characters and models or heuris-
tics controlling them are provided as part of the environment
source code.

B.2. Level-based foraging

In the level-based foraging environment, levels of play-
ers and objects are sampled uniformly from the set L =
{1, 2, 3}. The number of objects in the environment is set
to three for each episode. Furthermore, initial locations of
agents and objects are sampled uniformly from the available
locations in the grid. An episode either terminates after 50
timesteps or after all objects have been collected. An image
representing an example state of the level-based foraging
game is provided in Figure 4b.

B.3. FortAttack

The FortAttack environment limits the agents to have a posi-
tion between -0.8 and 0.8 for the horizontal axis coordinate,
while the vertical axis coordinate is limited between -1 and
1. The fort is a semicircle centered on (0.0,1.0) with a radius
of 0.3. When being initialized, the vertical axis coordinate
of the attackers is initialized between -1 and -0.8 to make at-
tackers start from a location that is far from the fort. On the
other hand, defender’s vertical axis coordinate is initialized
between 0.8 and 1.

B.4. Teammate policies

We implement a diverse set of heuristics to control the team-
mates in Wolfpack and LBF. Further details of the heuristics
used for both environments are provided in the following
section. We provide empirical evidence showing that the
set of heuristics is diverse and requires significant adapta-
tion to achieve optimal performance by training an agent
using the QL baseline against a specific type of teammate
and evaluated the resulting policy against different types of
teammates. We found that neither policies trained against
a specific teammate nor a policy resulting from training
against all possible types of teammates could reach the opti-
mal performance against every teammate type.
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(a) Wolfpack

 

(b) Level-based foraging
 

(c) FortAttack

Figure 4. An example screen capture of (a) Wolfpack, (b) level-based foraging, and (c) FortAttack. In Wolfpack, the white colored grid
cells represent the players while the red ones represent the prey. With level-based foraging, the apple icons represent the location of
objects to remove while the white icons represent the players that attempt to remove these objects. Levels of objects and players are
visualized next to their respective icons. With FortAttack, The blue semicircle on the northern part of the 2D world is the fort. The blue,
green, and red dots represents the learning agent, defenders, and attackers respectively. Agent 1 and 4 are visualized in the middle of
executing the shooting action and the green triangles represents their shooting range.

The results of this experiment for both environments are
provided in Figure 5. As we have done in the team size gen-
eralization experiments, for each approach we periodically
checkpoint the policies resulting from training and choose
the checkpoint with the highest performance in training to
be evaluated and reported in the heat matrix visualization.
Figure 5 shows that even for policies trained against all
types of agents, none of the resulting policies consistently
achieves optimal performance for all teammate types.

On the other hand, for FortAttack we use the 5 pretrained
policies provided by Deka & Sycara (2020). In the origi-
nal work that proposed FortAttack, GNN-based networks
were trained to create stochastic policies to control attacker
and defenders. Deka & Sycara (2020) subsequently visu-
ally analyzed the resulting behaviour of the trained policies
along different checkpoints and found different adopted by
attackers and defenders during the training process. An
example policy, which we eventually used as the different
agent types for our experiments, was given for each type of
strategy adopted by the attackers and defenders.

B.4.1. WOLFPACK

To create a diverse set of teammates for open ad hoc team-
work, we used the following mixture between heuristics
proposed by Barrett et al. (2011) for the predator prey do-
main along with RL-based models to control teammates
:

• Random agent (H1): The random agent chooses its
action at any timestep by uniformly sampling the set
of possible actions.

• Greedy agent (H2): The greedy agent chooses its
action following the greedy predator heuristic provided
in (Barrett et al., 2011). Intuitively, it sets the closest
grid cell adjacent to the closest prey from its current

location as its destination. It then chooses to move
closer to the destination by moving along an axis for
which it has the largest distance from the prey.

• Greedy probabilistic agent (H3): The greedy prob-
abilistic agent chooses its action following the greedy
probabilistic predator heuristic provided in (Barrett
et al., 2011). The way it chooses its destination is
the same with greedy agents. However, it randomly
chooses one of the two available axis to move closer
to the nearest prey. An agent’s distance from the prey
on each axis is provided as input to a boltzmann dis-
tribution to decide which axis should the agent move
along.

• Teammate aware agents (H4): This agent follows the
teammate aware predator heuristic from (Barrett et al.,
2011). Intuitively, this heuristics assumes all team-
mates are using the same heuristic. It subsequently
computes a hierarchy between agents based on their
distance to their targeted preys. The hierarchy deter-
mines the sequence in which agents choose their ac-
tions. Agents must take into account the actions of
agents higher up the hierarchy to avoid collision. An
A∗ planner is subsequently used to compute the action
to reach the destination.

• GNN-Based teammate aware agents (H5): We
train an RFM model with supervised learning to predict
the actions taken by a group of teammate aware agents.
This was done to avoid the possibly slow running time
of the A∗ planner in teammate aware agents. During
interaction, it assumes that every agent is a teammate
aware agent and passes their features along with prey
locations as input to the network. Agent of this type
subsequently uses the representation of its associated
node as input to an MLP which has been trained to im-
itate the distribution over actions for teammate aware



Towards Open Ad Hoc Teamwork Using Graph-based Policy Learning

All H-1 H-2 H-3 H-4 H-5 H-6 H-7 H-8 H-9
Agent Train Type

H-
9

H-
8

H-
7

H-
6

H-
5

H-
4

H-
3

H-
2

H-
1

Ag
en

t T
es

t T
yp

e

Generalization Performance Matrix (pen=0.5)

0.0

0.2

0.4

0.6

0.8

1.0

(a) Wolfpack.
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(b) Level-based foraging.

Figure 5. Generalization performance of a QL Agent trained to interact with a single teammate with a fixed type in both Wolfpack with
a penalty of 0.5 (a) and level-based foraging (b). All experiments here are conducted using 4 seeds. The horizontal axis denotes the
type of teammate encountered during training. The “All” versions are trained against a random teammate sampled uniformly over all
possible types at the start of each episode. The vertical axis denotes the type of agent used to test the trained policies. Performance in each
evaluation environment is scaled between zero and one by performing min-max scaling on each row of the heat matrix.

agents. Our agents subsequently samples the resulting
distribution to decide their actions.

• Graph DQN agents (H6): We train an RFM-based
controller trained by DQN to control a team of agents.
It parses the state information following the input pre-
processing method for GPL provided in Section C and
provides it as input to an RFM. Node representations
produced by the RFM are passed into an MLP to com-
pute the action value function of the player associated
to the node. Since this type only controls a single agent
during interaction, only the action value associated to
the controlled agent is used to take an action.

• Greedy waiting agents (H7): This heuristic is sim-
ilar to greedy agents. However, agents are equipped
with a waiting radius sampled randomly between three
to five. The greedy heuristic is followed when either
the Manhattan distance between the agent and closest
prey is more than the waiting radius or when there is
already another teammate inside the waiting radius of
the closest prey. Otherwise, the agent will uniformly
sample an action until the prey moves away or another
teammate comes close to the prey.

• Greedy probabilistic waiting agents (H8): Simi-
lar to greedy waiting agents, agents of this type are
equipped with a waiting radius sampled randomly
between three to five. However, it is the greedy-
probabilistic heuristic being followed when either the
Manhattan distance between the agent and the targeted
prey is more than the waiting radius or there is already
another teammate inside the waiting radius.

• Greedy team-aware waiting agents (H9): Simi-
lar to greedy waiting agents, agents of this type are
equipped with a waiting radius sampled randomly be-
tween three to five. However, it is the teammate aware

heuristic being followed when either the Manhattan
distance between the agent and the targeted prey is
more than the waiting radius or there is already another
teammate inside the waiting radius.

B.4.2. LEVEL-BASED FORAGING

Similar to Wolfpack, we create a diverse set of teammate
types for level-based foraging which requires agents to adapt
their policies towards their teammates for achieving optimal
performance. With level-based foraging, we use a mixture
of heuristics (Albrecht & Ramamoorthy, 2013; Albrecht &
Stone, 2017) and controllers trained using the A2C algo-
rithm (Mnih et al., 2016) as our teammate policies. With
the heuristic-based agents, their observations are limited to
a square patch of grid cells with the agent’s location being
the center of the grid. The size of this observation square is
uniformly sampled between 3×3, 5×5, or 7×7. Details of
the different types of heuristics used in level-based foraging
are provided below:

• Heuristic H1: This type of agent follows heuristic θF2
j

proposed by Albrecht & Stone (2017) where agents un-
der this heuristic follow the agent with the highest level
if it observes another agent with a higher level than
its own. If no agent has a higher level, it follows the
farthest observable agent from their locations instead.
The controlled agent then computes the object targeted
by the leader agent if they follow heuristic H3 provided
below and chooses an action that will get itself closer
to the target object. If the agent is already next to the
targeted object, it will choose to pick up the object. If
the agent cannot follow the aforementioned rules due
to not observing any objects in their observation square,
it chooses the leader’s position as its target instead. If
no other teammates are observed, it uniformly samples
an action from the set of possible actions instead.
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• Heuristic H2: This type of agent follows heuristic
θF1
j proposed by Albrecht & Stone (2017) where the

controlled agent chooses a leader agent, assumes they
follow certain heuristics to choose their targeted ob-
ject, and gets itself closer to the object they think is
targeted by the leader. Unlike H1, it chooses an observ-
able agent with the farthest distance from itself as its
leader. Furthermore, it assumes that the leader follows
heuristic H4 provided below in choosing its target ob-
ject. Otherwise, the way it chooses its actions when
it is next to the targeted object is the same as in H1.
Furthermore, its action selection method when there
are no objects or teammate agents in its observation
square follows that of H1.

• Heuristic H3: This type of agent follows heuristic
θL2j proposed by Albrecht & Stone (2017) where the
controlled agent targets objects that have the highest
level below its own level and gets closer to the object.
If no objects in the set of visible objects are below its
level, it chooses to target the item with the highest level
instead. Otherwise, it uniformly samples actions from
the set of possible actions when there are no objects
observed in its observation square.

• Heuristic H4: This type of agent follows heuristic θL1j
proposed by Albrecht & Stone (2017) where the con-
trolled agent targets the farthest visible object from its
current location and gets closer to the object. When no
objects are visible in its observation square, it samples
actions uniformly from the set of possible actions.

• A2C Agent (H5): This type of agent is produced by
independently training four agents together in level-
based foraging using the A2C algorithm (Mnih et al.,
2016). Among the four agents, we choose the one
which has the highest performance compared to others
as our A2C-based controller for this type. Also, agents
of this type do not have observation squares but receive
the whole state of the environment as input to their
policy.

• Heuristic H6: This type of agent follows one of
the heuristics proposed by Albrecht & Ramamoorthy
(2013) for level-based foraging where agents always
take actions that take them closer to the closest object
in their observation square. If no objects exists, agents
uniformly sample an action from the set of possible
actions.

• Heuristic H7: This type of agent also follows one of
the heuristics proposed by Albrecht & Ramamoorthy
(2013). In choosing their actions, agents of this type
go to the object inside the observation square which
is closest to the center of all observed players. It fol-

lows heuristic H6 when no objects are observed in its
observation square.

• Heuristic H8: This type of agent follows a heuristic
proposed by Albrecht & Ramamoorthy (2013) where
agents choose the closest object with the same level or
lower than their own level as their target. If none such
objects exists, the agent uniformly samples an action
from its action space.

• Heuristic H9: This type of agent follows a heuristic
proposed by Albrecht & Ramamoorthy (2013) where it
scans its surrounding for observable target objects that
has at most the same level as the sum of all observable
agents’ levels. It then computes the center of all agents’
locations and chooses a target object with the least
distance to the center of observable agents’ location as
its destination. If no possible target exists, it uniformly
samples an action from its action space.

B.4.3. FORTATTACK

The behavior of attackers as well as defenders not under
our control is determined by policies obtained in the ex-
periments from Deka & Sycara (2020). The policies show
distinct behavioral patterns summarized below. More infor-
mation on how these policies were obtained can be found in
Deka & Sycara (2020).

• Guard Type 1 - Random guard: For this agent, we
randomly initialize a neural network and used it as the
policy network for the guards.

• Guard Type 2 - Flash laser: Defenders position them-
selves in front of the fort and flash their lasers continu-
ally. This behavior is independent of the movement of
the attackers.

• Guard Type 3 - Spread out Flash laser: Similar to
type 1 but instead of positioning themselves in front
of the fort the defenders spread out across the whole
width of the environment.

• Guard Type 4 - Smart spreading: Defenders spread
smartly across the defensive zone and only shoot to
kill attackers.

• Attacker Type 1 - Sneak: Attackers spread out across
the whole environment to maximize the likelihood of
finding an open space in the defensive line.

• Attacker Type 2 - Deceive: Attackers split up their
attack. That is if the majority of attackers come from
the right, one attacker will try to sneak beyond the
defenders from the other side.



Towards Open Ad Hoc Teamwork Using Graph-based Policy Learning

• Guard Type 6 - Ensemble-trained agents: Guards
of this type are trained by letting it interact against
Attackers that are uniformly sampled from Attacker
type 1 and type 2.

C. GPL Input preprocessing
As input to GPL, for each agent the observation is parsed
into a set of vectors containing agent specific information,
x, concatenated with shared state information, u, to create
an input batch B. The agent specific information generally
contains locations of the agents in both environments. In
level-based foraging, information about an agent’s level is
also included in x. Other remaining information such as
prey locations in Wolfpack or object location and level in
level-based foraging are included in u. B is then passed to
an LSTM along with the previous hidden states, θ, and cell
states, c, of an LSTM to compute the embedding of each
agent required by the models defined in GPL.

To deal with the changing batch size of B across time as a
result of environment openness, the hidden and cell state are
further processed inbetween timesteps. Assuming it and dt
correspond to the sets of added and removed agents at time
t, frem removes the states associated to agents leaving the
environment while fins inputs a zero vector for the states
associated to agents joining the environment. We formally
define this hidden and cell state processing following Equa-
tion 15 while additionally providing an example illustration
of this processing method in Figure 6. Finally, since we as-
sume that the hidden and cell states associated to all agents
including the learning agent should be reset to 0 at the end
of each episode, we define dt as the set of all existing agents
and it as the set of agents at the initial state of the following
episode each time an episode ends.

Prep(θt, ct) = fins(frem(θt, ct, dt), it) (15)

D. GPL pseudocode
Before we describe the full GPL pseudocode, we first define
important functions that we will use in the pseudocode. First,
we denote the observation and hidden vector preprocessing
method described in Appendix C as the PREPROCESS
function. Furthermore, we denote the action-value and joint-
action value computation through Equation (9) and (5)
as the MARGINALIZE and JOINTACTEVAL functions
respectively. Based on these functions, we define the QV
function that preprocesses the input and computes the action-
values for given joint-action value and agent networks. The
computations in QV is provided in Algorithm 1.

Aside from these functions, we define QJOINT and
PTEAM, which output is required to compute the loss func-
tions, Lβ,δ and Lη,ζ , in Equation (11) and (10). QJOINT
is a function that computes the predicted joint action value

Algorithm 1 GPL Action Value Computation

Input: state s,
joint-action value model parameters (αQ, β, δ),
agent model parameters (αq, η, ζ),
agent model LSTM hidden vectors ht−1,q ,
joint-action value model LSTM hidden vectors ht−1,Q
function QV(s, αQ, αq, β, δ, η, ζ, ht−1,Q, ht−1,q)

B, θQ, cQ ← PREPROCESS(s, ht−1,Q)
B, θq, cq ← PREPROCESS(s, ht−1,q)
θ′Q, c

′
Q ← LSTMαQ

(B, θQ, cQ)
θ′q, c

′
q ← LSTMαq (B, θq, cq)

∀j, n̄j ← (RFMζ(θ
′
q, c
′
q))j

∀j, qη,ζ(.|st)← Softmax(MLPη(n̄j))

∀j, aj , Qjβ(aj |st)← MLPβ(θ
′j
Q , θ

′i
Q)(aj)

∀j, aj , ak,

Qj,kδ (aj , ak|st)← MLPδ(θ
′j
Q , θ

′k
Q , θ

′i
Q)(aj , ak)

Compute Q̄(s, ai) using Equation (9)
Q̄(s, .)←MARGINALIZE(

qη,ζ(.|st), Qβ(.|st)), Qδ(., .|st)

)
return Q̄(s, .), (θ′Q, c

′
Q), (θ′q, c

′
q)

end function

for an observed state and joint actions. On the other hand,
PTEAM computes the joint teammate action probability at
a state. Both QJOINT and PTEAM are further defined in
Algorithm 2 and 3.

Algorithm 2 GPL Joint-Action Value Computation

Input: state s, observed joint action a,
joint-action value model parameters (αQ, β, δ),
joint-action value model LSTM hidden vectors ht−1,Q
function QJOINT(s, a, αQ, β, δ, ht−1,Q)

B, θQ, cQ ← PREPROCESS(s, ht−1,Q)
θ′Q, c

′
Q ← LSTMαQ

(B, θQ, cQ)

∀j, aj , Qjβ(aj |st)← MLPβ(θ
′j
Q , θ

′i
Q)(aj)

∀j, aj , ak,

Qj,kδ (aj , ak|st)← MLPδ(θ
′j
Q , θ

′k
Q , θ

′i
Q)(aj , ak)

Compute Q(s, a) using Equation (5)
Q(s, a)← JOINTACTEVAL(

a, qη,ζ(.|st), Qβ(.|st)), Qδ(., .|st)

)
return Q(s, a)

end function
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Figure 6. The figure shows (a) the preprocessing of observation information into input for the GPL algorithm along with (b) the additional
processing steps done to the agent embedding vectors to handle environment openness. Part (b) shows an example processing step where
agent 3 is removed from the environment and two new agents joins the environment.

Algorithm 3 GPL Teammate Action Probability Computa-
tion

Input: state s, observed joint actions a,
agent model parameters (αq, η, ζ),
agent model LSTM hidden vectors ht−1,q
function PTEAM(s, a, αq, η, ζ, ht−1,q)

B, θq, cq ← PREPROCESS(s, ht−1,q)
θ′q, c

′
q ← LSTMαq (B, θq, cq)

∀j, n̄j ← (RFMζ(θ
′
q, c
′
q))j

∀j, qjη,ζ(.|s)← Softmax(MLPη(n̄j))

qη,ζ(a
−i|s, ai)←∏

j∈−i q
j
η,ζ(a

j |s)
return qη,ζ(a−i|s, ai)

end function

Using the functions we previously defined, we finally de-
scribe GPL’s training algorithm. GPL collects experience
from parallel environments through the modified Asyn-
chronous Q-Learning framework (Mnih et al., 2016) where
asynchronous data collection is replaced with a synchronous
data collection instead. Despite this, it is relatively straight-
forward to modify the pseudocode to use an experience
replay instead of a synchronous process for data collection.
As in the case of existing deep value-based RL approaches,
we also use a separate target network whose parameters
are periodically copied from the joint action value model
to compute the target values required for optimizing Equa-
tion 11. We finally optimize the model parameters in the
pseudocode to optimize the loss function provided in Sec-
tion 4.2 using gradient descent. GPL’s training process is
finally described in Algorithm 4.

E. Training Details
In this section we provide additional details about the train-
ing setup. First, we describe the way we add and remove
agents in our open teamwork experiments. Secondly, we
also provide details of the input padding method used by
the baseline algorithms. Finally, we provide details of the
architecture used in our experiments along with the hyper-
parameters used for training.

E.1. Environment openness

To induce environment openness in Wolfpack and LBF,
we sample the duration for which an agent exists in the
environment, along with the waiting duration required for
an agent which is removed from the environment to get
added to the environment. For Wolfpack, the active duration
is sampled uniformly between 25 and 35 timesteps while
the waiting duration is sampled uniformly between 15 and
25 timesteps. For level-based foraging, the active duration
is sampled uniformly between 15 to 25 timesteps while the
waiting duration is sampled uniformly between 10 to 20
timesteps.

In both environments, active duration is designed to be
longer than waiting duration to create environments with
large team sizes during interaction. On the other hand, both
active and waiting duration for level-based foraging is less
than its Wolfpack counterpart since the objects collected
in level-based foraging remain stationary which causes the
task to require less time to solve compared to Wolfpack.
As a consequence, an episode might finish early and using
larger active and waiting durations might cause agents to
not be added or removed from the environment at all.

On the other hand, openness in FortAttack is solely induced
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Algorithm 4 GPL Training

Input: Number of training steps T , time between updates tupdate, time between target network updates ttarg update.
Initialize the joint-action value model parameters, αQ, β, δ.
Initialize the agent model parameters, αq, η, ζ.
Create target joint-action value networks.

α′Q, β
′, δ′ ← αQ, β, δ

θQ, cQ, θ
targ
Q , ctargQ ← 0,0,0,0

θq, cq ← 0,0
dαQ, dαq, dβ, dδ, dη, dζ ← 0,0,0,0,0,0
Observe s from environment
for t = 1 to T do
hQ, hq, h

targ
Q ← (θQ, cQ), (θq, cq), (θ

targ
Q , ctargQ )

Q̄(s, .), h′Q, h
′
q ← QV(s, αQ, αq, β, δ, η, ζ, hQ, hq)

Sample action according to the learning algorithm being used,

ait ∼
{

eps-greedy(ε, Q̄(s, .)), if Q-Learning
pSPI(Q̄(s, .), τ) if SPI

Execute ai and observe a, r and s′.
Compute predicted joint-action value for at,

Qβ,δ(s, a)← QJOINT(s, a, αQ, β, δ, hQ)

Compute action-value of next state using target network.

Q̄′
(
s, ai

)
, htargQ , ← QV(s′, α′Q, αq, β

′, δ′, η, ζ, htargQ , h′q)

Compute target value for updating the joint-action value model with,

y (r, s′) = r + γmaxaiQ̄′
(
s′, ai

)
,

if Q-Learning is used, or

y (r, s′) = r + γ
∑
ai pSPI(a

i|s′)Q̄′
(
s′, ai

)
,

if using SPI.
Compute predicted action probabilities of teammates using the agent models,

qη,ζ(a
−i|s, ai)← PTEAM(s, a, αq, η, ζ, hq)

Using Qβ,δ(st, at), y (rt, st+1), and qη,ζ(a−i|s, ai), compute Lζ,η and Lβ,δ with Equation (10) and (11).
Accumulate parameter gradients for updates

dαQ = dαQ +∇αQ
Lβ,δ , dαq = dαq +∇αqLη,ζ

dβ = dβ +∇βLβ,δ , dδ = dδ +∇δLβ,δ
dη = dη +∇ηLη,ζ , dζ = dζ +∇ζLη,ζ

if t mod tupdate = 0 then
Update αQ, αq, β, δ, η, ζ using gradient descent based on dαQ, dαq, dβ, dδ, dη, dζ.
dαQ, dαq, dβ, dδ, dη, dζ ← 0,0,0,0,0,0

end if
if t mod ttarg update = 0 then
α′Q, β

′, δ′ ← αQ, β, δ
end if
(θQ, cQ), (θq, cq), s← h′Q, h

′
q, s
′

end for
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by agents getting destroyed or respawned. When an agent
is destroyed, its distance to the agent that shot it down de-
termines the waiting time required before it can reenter the
environment. Specifically, we measure the distance between
the destroyed agent and the shooter agent and linearly in-
terpolate between 0 and 80 timesteps and round it to the
closest integer to determine the waiting time. Agents are
out for longer as they get closer to the shooter when they
die.

Finally, for each environment, we uniformly sample the
type of a teammate from the pool of possible teammate
types when they are respawned. To provide different open
processes for training and generalization, we vary the upper
limit for team sizes in LBF, Wolfpack, and the attacking &
defending teams in FortAttack. During training, the team
size is limited to up to 3 agents. On the other hand, the
upper limit is increased to 5 agents for each team in the
generalization scenario.

E.2. Baseline input preprocessing

For our baseline approaches, in Section 5.2 we mentioned
about padding the input vectors. We specifically use a place-
holder value of -1 for features associated to inactive agents.
Furthermore, since our generalization experiments can have
up to five agents in the environment, these placeholders
are added to the input until the length of the input vector
corresponds to inputs of an environment with five agents.
Adding placeholder values of -1 also applies to the predicted
action probability concatenated to the input vectors for the
QL-AM baseline.

We also need to ensure that a feature is not always assigned
a placeholder value during training to prevent its associated
model parameters from not being able to generalize when
encountering input vectors which do not have placeholder
values assigned to the feature. To handle this, we randomly
assign teammates an integer index between one and four
when they are added to the environment. We prevent dif-
ferent teammates from having the same index and use it to
determine the location of their features in the input vector.
This index remains the same while an agent is active in
the environment. As a result, all features are assigned a
non-placeholder value at some point during training.

Aside from concatenating the predicted action probabilities
to the input vector, we tried the approach proposed by Tac-
chetti et al. (2019) which maps the output of the agent model
into an RGB image which contains information about the
probability of an agent being positioned at certain grid cells
following the action it might execute at the current state.
We use the same convolutional neural network architecture
used in their work to produce a fixed-length embedding of
the image. This embedding is subsequently concatenated to
the input vector and passed as input to a deep RL approach.

However, we decided not to use this approach as a baseline
due to the following reasons:

• Our experiments indicate no improvement in perfor-
mance in the 6.4 million steps we used to train our
approaches. Due to the increased number of parame-
ters introduced by the convolutional neural network,
more training steps might be required and we have not
found the number of steps that works for this approach
yet.

• A fair comparison against GPL might be difficult since
GPL does not receive RGB images as input.

• Actions in level-based foraging which lead to the same
teammate location in the next state such as staying still
and retrieving the object cannot be straightforwardly
mapped into an RGB image following the mapping
approach proposed by Tacchetti et al. (2019).

Nonetheless, we view the approach that concatenates pre-
dicted action probabilities to the input vector as an adequate
representative of approaches that augment the input with
teammate information and relies on a non-linear function
approximation to learn a policy or value estimate for the
agent.

E.3. Hyperparameters and network architecture

Details of the neural network architectures used by GPL in
Wolfpack and LBF are provided in Figure 7. Before being
processed by the LSTM, the type embedding network passes
the input through two fully connected layers. Results from
the embedding network are subsequently passed to the GPL
component that has the type embedding as input. For the
joint action value computation, the singular and pairwise
utility computation utilizes an architecture provided in Fig-
ure 7b and Figure 7c. The agent and auxiliary agent models
follows the architecture provided in Figure 7d, Figure 7e,
and Figure 7f.

To allow a fair comparison between the baselines and GPL,
the model architecture used by baselines in Wolfpack and
LBF follows the architecture used by GPL. Specifically,
baselines pass their input vectors to the architecture in Fig-
ure 7a and subsequently passes the output to an architec-
ture following Figure 7b to compute the action values. For
baselines that use agent and auxiliary agent models, the
architecture of these models follows the same architecture
provided by Figure 7d, Figure 7e, and Figure 7f.

For MADDPG and DGN, we use networks with similar sizes
to those used in open ad hoc teamwork experiments. The
only difference is we do not use LSTMs in the network since
there is no need for type inference in the MARL approaches.
As a result, the architecture used by DGN is simply the
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(a) LSTMαQ/q/p
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(b) MLPβ
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(c) MLPδ
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(d) Edge processing (GNNµ/ζ)
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(e) Node processing (GNNµ/ζ)
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(f) MLPµ and MLPη
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(g) Key, query, and value computation.
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(h) Action value computation.

Figure 7. GPL and baseline architecture details for LBF and Wolfpack: We provide details of the architecture used in GPL’s type
embedding network (a), singular utility computation (b), pairwise utility computation (c), edge embedding computation in the agent
and auxiliary agent model (d), node embedding computation (e) in the agent and auxiliary agent model, the MLP used by the agent
and auxiliary agent model to process the resulting GNN node embeddings (f), the size of the MLPs used for computing the key, query,
and value for multihead attention in GNN-QL and GNN-QL-AM (g), and the final layer used in action value computation for GNN-QL
& GNN-QL-AM. In all images, FC denotes a fully connected layer, LSTM denotes an LSTM layer, and the accompanying number
denotes the size of the layer. Labels on the arrows indicate the non-linear functions used between the layers while no labels indicate
no non-linear functions being applied to the resulting output vectors. With the baselines, we combine the architectures in (a) and (b) to
compute the action values while the agent and auxiliary agent model used in some of the baselines follow (d), (e), and (f). With GNN-QL
and GNN-QL-AM, the layer defined by (g) and (h) is subsequently used after (a) and (b) to compute the action values.

architecture used by GNN with the LSTM layers replaced
with an MLP with the same output size. The decentralized
policy for MADDPG is also similar with the value network
architecture of QL with the LSTM replaced by an MLP with
the same output size.

For training, we use the following hyperparameters for GPL
and all proposed baselines:

• K = 5 for the low rank factorization of pairwise utility
terms in GPL.

• 8 attention heads were used for DGN, GNN-QL and
GNN-QL-AM.

• Data is collected from 16 parallel environments to col-
lect a total experience of 6.4 million environment steps.

• Models are optimized using the Adam optimization
algorithm with a learning rate of 2.5× 10−4.

• Models are updated every 4 steps on the parallel envi-
ronment.

• Instead of updating the target networks by periodically
copying the joint action value network, target networks
are updated using a weighted average of the parameters
of the joint action value network. Assuming that φ is a
parameter of the joint action value network, we update
the corresponding parameter in the target network φ

′

by using φ
′ ← (1− α)φ

′
+ αφ, with α set to 10−3.

• ε for the exploration policy is linearly annealed from 1
to 0.05 in the first 4.8 million environment steps and
remains the same afterwards.

• We also use an attention weight regularization term, λ,
of 0.03 for DGN and a temperature of 0.1 for MAD-
DPG’s gumbel softmax function.

These hyperparameters and network architectures are ob-
tained by initially searching for a network and hyperpa-
rameter configuration which works for QL. After finding
an architecture along with a set of hyperparameters which
works best for QL, we train a similar sized architecture
with the same hyperparameters for the rest of the baselines.
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Despite our lack of hyperparameter tuning for the rest of
the baselines, we still obtain better performance than QL in
almost all cases.

For FortAttack, we initially started the training process with
the same hyperparameter setup as LBF and Wolfpack. Due
to QL not learning, we decided to increase the size of the
network along with running the training process for more
timesteps to take into account of the increased complexity of
the environment compared to Wolfpack and LBF. Nonethe-
less, we did not find any success in training QL regardless
of the different network sizes and hyperparameters we tried.

We subsequently focused on finding a network architecture
along with hyperparameters that worked for GPL. A similar
sized network with GPL along with GPL’s training hyper-
parameters were used for training other baselines. This
resulted in the following architecture and hyperparameters
for FortAttack:

• K = 6 for the low rank factorization of pairwise utility
terms in GPL.

• 8 attention heads were used for DGN, GNN-QL and
GNN-QL-AM.

• Data was collected from 16 parallel environments to
collect a total experience of 16 million environment
steps.

• Models were optimized using the Adam optimization
algorithm with a learning rate of 1.0× 10−4.

• Models were updated every 4 steps on the parallel
environment.

• Instead of updating the target networks by periodically
copying the joint action value network, target networks
were updated using a weighted average of the parame-
ters of the joint action value network. Assuming that
φ is a parameter of the joint action value network, we
updated the corresponding parameter in the target net-
work φ

′
by using φ

′ ← (1− α)φ
′
+ αφ, with α set to

10−3.

• The exploration parameter ε was linearly annealed
from 1 to 0.05 in the first 8 million environment steps
and remains the same afterwards.

• 64 units were used in the fully connected and LSTM
layer for LSTMαQ/q/p

. For comparison, in Wolfpack
and LBF we used 100 units.

• 128 units were used for both fully connected layers in
MLPβ and MLPδ. For comparison, we used 70 and
60 units respectively in Wolfpack and LBF.

• 40 and 70 units were used respectively for the first and
second layer in the edge and node processing network
(GNNµ/ζ) of the agent model. For comparison, we
used 30 and 70 units respectively for Wolfpack and
LBF.

• We used 128 units in MLPµ and MLPν . In compari-
son, we used 20 units for Wolfpack and LBF.

• Finally, we used 128 units for both fully connected lay-
ers involved in the key, query, and value computation
under GNN-QL and GNN-QL-AM. For comparison,
we used 70 and 60 units respectively for Wolfpack and
LBF.

Finally the way these components were assembled into the
architectures of the baselines was still the same between
FortAttack and the other environments.

F. Additional MARL Training Results
In this section, we provide additional results from the MARL
algorithms we used in our open ad hoc training when in-
teracting against teammates that are jointly trained with
itself.

F.1. MARL training performance against jointly
trained teammates

Following training that we did to create the MARL policies
we evaluated in Section 5.5, we evaluate the MARL policies
in an open process that is similar to the open process used in
the training setup in Section 5.5. The only difference with
the open process used in the training setup in Section 5.5 is
that the sampled teammates are always agents that are jointly
trained with the MARL agent. From the results provided in
Figure 8, we see that the MARL baselines achieved better
performances than when they interact against our ad hoc
teamwork teammates.

F.2. MARL generalization performance against jointly
trained teammates

In this section, we describe the performance of the MARL
policies when the open process in Section F.1 is changed
such that the upper limit on team size is five agents for LBF,
Wolfpack, and attacker & defender teams in FortAttack. The
results are provided in Table 3.

G. Team size & Fixed type generalization
results

To further demonstrate that GPL outperforms the single-
agent baselines in open ad hoc teamwork, we train GPL
under different open processes than what we used in our
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(c) Results in FortAttack

Figure 8. Open MARL results (training) against jointly trained agents: Average and 95% confidence bounds of MADDPG and DGN
returns during training (up to 3 agents in a team for LBF, Wolfpack, and attacker & defender teams in FortAttack). For each algorithm,
training is done using eight different seeds and the resulting models are saved and evaluated every 160000 global steps. Compared to
Figure 2, we see that the MARL baselines achieved better performance when interacting against jointly trained teammates than when they
interacted with the unknown policies during open ad hoc teamwork.

Environment MADDPG DGN
LBF 0.64 ± 0.15 1.65 ± 0.25

Wolfpack -1.15 ± 0.20 9.36 ± 2.46
FortAttack 0.03 ± 1.03 -8.13 ± 0.98

Table 3. Open MARL results (generalization) against jointly
trained agents: Average and 95% confidence bounds of MAD-
DPG and DGN returns during generalization (up to 5 agents in
a team for LBF, Wolfpack, and attacker & defender teams in
FortAttack). For each algorithm, training is done using eight differ-
ent seeds and the resulting models are saved and evaluated every
160000 global steps. Among all saved policies, we choose the
checkpoint that has the highest average performance during train-
ing (Section F.1) and report the mean and 95% confidence bounds
of the performance of the policies at that checkpoint.

main experiment in Section 5.5. We exclude MARL base-
lines from these experiments since our main experiment
shows that they consistently perform worse than our worst
performing single-agent RL baselines. For the first exper-
iment, we train agents in LBF, Wolfpack, and FortAttack
under an open process where the learner’s team consists of
two agents during training.

The other experiment trains agents in FortAttack under two
open processes where the types of teammates remains fixed
during interaction. In the first open process, defender team-
mate type is fixed towards guard type 4 mentioned in Sec-
tion B.4.3. By contrast, the second open process sets the
defender types as guard type 6. The attackers in both open
processes are configured to have attacker type 2.

Figure 9 shows the results for the fixed team size experi-
ments. On the other hand, Figure 10 provides the resulting
performance from training the learner against teammates of
fixed types. The results further demonstrates GPL’s superior
performance to baselines for open ad hoc teamwork.

H. Wolfpack action value analysis
We provide an analysis of the individual and joint action
values learned by GPL in Wolfpack. For this analysis, we
still use Q̄j as defined in Section 5.6. On the other hand,
since the Wolfpack environment has no shooting actions,
we replace Q̄j,k with Cj,k(a) that we define in Equation 16.

Cj,k(a) = Qj,ki (aj , ak|s)−Nj,k(a) (16)

Nj,k(a) =

∑
x,y∈A,x 6=aj ,y 6=ak Q

j,k
i (x, y|s)

|A|2 − 1
(17)

Cj,k(a) denotes the difference between the pairwise action
value associated to the action chosen by the agents compared
to the average pairwise action value of other pairs of actions
it could have taken. In our analysis, we only investigate
Cj,k(a) for observations that precede the capture of a prey
by the learning agent. We further filter out values Cj,k(a)
for which j and k do not belong to the pack of wolves that
successfully captured a prey together with the learning agent.
By investigating this, we wanted to see whether GPL assigns
a higher pairwise action value towards pairs of actions that
lead to a joint prey capture.

The result of our analysis is provided in Figure 11. We
find that GPL assigns higher individual action values for a
teammate as they get closer towards the prey that the learn-
ing agent is hunting. This is a reasonable value assignment
since teammates can better help the learning agent hunt as
they get closer to the target prey. On the other hand, we also
see that GPL progressively learns to increase the difference
in pairwise action values between pairs of actions that lead
to a capture and other alternative pairs of actions. Therefore,
GPL helps the learning agent to understand the positive con-
tribution resulting from pairs of actions leading towards a
capture.
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Figure 9. Team size generalization results: Average rewards and 95% confidence bounds of GPL and baselines from team size
generalization experiments collected over eight seeds. Agent was trained to interact in a team of two agents for LBF, Wolfpack, and
FortAttack. With FortAttack, we used a setup where the number of attackers was always equal to the number of teammate defenders.
Value networks are stored every 160000 steps and the performance of greedy policies from value networks stored at the checkpoint with
the highest average performance during training were used to compute the average returns and their 95% confidence interval. This result
shows that GPL-Q still outperforms other single-agent RL baselines, except for LBF where its performance is not significantly different
from GNN and GNN-AM.
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(a) Performance against Type 4 teammates in FortAttack.
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(b) Performance against type 6 teammates in
FortAttack.

Figure 10. Fixed type experiment results: Average rewards and 95% confidence bounds of GPL-Q and baselines from fixed type
experiments collected over eight seeds in FortAttack. Agent was trained to interact in a team of up to 3 agents with all teammates having
a fixed type. Value networks are stored every 160000 steps and the performance of greedy policies from value networks stored at the
checkpoint with the highest average performance during training were used to compute the average returns and their 95% confidence
interval. The results illustrates the performance of the methods when trained against (a) type 4 teammates and (b) type 6 teammates.

I. Baseline action-value analysis
In this section, we analyze the action-value estimates pro-
duced by the single-agent RL baselines used in our experi-
ments. Despite recognizing the value of shooting, we show
that the baselines do not learn the effects of other agents’
action towards the learner as GPL does. This results in the
significant performance gap between GPL and the baselines
in our experiments.

Following our analysis in Section 5.6, we limit the baselines’
action-value analysis to the FortAttack environment. Our
first analysis is done by comparing the difference between
the action-value of shooting, Q(s, shoot), with the maxi-
mum action-value of all possible actions, maxaQ(s, a), at
different states. When this difference is closer to zero, it
means that the agent is more likely to choose to shoot at s.
As provided by Figure 12, we subsequently compare this

value between states where no attacker is in the learner’s
shooting range and states where at least one attacker is in
the learner’s shooting range.

As learning progresses, our results show that all algorithms
results in the learner becoming increasingly aware of the
value of shooting attackers. For GNN, the gap between
the red and blue lines become increasingly large around
the 50th checkpoint, which coincides with when GNN and
GNN-AM agents start to increase their performance. On
the other hand, although there is still a significant difference
between the values of the red and blue line, QL and QL-AM
does not result in a large difference to these lines compared
to GNN/GNN-AM. This inability to further highlight the
value of shooting is then the reason why QL/QL-AM does
not perform as good as GNN/GNN-AM.

We now show that despite learning the value of shooting
attackers that are inside the learner’s range, the single-agent
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(a) Correlation between a teammate’s Q̄j with their distance
to the closest prey from the learning agent.
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(b) Average value of Cj,k(a) for situations where agent j, k,
and learning agent’s actions leads to the capture of a prey.

Figure 11. FortAttack individual and pairwise action value visualizations: The visualizations show how various metrics evolve
across different checkpoints and correlate with agent’s learning performance. Data is obtained by executing the greedy policy entailed by
the value network for 24000 timesteps. (11a) The Pearson correlation coefficient between a teammate’s distance to the prey closest from
the learning agent and Q̄j is gathered and visualized. (11b) Cj,k(a) is computed for observations preceding a capture of a prey by the
learning agent. Analysis is further limited towards the edges associated to pairs of edges connecting agents that hunted the prey together
with the learning agent.

RL baselines do not learn concepts that are learned by GPL’s
pairwise utility model, MLPδ. Since all baselines do not
have a CG-based joint action-value model, it is difficult
to measure Q̄j,k as in Section 5.6. The closest metric to
Q̄j,k that is still obtainable from the value networks of the
baselines is the state value, V (s), defined as :

V (s) = maxaQ(s, a).

If we collect V (s) in a reasonably large number of states
and average it between states that share a specific trait, we
can obtain a Monte Carlo estimate of the value assigned to
that specific trait by the value network.

Following a similar data collection process for our analysis
in Section 5.6, we measure V (s) and contrast its average for
states where there is at least an attacker in any defender’s
shooting range and states where there are no attackers in
any defender’s shooting range. By contrasting the green and
blue line in Figure 13, we see that QL and QL-AM assign
higher values to states where no attackers in any defender’s
shooting range. On the other hand, the blue and green
line in plots associated to GNN and GNN-AM has similar
values in most checkpoints. This demonstrates the baselines’
inability to recognize the value of having an attacker in a
defender’s shooting range or, even worse, their preference
towards states where there are no attackers in any defender’s
shooting range. Unlike the baselines, GPL learners do learn
to assign higher utility values when an attacker is inside a
defender’s shooting range.

We have then showed that the single-agent RL baselines
failed to learn the effects of other agents’ action towards
the learner as GPL. With GPL, learning these concepts be-
came an important path to enable improved performance
in FortAttack. The baselines’ inability to learn these con-

cepts eventually lead them to produce subpar performance
compared to GPL.
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(a) Q(s, shoot) − maxaQ(s, a) for QL.
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(b) Q(s, shoot) − maxaQ(s, a) for QL-AM.
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(c) Q(s, shoot) − maxaQ(s, a) for GNN.
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(d) Q(s, shoot) − maxaQ(s, a) for GNN-AM.

Figure 12. Q(s,shoot) − maxaQ(s,a) for single-agent RL baselines: This visualization compares the action-value of shooting and the
estimated optimal action for (a) QL, (b) QL-AM, (c) GNN, and (d) GNN-AM. We obtain this figure by running a policy entailed by the
value-networks that we saved during open ad hoc teamwork training done in Section 5.5. For each checkpoint, we gather data by running
the policy for 480000 steps and recording the observed states. The observed states is subsequently organized based on whether there is at
least an attacker is in the learner’s shooting range or not. We finally measure Q(s, shoot) − maxaQ(s, a) at these states and visualize its
mean and 95% confidence intervals. The blue line corresponds to states where there is no attacker in the learner’s shooting range while
the red line represents states where there is at least an attacker in the learner’s shooting range. As training commences for all algorithms,
this visualization shows that shooting becomes increasingly likely of becoming the optimal action whenever an attacker is inside the
learner’s shooting range.
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(a) State values for QL.
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(b) State values for QL-AM
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(c) State values for GNN
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(d) State values for GNN-AM

Figure 13. State values for all single-agent RL baselines: This visualization compares the state values for (a) QL, (b) QL-AM, (c) GNN,
and (d) GNN-AM. This figure is obtained by running the policies that are stored during the open ad hoc teamwork training described in
Section 5.5. Data collection is done by running these policies for 480000 steps and recording the observed states and predicted state-values
throughout the process. To get a Monte Carlo estimate of the values of states when at least an attacker is in the defender’s shooting range
and when there are no attackers in any defender’s shooting range, we average the recorded state values for these two situations. The blue
line shows the average and 95% confidence bounds of V (s) when at least an attacker is in a defender’s shooting range. By contrast, the
green line shows the average and 95% confidence bounds of V (s) when no attacker is in any defender’s shooting range. This figure shows
that either the baselines assigns higher values to states where no attacker is in any defender’s shooting range (QL and QL-AM) or the
baselines most often fails to distinguish the value of both types of states (GNN and GNN-AM).


