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Abstract

This paper presents a novel approach to forecast-
ing of hierarchical time series that produces co-
herent, probabilistic forecasts without requiring
any explicit post-processing step. Unlike the state-
of-the-art, the proposed method simultaneously
learns from all time series in the hierarchy and
incorporates the reconciliation step as part of a
single trainable model. This is achieved by apply-
ing the reparameterization trick and utilizing the
observation that reconciliation can be cast as an
optimization problem with a closed-form solution.
These model features make end-to-end learning of
hierarchical forecasts possible, while accomplish-
ing the challenging task of generating forecasts
that are both probabilistic and coherent. Impor-
tantly, our approach also accommodates general
aggregation constraints including grouped, tempo-
ral, and cross-temporal hierarchies. An extensive
empirical evaluation on real-world hierarchical
datasets demonstrates the advantages of the pro-
posed approach over the state-of-the-art.

1. Introduction
In many practically important applications, multivariate
time series have a natural hierarchical structure, where time
series at upper levels of hierarchy are aggregates of those
at lower levels (Petropoulos et al., 2020). Prominent exam-
ples include retail sales, where sales are tracked at product,
store, state and country levels (Seeger et al., 2016; 2017),
and electricity forecasting, where consumption/production
quantities are desired at the individual, grid, and regional
levels (Taieb et al., 2020; Jeon et al., 2019). Although series
at the bottom of the hierarchy are typically sparse, noisy
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and devoid of the high level patterns that are apparent in
aggregate (Ben Taieb et al., 2017), forecasts have value
at all levels: bottom-level forecasts may be of more inter-
est for automated decision making on operational horizons
whereas forecasts at the top level enable strategic decision
making (Januschowski & Kolassa, 2019). However, generat-
ing forecasts independently for time series at each level does
not guarantee that the forecasts are coherent, i.e., forecasts
of aggregated time series are the sum of forecasts of the
corresponding disaggregated time series.

Thus, the main challenge of forecasting hierarchical time
series is to exploit the information available across all levels
of a given hierarchy while producing coherent forecasts.
Prior work in hierarchical forecasting follows a two-stage
approach: base forecasts are first obtained independently
for each time series in the hierarchy and are then combined
and revised in a post-processing step to ensure coherence.
Two main issues arise with such a two-stage procedure: (i)
the model parameters for each time series are learned inde-
pendently, thereby discarding information, and (ii) the base
forecasts are revised without any regard to the learned model
parameters. Another fundamental limitation of most exist-
ing methods is that they can only produce point (rather than
probabilistic) forecasts. Probabilistic forecasts are required
in practice for better decision making and risk manage-
ment (Berrocal et al., 2010). The notable exception is (Ben
Taieb et al., 2017), although it is still a two-step procedure.

In this work, we present a novel approach to probabilistic
forecasting of hierarchical time series that incorporates both
learning and reconciliation into a single end-to-end model.
Model parameters are learned simultaneously from all time
series in the hierarchy. The probabilistic forecasts from the
model are guaranteed to be coherent without requiring any
post-processing step. The key insights behind the proposed
method are the differentiability of the sampling operation,
thanks to the reparametrization trick (Kingma & Welling,
2013), and the implementation of the reconciliation step on
samples as a convex optimization problem. This allows one
to combine typically independent components (generation
of base forecasts, sampling and reconciliation) into a single
trainable model.
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Figure 1. Example of hierarchical time series structure for n = 8
time series with m = 5 bottom and r = 3 aggregated time series.

While our approach is fully general and can be used with
any multivariate model, we show its empirical effective-
ness via a specific multivariate, nonlinear autoregressive
model, DeepVAR (Salinas et al., 2019), which exploits in-
formation across all time series in the hierarchy to improve
forecast accuracy.1 Moreover, since our model generates
coherent samples directly, it can be trained not only with the
log-likelihood loss but with any loss function that is of prac-
tical interest. Our approach accommodates to incorporate
complicated structural constraints on the forecasts via the
use of differentiable convex optimization layers (Agrawal
et al., 2019a). For hierarchical reconciliation as we con-
sider it here, this reduces to a simple closed-form solution
thus facilitating its inclusion as the last step of the trainable
model.

In what follows, we provide the necessary background of
the hierarchical forecasting problem and review the state-of-
the art literature (Section 2). We then present our model in
Section 3 and describe the training procedure. We provide a
thorough empirical evaluation on several real-world datasets
in Section 4 and conclude in Section 5.

2. Background and Related Work
A hierarchical time series is a multivariate time series that
satisfies linear aggregation constraints. Such aggregation
constraints typically encode a tree hierarchy (see Figure 1)
but need not necessarily. For example, grouped (Hyndman
et al., 2016), temporal (Athanasopoulos et al., 2017), and
cross-temporal aggregations (Spiliotis et al., 2020) can also
be expressed with linear constraints.

2.1. Preliminaries

Consider a time horizon t = 1, . . . , T . Let yt ∈ Rn denote
the values of a hierarchical time series at time t, with yt,i ∈
R the value of the i-th (out of n) univariate time series. Here
we assume that the index i of the individual time series is
given by the level-order traversal of the hierarchical tree
going from left to right at each level. Further, let xt,i ∈

1 In fact, we show in experiments that even without reconcilia-
tion DeepVAR model outperforms classical hierarchical methods.

Rk be time varying covariate vectors associated to each
univariate time series at time t, and xt := [xt,1, . . . ,xt,n] ∈
Rk×n. We use the shorthand y1:T to denote the sequence
{y1,y2, . . . ,yT }.

We refer to the time series at the leaf nodes of the hierarchy
as bottom-level series and those of the remaining nodes as
aggregated series. We also call a given set of forecasts for
all time series in the hierarchy that are generated without
heeding the aggregation constraint as base forecasts (not to
be confused with bottom-level). For notational convenience
we split the vector of all series yt into m bottom entries
and r aggregated entries such that yt = [at bt]

> with
at ∈ Rr and bt ∈ Rm. Clearly n = r + m. For an
individual hierarchy or grouping, an aggregation matrix
S ∈ {0, 1}n×m is defined and the yt,bt, and S satisfy

yt = Sbt ⇔
[
at

bt

]
=

[
Ssum

Im

]
bt, (1)

for every t. Ssum ∈ {0, 1}r×m is a summation matrix and
Im is the m×m identity matrix. We also find it useful to
equivalently represent (1) as

Ayt = 0, (2)

where A := [Ir | − Ssum] ∈ {0, 1}r×n, 0 is an r-vector of
zeros, and Ir is the r × r identity. Formulation (2) allows
for a natural definition of forecast error (see below).

We illustrate our notation with the example in Figure 1.
For this hierarchy, at = [y, y1, y2]>t ∈ R3 and bt =
[b1, b2, b3, b4, b5]>t ∈ R5. The aggregation matrix S is

S =

[
Ssum

I5

]
=


1 1 1 1 1
1 1 0 0 0
0 0 1 1 1

I5

 .

In hierarchical time series forecasting, one is typically in-
terested in producing forecasts for all the time series in the
hierarchy for a given number τ of future time steps after the
present time T . Here τ is the length of the prediction or fore-
cast horizon. The forecasts are either point predictions or
probabilistic in nature, in which case they can be represented
as a set of Monte Carlo samples drawn from the forecast
distribution. For h ≤ τ we denote an h-period-ahead fore-
cast sample by ŷT+h, with the entire set of samples that
comprises the probabilistic forecast written as{ŷT+h}.

Clearly, an important aspect of hierarchical forecasting is
the requirement that the forecasts generated respect the ag-
gregation constraint, which can be formalized as follows.
Definition 2.1. Let S ⊆ Rn be a linear subspace defined as

S := {y|y ∈ null(A)}.
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A point forecast ŷT+h is said to be coherent iff ŷT+h ∈ S.
The coherency error of ŷT+h is defined as r̂T+h = AŷT+h.
Similarly, a probabilistic forecast represented as samples
{ŷT+h} is coherent iff each of its samples is. Past observa-
tions yt, t = 1, 2, . . . , T are coherent by construction.

Recent work Panagiotelis et al. (2020) proposes an alternate
definition of coherence directly on probability densities.

2.2. Related Work

Existing approaches to hierarchical forecasting methods
mainly consider point forecasts with the notable excep-
tion (Ben Taieb et al., 2017) tackling probabilistic fore-
casts.2. In this section, we review several of the state-of-the-
art methods.

Mean Forecast Combination & Reconciliation. Ap-
proaches towards forecasting the means of hierarchical time
series follow a two-step procedure: (i) forecast each time
series independently to obtain base forecasts ŷT+h and
(ii) produce revised forecasts ỹT+h through reconciliation.
Given base forecasts ŷT+h, the methods in (Hyndman
et al., 2011; Wickramasuriya et al., 2019) obtain reconciled
forecasts

ỹT+h = SP ŷT+h, (3)

where S is the aggregation matrix and P ∈ Rm×n is a ma-
trix that depends on the choice of the hierarchical forecast-
ing approach. When the method is bottom-up (BU), P =
[0m×r|1m×m]. For top-down (TD), P = [pm×1|0m×n−1]
where p is an m-vector summing to 1 that disaggregates
the top-level series proportionally to the bottom level series.
Middle-out (MO) can be analogously defined (Hyndman
& Athanasopoulos, 2017). Connections to ensembling are
presented in (Hollyman et al., 2021).

The MinT method (Wickramasuriya et al., 2019) proposes
reconciled forecasts using P =

(
S>W−1h S

)−1 (
S>W−1h

)
,

where Wh is the covariance matrix of the h-period-ahead
forecast errors ε̂T+h = yT+h − ŷT+h. It is shown that
when the ŷT+h are unbiased, this choice of P minimizes
the sum of variances of the forecast errors.

The advantages of the MinT approach are that its revised
forecasts are coherent by construction and the reconcilia-
tion approach incorporates information from all levels of
hierarchy simultaneously. Disadvantages are the strong as-
sumption of base forecasts to be unbiased and that the error
covariance Wh is hard to obtain for general h.

The unbiasedness assumption in MinT is relaxed in
(Ben Taieb & Koo, 2019). Rather than computing the
minimum-variance revised forecasts, the authors seek to

2This is despite the general recognition of the practical im-
portance of probabilistic forecasting for downstream applications
(e.g., (Böse et al., 2017; Faloutsos et al., 2019)).

find the optimal bias-variance trade-off by solving an empir-
ical risk minimization (ERM) problem. This method also
generates base forecasts, followed by reconciliation.

Van Erven & Cugliari (2015) follow the two-stage scheme
too. Their reconciliation approach is a weighted projection
of the base forecasts onto the coherent subspace S:

ỹt+h = arg min
x

||Q(ŷt+h − x)||22
s.t. x ∈ S ∩ B.

Q is a diagonal weight matrix that encodes knowledge/belief
about the relative magnitudes of the base forecast errors for
each series in the hierarchy and B is a set of additional
constraints to be imposed on the reconciled forecasts.

Probabilistic Methods. In contrast to the methods in the
previous section, Ben Taieb et al. (2017) consider forecast-
ing probability distributions (Gneiting & Katzfuss, 2014)
rather than just means (i.e., point forecasts). In particular
they estimate the conditional predictive CDF for each series
i in the hierarchy:

Fi,T+h(yi | y1, . . . ,yT ) = P(yi,T+h ≤ yi | y1, . . . ,yT ).

Ben Taieb et al. (2017) start by generating independent fore-
casts of the conditional marginal distributions (e.g., mean
and variance from MinT). They obtain probabilistic fore-
casts of the aggregate series by sampling from the bottom-
level marginals of their children and re-ordering the samples
to match an empirical copula generated from the forecast
errors. Thus far, this method is a probabilistic “bottom-up”
approach and emits coherent samples by construction. To
share information between the levels, a combination step is
performed on the means of the learned marginal distribu-
tions and the bottom-up samples are adjusted accordingly.

To the best of our knowledge, none of the existing ap-
proaches to probabilistic forecasting take an end-to-end
view. This introduces an opportunity to handle the trade-off
between forecast accuracy and coherence better through a
single, joint model where reconciliation is performed along-
side forecast learning. The flexibility of our framework
means that we can take advantage of the increasingly rich
literature on neural forecasting models, e.g., Benidis et al.
(2020) provide an overview. Recent forecasting competi-
tions have shown them to be highly effective (Makridakis
et al., 2018; Bojer & Meldgaard, 2020; Makridakis et al.,
to appear). Of particular relevance are multivariate, proba-
bilistic, forecasting models (Rasul et al., 2021; de Bézenac
et al., 2020; Salinas et al., 2019). These estimate the depen-
dency structure in the time series panels explicitly and can
naturally be incorporated into our approach.
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Figure 2. Model architecture. Hierarchical time series data is used to train a multivariate forecaster. Learned distribution parameters
along with the reparameterization trick allow this distribution to be sampled during training. Optionally, a nonlinear transformation of the
samples (e.g., normalizing flow) can account for data in a non-Gaussian domain. Samples are then projected to enforce coherency. From
the empirical distribution represented by the samples, sufficient statistics Θc

t can be computed and used to define an appropriate loss.

3. End-to-End Hierarchical Forecasting
Two primary components comprise our approach: (i) a fore-
casting model that produces a multivariate forecast distri-
bution over the prediction horizon; and (ii) a sampling &
projection step where samples are drawn from the forecast
distribution, and are then projected onto the coherent sub-
space. Figure 2 illustrates the architecture of the model.

It is important to note that when both of the above compo-
nents are amenable to auto-differentiation, they constitute a
single global model whose parameters are learned end-to-
end by minimizing a loss on the coherent samples directly.
In particular, the sampling step can be differentiated us-
ing the reparametrization trick (Kingma & Welling, 2013)
and the projection step, which is an optimization problem,
can be formed as a differentiable convex optimization layer
(DCL) (Amos & Kolter, 2017; Agrawal et al., 2019a;b). In
the setting of hierarchical and grouped time series, the opti-
mization problem has a closed-form solution requiring only
a matrix-vector multiplication (with a pre-computable ma-
trix) and hence is trivially differentiable. However, the pro-
posed approach can handle more sophisticated constraints
than those imposed by hierarchical setting via DCL.

3.1. Model

We now describe the instantiation of our model that is ex-
plored in this work. We use DeepVAR (Salinas et al., 2019)
as the base multivariate forecaster because of its simplicity
and performance. A schematic of the full hierarchical model
is shown in Figure 3. The red dashed line represents the
DeepVARmodel (described below) and the blue dashed line
highlights the sampling and projection steps. Once trained,
the model produces coherent forecasts by construction.

3.1.1. DEEPVAR

DeepVAR is a multivariate, nonlinear generalization of
classical autoregressive models (Salinas et al., 2019; 2020;
Alexandrov et al., 2019).3 It uses a recurrent neural network
(RNN) to exploit relationships across the entire history of
the multivariate time series and is trained to learn parameters
of the forecast distribution. More precisely, given a feature
vector xt and the multivariate lags yt−1 ∈ Rn as inputs,
DeepVAR assumes the predictive distribution at time step t
is parameterized by Θt, which are the outputs of the RNN:

Θt = Ψ(xt,yt−1,ht−1; Φ). (4)

Here Ψ is a recurrent function of the RNN whose global
shared parameters are given by Φ and hidden state by ht−1.
Typically, DeepVAR assumes that the forecast distribution
is Gaussian in which case Θt = {µt,Σt}, where µt ∈ Rn

and Σt ∈ Sn+, although it can be extended to handle other
distributions. The unknown parameters Φ are then learned
by the maximum likelihood principle given the training data.
Note that for simplicity we specify only one lag yt−1 as the
input to the recurrent function but in the implementation
lags are chosen from a lag set determined by the frequency
of the time series (Alexandrov et al., 2019).

In the hierarchical setting, the covariance matrix Σt captures
the correlations imposed by the hierarchy as well as the
relationships among the bottom-level time series. In our
experience with industrial applications, we often find that
the bottom-level time series are too sparse to learn any
covariance structure let alone more complicated nonlinear
relationships between them. Given this, we propose to learn
a diagonal covariance matrix Σt when producing the initial
base forecasts; if more flexibility is needed to capture the
nonlinear relationships one could transform base forecasts
using normalizing flows (see Section 3.1.2). Note that the
linear relationships between the aggregated and bottom-

3Here we use the version without the Copula transformation.
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Figure 3. Specific instantiation of our approach with
DeepVAR (Salinas et al., 2019) multivariate forecasting
model (red boundary). Sampling and projection steps are
highlighted by the blue boundary.

level time series are enforced via projection.

Although we assume Σt is diagonal, this is not equivalent
to learning independent models for each of the n time series
in the hierarchy. In fact, the mean µt,i and the variance
Σt,(i,i) of the forecast distribution for each time series are
predicted by combining the lags of all time series yt−1
and features xt in a nonlinear way using shared parameters
Φ. In our experiments, we notice that this global learning
already produces much better results than the hierarchical
forecasting methods that do explicit reconciliation of the
forecasts produced independently by univariate models.

3.1.2. SAMPLING AND PROJECTION

Next we describe how to generate coherent forecasts given
distribution parameters Θt = {µt,Σt} from the RNN. To
this end, we first generate a set of N Monte Carlo samples
from the predicted distribution, {ȳt ∈ Rn} ∼ N (µt,Σt).
Note that this sampling step is differentiable with a simple
reparameterization of N (µt,Σt):

ȳt = µt + Σ
1/2
t z,

with z ∼ N (0, I). That is, given the samples from the stan-
dard multivariate normal distribution, which are independent
of the network parameters, the actual forecast samples are
deterministic functions of µt and Σt.

Optionally, in order to capture the nonlinear relationships
among the bottom-level time series, the generated samples
can be transformed using a learnable nonlinear transforma-
tion. In this case, “forecasts” from the base model do not
directly correspond to un-reconciled forecasts for the base
series, but rather represent predictions of an unobserved
latent state. This is similar to the standard technique of
handling non-Gaussian, nonlinear data by transforming it
via normalizing flows into a Gaussian space where tractable
methods can be applied. The main difference in our case
is that the nonlinear transformation need not be invertible
since our loss is computed on the samples directly (see
Section 3.2).

Finally, we enforce coherence on the (transformed) samples
{ȳt} obtained from the forecast distribution by solving the
following optimization problem:

ŷt = arg min
y∈Rn

||y − ȳt||2

s.t. Ay = 0.
(5)

Note that this is essentially projection onto the null space
of A which can be computed with a closed-form projection
operator:

M := I −A>(AA>)−1A. (6)

In other words, ŷt = M ȳ ∈ S . Note that AA> is invertible
for the hierarchical setting. M , which is time-invariant,
can be computed offline once, prior to the start of training.
In principle, the projection problem (5) can accommodate
additional convex constraints. Although this precludes the
possibility of a closed-form solution, the projection can
be implemented with a differentiable layer with the DCL
framework (Agrawal et al., 2019a).

Accuracy-coherency trade-off. In practice, coherency
seems to improve accuracy (Wickramasuriya et al., 2019);
our experiments confirm that as well. However, if there
is a trade-off, we can convert the constrained optimization
problem (5) into unconstrained problem with a penalty pa-
rameter (which would then be a hyperparameter giving the
trade-off). Values close to zero for this penalty parameter
enforce no coherency and larger values make the predictions
more coherent. Depending on the application, one could se-
lect either the soft penalized version or the hard constrained
version.

3.2. Training

The training of our hierarchical forecasting model is similar
to DeepVAR except that the loss is directly computed on the
coherent predicted samples. Given a batch of training series
Y := {y1,y2, . . . ,yT }, where yt ∈ Rn, and associated
time series features X := {x1,x2, . . . ,xT }, the likelihood



End-to-End Learning of Coherent Probabilistic Forecasts for Hierarchical Time Series

of the shared parameters Φ is given by

`(Φ) = p(Y ;X,Φ) =

T∏
t=1

p(yt|y1:t−1; x1:t,Φ)

=

T∏
t=1

p(yt|yt−1; xt,ht−1,Φ) =

T∏
t=1

p(yt; Θt),

where Θt are the distribution parameters (Eq. (4)) predicted
by the DeepVAR model.

In our hierarchical setting, the learnable parameters are still
given by Φ but the model outputs coherent Monte Carlo
samples {ŷt} at each time step t. We are then able to com-
pute sufficient statistics Θc

t on {ŷt} and define the following
likelihood model:

`(Φ) =

T∏
t=1

p(yt; Θc
t).

The exact distribution p(yt; Θc
t) can be chosen according to

the data. One can then maximize the likelihood to estimate
the parameters Φ. More importantly, we have the flexibility
to estimate the parameters Φ by optimizing any other loss
function such as quantile loss, continuous ranked probability
score (Section 4 contains more details) or any of the metrics
typically preferred in the forecasting community. This is
possible because any quantile of interest can be computed
given sufficiently many samples (N large enough.)

In our model, the sampling step is differentiable as long
as the distribution chosen allows for a suitable reparam-
eterization where the random “noise” component of the
distribution can be separated from the deterministic values
of the parameters. This is the case for several distributions
including Gaussian (Kingma & Welling, 2013), Gamma,
log-Normal, Beta (Ruiz et al., 2016) and Student-t (Abiri
& Ohlsson, 2019). Figurnov et al. (2018) present an alter-
native approach to compute reparameterization gradients
showing broader applicability to Student-t, Dirichlet and
mixture distributions.

The projection step in our setting is just a matrix-vector mul-
tiplication and poses no problem in automatically determin-
ing the gradients. When reconciliation is a more involved
optimization problem, as long as the problem can be writ-
ten as a conic program, techniques such the ones presented
in (Agrawal et al., 2019b) enable automatic differentiation.

3.3. Prediction

Prediction is performed by unrolling the RNN step-by-step
over the prediction horizon as shown in Figure 4 (Salinas
et al., 2019). Given an observed hierarchical time series
{y1,y2, . . . ,yT }, we wish to predict its values for τ subse-
quent periods. Starting with t = T + 1, we obtain forecast
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P({ȳt−1})
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Figure 4. Multistep prediction using our model. The dashed line
indicates that the model prediction from the previous time step
t− 1 is used as the lag input for time step t, t > T + 1.

distribution parameters ΘT+1 by unrolling the RNN for
one time step using the last hidden state from training ht,
time series features x1:T+1 and the observed lag values
yt−1, t = 2, 3, . . . , T + 1. We then generate a set of sample
predictions {ŷT+1} by first taking Monte Carlo samples
from parameters ΘT+1 and then projecting them with the
same matrix M used in training. For each t > T + 1, a
sample predicted in the previous step ŷt−1 is used as the
lag input, shown as the dotted line in Figure 4, to generate
prediction ŷt. We repeat this procedure for each of the N
samples generated at the beginning of the prediction horizon
T + 1. This way, we have obtained a set of sample paths
{ŷT + 1, . . . , ŷT + τ} that is coherent when the end of the
prediction horizon is reached.

These samples may then be used to generate point (mean)
or probabilistic forecasts by computing appropriate sample
statistics (e.g., quantiles). Evaluation of the sample forecasts
is discussed further in Section 4.

Here we would like to highlight the key benefits of the
overall approach in comparison to the state-of-the art. By
design our method is guaranteed to produce coherent and
probabilistic forecasts in a straightforward way without per-
forming reconciliation independently. By training using all
time series simultaneously in a single nonlinear model we
improve the fit for each individual time series thereby achiev-
ing better accuracy. One could easily replace DeepVAR
with any recently proposed multivariate forecasting model
without requiring major changes. Moreover, the overall
model can be trained using application-dependent loss func-
tions. Our method can naturally handle structural constraints
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APPROACH NAIVEBU MINT ERM PERMBU-GTOP HIER-E2E (OURS)

PROBABILISTIC × × × X X
MULTIVARIATE × × × X X
IMPLICIT RECONCILIATION × × × × X
STRUCTURAL CONSTRAINTS (≥ 0) X X X × X

Table 1. Comparative summary of competing approaches on various dimensions.

DATASET TOTAL BOTTOM AGGREGATED LEVELS OBSERVATIONS τ

TOURISM 89 56 33 4 36 8
TOURISM-L (GROUPED) 555 76, 304 175 4, 5 228 12
LABOUR 57 32 25 4 514 8
TRAFFIC 207 200 7 4 366 1
WIKI 199 150 49 5 366 1

Table 2. Datasets summary. Here, τ refers to the prediction horizon length.

such as non-negativity etc. Table 1 summarizes the benefits
along these key dimensions.

4. Experiments
We present empirical evaluation of the proposed method
on publicly available hierarchical datasets. Table 2 lists
key dataset features and we give a brief summary here.
Labour (Australian Bureau of Statistics, 2020) contains
monthly Australian employment data from Feb. 1978 to
Dec. 2020. Using included category labels, we construct a
57-series hierarchy. Traffic (Cuturi, 2011; Dua & Graff,
2017) records the occupancy rate of car lanes on Bay Area
freeways. We aggregate sub-hourly data to obtain daily ob-
servations for one year and generate a 207-series hierarchy
using the same aggregation strategy as in (Ben Taieb & Koo,
2019). Tourism (Tourism Australia, Canberra, 2005) con-
sists of an 89-series geographical hierarchy with quarterly
observations of Australian tourism flows from 1998 to 2006.
This dataset is frequently referenced in hierarchical forecast-
ing studies (Athanasopoulos et al., 2009; Hyndman et al.,
2011). Tourism-L (Wickramasuriya et al., 2019) is a
larger, more detailed version of Tourism with 555 total
series in a grouped structure and 228 observations; it has
two hierarchies, based on geography and purpose-of-travel,
sharing a common root. Wiki includes daily views for
145,000 Wikipedia articles starting from Jul. 2015 to Dec.
2016.4 We follow the procedure described by Ben Taieb &
Koo (2019) to filter the dataset to 150 bottom series (199
total). Table 2 also gives the prediction length used for the
evaluation. We use the same prediction lengths as those in
the publications where the datasets were first referenced.
For τ , the prediction length, let T + τ be the length of the
time series available for a dataset. Then each method ini-

4https://www.kaggle.com/c/
web-traffic-time-series-forecasting/data

tially receives time series for the first T time steps which
are used to tune hyperparameters in a back-test fashion, e.g.,
training on the first T − τ steps and validating on the last τ
time steps. Once the best hyperparameters are found, each
model is once again trained on T time steps and is evaluated
on the time steps from T + 1 to T + τ .

We use the continuous ranked probability score (CRPS) to
evaluate the accuracy of our forecast distributions.5 CRPS
is a strictly proper scoring rule (Gneiting & Ranjan, 2011),
meaning a sample scores better (lower) when it is drawn
from the true distribution. Following Laio & Tamea (2007),
given a univariate predictive CDF F̂t,i for time series i, and
a ground-truth observation yt,i, CRPS can be defined as

CRPS(F̂t,yt) :=
∑
i

∫ 1

0

QSq

(
F̂−1t,i , yt,i

)
dq, (7)

where QSq is the quantile score (or pin-ball loss) for the
q-th quantile:

QSq = 2
(
1{yt,i ≤ F̂−1t,i (q)} − q

)(
F̂−1t,i (q)− y

)
.

A discrete version of this is implemented in GluonTS, with
the integral in (7) replaced by the weighted sum over the
quantile set. We use the quantiles ranging from 0.05 to 0.95
in steps of 0.05.

We compare against the following hierarchical forecasting
methods. NaiveBU generates univariate point forecasts for
the bottom-level time series independently and then sums
them according to the hierarchical constraint to get point
forecasts for the aggregate series. MinT (Wickramasuriya
et al., 2019) is the general reconciliation procedure that

5Because our model produces forecasts end-to-end, we do not
gauge the performance of our forecasts as an increase/decrease
in accuracy versus an incoherent base forecasts, as in (Hyndman
et al., 2011; Wickramasuriya et al., 2019; Ben Taieb et al., 2017).
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method Labour Traffic Tourism Tourism-L Wiki

ARIMA-NaiveBU 0.0453 0.0808 0.1138 0.1741 0.3772
ETS-NaiveBU 0.0432 0.0665 0.1008 0.1690 0.4673

ARIMA-MinT-shr 0.0467 0.0770 0.1171 0.1609 0.2467
ARIMA-MinT-ols 0.0463 0.1116 0.1195 0.1729 0.2782
ETS-MinT-shr 0.0455 0.0963 0.1013 0.1627 0.3622
ETS-MinT-ols 0.0459 0.1110 0.1002 0.1668 0.2702
ARIMA-ERM 0.0399 0.0466 0.5887 0.5635 0.2206
ETS-ERM 0.0456 0.1027 2.3755 0.5080 0.2217

PERMBU-MINT 0.0393±0.0002 0.0677±0.0061 0.0771±0.0001 — 0.2812±0.0240
Hier-E2E (Ours) 0.0340±0.0088 0.0376±0.0060 0.0834±0.0052 0.1520±0.0032 0.2038±0.0110

ablation
study

{
DeepVAR 0.0382±0.0045 0.0400±0.0026 0.0925±0.0022 0.1581±0.0102 0.2294±0.0158
DeepVAR+ 0.0433±0.0079 0.0434±0.0049 0.0958±0.0062 0.1882±0.0242 0.2439±0.0224

Table 3. CRPS numbers (lower is better) averaged over 5 runs. State-of-the-art methods except for PERMBU-MINT produced same results
over multiple runs. PERMBU-MINT didn’t work for the grouped-dataset Tourism-L.

revises unbiased independent univariate base forecasts in
such a way that variances of forecast errors are minimized.
ERM (Ben Taieb & Koo, 2019) relaxes the unbiasedness
assumption of the base forecasts in MinT and instead opti-
mizes the bias-variance tradeoff of the forecast errors.

We report results for different combinations of base forecast-
ing methods and reconciliation strategies. For NaiveBU,
MinT and ERM we compute base forecasts with both
ARIMA and ETS with auto-tuning enabled using the R pack-
age hts (Hyndman et al., 2020). For MinT we consider the
covariance matrix with shrinkage operator (MinT-shr) and
the diagonal covariance matrix corresponding to ordinary
least squares weights (MinT-ols) (Wickramasuriya et al.,
2019). We reimplemented ERM and set the context length
T1 to be T − (τ + 1) in order to maximize the number of
observations available to build the projection matrix used in
the method. Since the underlying base forecast methods are
set to auto-tuning mode, the best hyperparameters are deter-
mined on the same training-validation split as our method
uses. There are no other hyperparameters to tune for the rec-
onciliation strategies apart from the covariance settings for
MinT, for which we explicitly report results. These meth-
ods returned identical results over multiple runs for a given
set of hyperparameters and hence standard deviations of the
errors are not mentioned. PERMBU (Ben Taieb et al., 2017)
is the only existing method that produces probabilistic fore-
casts for the hierarchical setting. After correspondence with
the authors, we decided together to focus our experiments
on the replication of the results with MinT reconciliation.

We implemented our method with the public GluonTS
forecasting library (Alexandrov et al., 2019). We will make
our code available in GluonTS. Experiments are run on
Amazon SageMaker (Liberty et al., 2020). The details of
hyperparameters are given in the supplementary material.
For prediction, we sampled 200 times from the learned pa-
rameters to generate an empirical predictive distribution.

We ran our method 5 times and report the mean and stan-
dard deviation of the CRPS scores. The results are shown
in Table 3. Our method achieves the best results across
all datasets (except for Tourism where it is second-best),
showing the advantages of a single end-to-end model. We
performed ablation studies on two variants of our model to
further analyze the source of improvement. The first was
vanilla DeepVAR with no reconciliation. This is not guaran-
teed to produce coherent forecasts. The second version was
DeepVAR+, which refers to applying reconciliation during
prediction only as a post-processing step. This produced co-
herent forecasts but did not exploit hierarchical relationships
during training. As the scores in Table 3 show, reconcili-
ation done independently of training as a post-processing
step can worsen the forecasts. Note that DeepVAR and
DeepVAR+ are treated as different models and are tuned
accordingly; hence they potentially have different optimal
hyperparameter settings. Interestingly, DeepVAR being a
global model was able to achieve better results than the
state-of-the-art hierarchical methods without explicit rec-
onciliation. This further supports the claim that learning
from all the time series jointly improves forecast quality
especially when there are few available observations (e.g.,
Tourism of length 36). The univariate method ETS-ERM
returns a sizable error on this dataset, although its advan-
tages become evident on a larger, more involved dataset like
Wiki. Overall, by enforcing the aggregation constraint, our
method improves over unreconciled DeepVAR.

In order to assess if the gains in the performance are uniform
across aggregation levels, we present CRPS scores by level
of aggregation for all datasets in the supplementary material.
Our method achieves performance gains consistently across
all aggregation levels unlike some of the state-of-the-art,
which trade off favorable accuracy at the aggregated levels
with less favorable accuracy at the disaggregated levels; see
supplementary for details. To highlight this, Table 4 pro-
vides a summary by showing only the results of the best
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Dataset Level Hier-E2E(Ours) DeepVAR DeepVAR+ Best of Competing Methods

Labour
1 0.0311±0.0120 0.0352±0.0079 0.0416±0.0094 0.0406±0.0002 (PERMBU-MINT)
2 0.0336±0.0089 0.0374±0.0051 0.0437±0.0078 0.0389±0.0002(PERMBU-MINT)
3 0.0336±0.0082 0.0383±0.0038 0.0432±0.0076 0.0382±0.0002(PERMBU-MINT)
4 0.0378±0.0060 0.0417±0.0038 0.0448±0.0066 0.0397±0.0003(PERMBU-MINT)

Traffic
1 0.0184±0.0091 0.0225±0.0109 0.0250±0.0082 0.0087(ARIMA-ERM)
2 0.0181±0.0086 0.0204±0.0044 0.0244±0.0063 0.0112(ARIMA-ERM)
3 0.0223±0.0072 0.0190±0.0031 0.0259±0.0054 0.0255(ARIMA-ERM)
4 0.0914±0.0024 0.0982±0.0012 0.0982±0.0017 0.1410(ARIMA-ERM)

Tourism
1 0.0402±0.0040 0.0519±0.0057 0.0508±0.0085 0.0472±0.0012 (PERMBU-MINT)
2 0.0658±0.0084 0.0755±0.0011 0.0750±0.0066 0.0605±0.0006 (PERMBU-MINT)
3 0.1053±0.0053 0.1134±0.0049 0.1180±0.0053 0.0903±0.0006 (PERMBU-MINT)
4 0.1223±0.0039 0.1294±0.0060 0.1393±0.0048 0.1106±0.0005 (PERMBU-MINT)

Tourism-L

1 0.0810±0.0053 0.1029±0.0188 0.1214±0.0360 0.0438 (ARIMA-MinT-shr)
2 (geo.) 0.1030±0.0030 0.1076±0.0119 0.1364±0.0299 0.0816 (ARIMA-MinT-shr)
3 (geo.) 0.1361±0.0024 0.1407±0.0081 0.1713±0.0243 0.1433(ARIMA-MinT-shr)
4 (geo.) 0.1752±0.0026 0.1741±0.0066 0.2079±0.0215 0.2036(ARIMA-MinT-shr)

2 (trav.) 0.1027±0.0062 0.1100±0.0139 0.1370±0.0289 0.0830 (ARIMA-MinT-shr)
3 (trav.) 0.1403±0.0047 0.1485±0.0099 0.1776±0.0221 0.1479 (ARIMA-MinT-shr)
4 (trav.) 0.2050±0.0028 0.2078±0.0076 0.2435±0.0170 0.2437(ARIMA-MinT-shr)
5 (trav.) 0.2727±0.0017 0.2731±0.0066 0.3108±0.0164 0.3406(ARIMA-MinT-shr)

Wiki

1 0.0419±0.0285 0.0905±0.0323 0.0755±0.0165 0.1558 (ETS-ERM)
2 0.1045±0.0151 0.1418±0.0249 0.1289±0.0171 0.1614 (ETS-ERM)
3 0.2292±0.0108 0.2597±0.0150 0.2583±0.0281 0.2010(ETS-ERM)
4 0.2716±0.0091 0.2886±0.0112 0.3108±0.0298 0.2399(ETS-ERM)
5 0.3720±0.0150 0.3664±0.0068 0.4460±0.0271 0.3507(ETS-ERM)

Table 4. Mean CRPS scores (lower is better) computed for time series at each aggregation level, averaged over 5 runs. Level 1 corresponds
to the root of the hierarchy. To show the high-level summary, here we include only the result of the best performing competing method
along with our method and its variants. For each dataset, we choose the competing method (among the state-of-the-art without the
proposed method and its variants) that achieves the best result in as many aggregation levels as possible. In case of ties, we choose the
method that achieved the best overall CRPS score (averaged across all the levels in the hierarchy). Among the methods shown here, the
best result is shown in boldface and the second best result is italicized. The detailed CRPS scores for all methods and all levels are also
given in the following tables.

performing competing method along with our method and
its variants. For each dataset, we choose the competing
method (among the state-of-the-art without the proposed
method and its variants) that achieves the best result in as
many aggregation levels as possible. In case of ties, we
choose the method that achieved the best overall CRPS
score (averaged across all the levels in the hierarchy). Our
method consistently performs better at all levels achieving
the best result (boldface) for 12 out of 25 total levels. For
the remaining 13 levels it is the second-best (italicized)
except for one level (Wiki Level-5). The next-best com-
peting method, PERMBU-MINT, achieved the best and the
second-best result only for 3 levels each. ETS-ERM and
ARIMA-MinT-shr also achieved the best result in 3 levels
each; however unlike PERMBU-MINT, they achieved this
result only in a single dataset.

5. Conclusion
We have presented a new approach for probabilistic fore-
casting of hierarchical time series. The main novelty is the
proposal of a single, global model that does not require any
adjustments to produce coherent, probabilistic forecasts, a
first of its kind. Moreover, the proposed approach can read-
ily handle more general structural constraints beyond the
hierarchical set up via a differentiable convex optimization

layer. Our approach is generic in the sense that we can add
it to most existing deep forecasting models. We empirically
showed that training a single, global model together with
the enforcement of coherency achieves better results than
the prior state-of-the-art which uses a two-step procedure
instead of end-to-end-learning.6 Although we found empir-
ically that a multivariate Gaussian distribution performed
well on the datasets considered, as future work we would
like to explore the use of nonlinear transformations like
normalizing flows to better model non-Gaussian data.
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