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Abstract
Unsupervised protein language models trained
across millions of diverse sequences learn struc-
ture and function of proteins. Protein language
models studied to date have been trained to per-
form inference from individual sequences. The
longstanding approach in computational biology
has been to make inferences from a family of evo-
lutionarily related sequences by fitting a model
to each family independently. In this work we
combine the two paradigms. We introduce a pro-
tein language model which takes as input a set
of sequences in the form of a multiple sequence
alignment. The model interleaves row and column
attention across the input sequences and is trained
with a variant of the masked language modeling
objective across many protein families. The per-
formance of the model surpasses current state-of-
the-art unsupervised structure learning methods
by a wide margin, with far greater parameter effi-
ciency than prior state-of-the-art protein language
models.

1. Introduction
Unsupervised models learn protein structure from patterns
in sequences. Sequence variation within a protein fam-
ily conveys information about the structure of the protein
(Yanofsky et al., 1964; Altschuh et al., 1988; Göbel et al.,
1994). Since evolution is not free to choose the identity of
amino acids independently at sites that are in contact in the
folded three-dimensional structure, patterns are imprinted
onto the sequences selected by evolution. Constraints on the
structure of a protein can be inferred from patterns in related
sequences. The predominant unsupervised approach is to
fit a Markov Random Field in the form of a Potts Model to
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Figure 1. Left: Sparsity structure of the attention. By constraining
attention to operate over rows and columns, computational cost
is reduced from O(M2

L
2) to O(LM2) +O(ML

2) where M is
the number of rows and L the number of columns in the MSA.
Middle: Untied row attention uses different attention maps for
each sequence in the MSA. Tied row attention uses a single atten-
tion map for all sequences in the MSA, thereby constraining the
contact structure. Ablation studies consider the use of both tied
and untied attention. The final model uses tied attention. Right:
A single MSA Transformer block. The depicted architecture is
from the final model, some ablations alter the ordering of row and
column attention.

a family of aligned sequences to extract a coevolutionary
signal (Lapedes et al., 1999; Thomas et al., 2008; Weigt
et al., 2009).

A new line of work explores unsupervised protein language
models (Alley et al., 2019; Rives et al., 2020; Heinzinger
et al., 2019; Rao et al., 2019). This approach fits large
neural networks with shared parameters across millions of
diverse sequences, rather than fitting a model separately
to each family of sequences. At inference time, a single
forward pass of an end-to-end model replaces the multi-
stage pipeline, involving sequence search, alignment, and
model fitting steps, standard in bioinformatics. Recently,
promising results have shown that protein language models
learn secondary structure, long-range contacts, and function
via the unsupervised objective (Rives et al., 2020), making
them an alternative to the classical pipeline. While small and
recurrent models fall well short of state-of-the-art (Rao et al.,
2019), the internal representations of very large transformer
models are competitive with Potts models for unsupervised
structure learning (Rives et al., 2020; Rao et al., 2021).

https://github.com/facebookresearch/esm
https://github.com/facebookresearch/esm
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Potts models have an important advantage over protein lan-
guage models during inference. The input to the Potts model
is a set of sequences. Inference is performed by fitting a
model that directly extracts the covariation signal from the
input. Current protein language models take a single se-
quence as input for inference. Information about evolution-
ary variation must be stored in the parameters of the model
during training. As a result, protein language models require
many parameters to represent the data distribution well.

In this work, we unify the two paradigms within a protein
language model that takes sets of aligned sequences as in-
put, but shares parameters across many diverse sequence
families. Like prior protein language models operating on
individual sequences, the approach benefits from learning
from common patterns across protein families, allowing
information to be generalized and transferred between them.
By taking sets of sequences as input, the model gains the
ability to extract information during inference, which im-
proves the parameter efficiency.

We introduce the MSA Transformer, a model operating
on sets of aligned sequences. The input to the model is a
multiple sequence alignment. The architecture interleaves
attention across the rows and columns of the alignment as in
axial attention (Ho et al., 2019). We propose a variant of ax-
ial attention which shares a single attention map across the
rows. The model is trained using the masked language mod-
eling objective. Self supervision is performed by training
the model to reconstruct a corrupted MSA.

We train an MSA Transformer model with 100M parameters
on a large dataset (4.3 TB) of 26 million MSAs, with an av-
erage of 1192 sequences per MSA. The resulting model sur-
passes current state-of-the-art unsupervised structure learn-
ing methods by a wide margin, outperforming Potts models
and protein language models with 650M parameters. The
model improves over state-of-the-art unsupervised contact
prediction methods across all multiple sequence alignment
depths, with an especially significant advantage for MSAs
with lower depth. Information about the contact pattern
emerges directly in the tied row attention maps. Evaluated
in a supervised contact prediction pipeline, features cap-
tured by the MSA Transformer outperform trRosetta (Yang
et al., 2019) on the CASP13 and CAMEO test sets. We
find that high precision contact predictions can be extracted
from small sets of diverse sequences, with good results from
as few as 8-16 sequences. We investigate how the model
performs inference by independently destroying the covaria-
tion or sequence patterns in the input, finding that the model
uses both signals to make predictions.

2. Related Work
Unsupervised Contact Prediction The standard ap-
proach to unsupervised protein structure prediction is
to identify pairwise statistical dependencies between the
columns of an MSA, which are modeled as a Potts model
Markov Random Field (MRF). Since exact inference is
computationally intractable, a variety of methods have been
proposed to efficiently fit the MRF, including mean-field
inference (Morcos et al., 2011), sparse-inverse covariance es-
timation (Jones et al., 2012), and the current state-of-the-art,
pseudolikelihood maximization (Balakrishnan et al., 2011;
Ekeberg et al., 2013; Seemayer et al., 2014). In this work
we use Potts models fit with psuedolikelihood maximization
as a baseline, and refer to features generated from Potts
models as “co-evolutionary features.” Making a connection
with the attention mechanism we study here, Bhattacharya
et al. (2020) show that a single layer of self-attention can
perform essentially the same computation as a Potts model.

Deep Models of MSAs Several groups have proposed to
replace the shallow MRF with a deep neural network. Ries-
selman et al. (2018) train deep variational autoencoders on
MSAs to predict function. Riesselman et al. (2019) train
autoregressive models on MSAs, but discard the alignment,
showing that function can be learned from unaligned se-
quences. In contrast to our approach which is trained on
many MSAs, these existing models are trained on a single
set of related sequences and do not provide a direct method
of extracting protein contacts.

Supervised Structure Prediction Supervised structure
prediction using deep neural networks has driven ground-
breaking progress on the protein structure prediction prob-
lem (Senior et al., 2019; Jumper et al., 2020). Initial models
used coevolutionary features (Wang et al., 2017; Liu et al.,
2018; Yang et al., 2019; Senior et al., 2019; Adhikari &
Elofsson, 2020). Recently MSAs have been proposed as
input to supervised structure prediction methods. Mirabello
& Wallner (2019) and Kandathil et al. (2020) study mod-
els that take MSAs as input directly, respectively using 2D
convolutions or GRUs to process the input. More recently,
AlphaFold2 (Jumper et al., 2020) uses attention to process
MSAs in an end-to-end model supervised with structures.

The central difference in our work is to model a collection
of MSAs using unsupervised learning. This results in a
model that contains features potentially useful for a range of
downstream tasks. We use the emergence of structure in the
internal representations of the model to measure the ability
of the model to capture biology from sequences. This is
a fundamentally distinct problem setting from supervised
structure prediction. The MSA Transformer is trained in
a purely unsupervised manner and learns contacts without
being trained on protein structures.
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Large protein sequence databases contain billions of se-
quences and are undergoing exponential growth. Unsuper-
vised methods can directly use these datasets for learning,
while supervised methods are limited to supervision from
the hundreds of thousands of crystallized structures. Unsu-
pervised methods can learn from regions of sequence space
not covered by structural knowledge.

Protein Language Models Protein language modeling
has emerged as a promising approach for unsupervised learn-
ing of protein sequences. Bepler & Berger (2019) combined
unsupervised sequence pre-training with structural supervi-
sion to produce sequence embeddings. Alley et al. (2019)
and Heinzinger et al. (2019) showed that LSTM language
models capture some biological properties. Simultaneously,
Rives et al. (2020) proposed to model protein sequences
with self-attention, showing that transformer protein lan-
guage models capture accurate information of structure and
function in their representations. Rao et al. (2019) evalu-
ated a variety of protein language models across a panel of
benchmarks concluding that small LSTMs and transformers
fall well short of features from the bioinformatics pipeline.

A combination of model scale and architecture improve-
ments has been instrumental to recent successes in protein
language modeling. Elnaggar et al. (2020) study a variety
of transformer variants. Rives et al. (2020) show that large
transformer models produce state-of-the-art features across
a variety of tasks. Notably, the internal representations of
transformer protein language models are found to directly
represent contacts. Vig et al. (2020) find that specific at-
tention heads of pre-trained transformers correlate directly
with protein contacts. Rao et al. (2021) combine multiple at-
tention heads to predict contacts more accurately than Potts
models, despite using just a single sequence for inference.

Alternatives to the masked language modeling objective
have also been explored, such as conditional generation
(Madani et al., 2020) and contrastive loss functions (Lu
et al., 2020). Most relevant to our work, Sturmfels et al.
(2020) and Sercu et al. (2020) study alternative learning ob-
jectives using sets of sequences for supervision. Sturmfels
et al. (2020) extended the unsupervised language model-
ing to predict the position specific scoring matrix (PSSM)
profile. Sercu et al. (2020) used amortized optimization
to simultaneously predict profiles and pairwise couplings.
In natural language processing, recent work (Lewis et al.,
2020; Gu et al., 2018) has explored models using multiple
sequences. However, previous work on protein language
models has not considered inference directly from sets of
sequences.

3. Methods
Transformers are powerful sequence models capable of pass-
ing information from any position to any other position
(Vaswani et al., 2017). However, they are not trivially ap-
plied to a set of aligned sequences. Naively concatenating
M sequences of length L in an MSA would allow attention
across all sequences, but the (ML)2 self-attention maps
would be prohibitively memory-intensive. The main con-
tribution of this paper is to extend transformer pre-training
to operate on an MSA, while respecting its structure as an
M ⇥ L character matrix.

We describe the input MSA as a matrix x 2 RM⇥L, where
rows correspond to sequences in the MSA, columns are
positions in the aligned sequence, and entries xmi take
integer values1 encoding the amino acid identity of sequence
m at position i. After embedding the input, each layer has
a RM⇥L⇥d state as input and output. For the core of the
transformer, we adapt the axial attention approach from
Ho et al. (2019) and Child et al. (2019). This approach
alternates attention over rows and columns of the 2D state
(see Fig. 1). This sparsity pattern in the attention over the
MSA brings the attention cost to O(LM2) for the column
attention, and O(ML

2) for the row attention.

Feedforward Layers We deviate from Ho et al. (2019)
in the interleaving of the feedforward layers. Rather than
applying a feedforward layer after each row or column at-
tention, we apply row and column attention followed by a
single feedforward layer (see Fig. 1). This choice follows
more closely the transformer decoder architecture (Vaswani
et al., 2017).

Position Embedding The standard transformer position
embedding is a 1D signal added to each position in the se-
quence. Either fixed sinusoidal (Vaswani et al., 2017) or
learned (Devlin et al., 2019) position embeddings are most
commonly used. Rives et al. (2020) found that learned po-
sition embeddings generally resulted in better downstream
performance for protein language models.

An MSA is a 2D input so we must consider two types of
position embeddings. For all models trained, we provide
a 1D sequence position embedding, which is added inde-
pendently to each row of the MSA. This allows the model
to distinguish different aligned positions. For one model,
we also add a position embedding independently to each
column of the MSA, which allows the model to distinguish
different sequences (without this, the model treats the input
sequences as an unordered set). We also ensure that the
first position in the sequence is always the reference so that

1The final vocab size is 29, consisting of 20 standard amino
acids, 5 non-standard amino acids, the alignment character ‘.’, gap
character ‘-’, the start token, and the mask token
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Figure 2. Left: Top-L long-range contact precision (higher is better). Comparison of MSA Transformer with Potts model (left scatter
plot), and ESM-1b (right scatter plot). Each point represents a single protein (14,842 total) and is colored by the depth of the full MSA for
the sequence. The Potts model is given the full MSA as input; ESM-1b is given only the reference sequence; and the MSA Transformer
is given an MSA subsampled with hhfilter to a maximum of 256 sequences. The MSA Transformer outperforms both models for the
vast majority of sequences. Right: Long-range contact precision performance as a function of MSA depth. Sequences are binned by
MSA depth into 10 bins; average performance in each bin along with 95% confidence interval is shown. The minimum MSA depth in the
trRosetta dataset is 100 sequences. While model performance generally increases with MSA depth, the MSA Transformer performs very
well on sequences with low-depth MSAs, rivaling Potts model performance on MSAs 10x larger.

it can always be uniquely identified through the position
embedding. We find that incorporating the column position
embedding increases performance slightly and so choose
to use it in the final model (see Appendix A.3.6 for further
discussion).

Tied Row Attention The standard implementation of ax-
ial attention allows for independent attention maps for each
row and column of the input. However, in an MSA each
sequence should have a similar structure; indeed, direct-
coupling analysis exploits this fact to learn contact infor-
mation. To leverage this shared structure we hypothesize it
would be beneficial to tie the row attention maps between
the sequences in the MSA. As an additional benefit, tied
attention reduces the memory footprint of the row attentions
from O(ML

2) to O(L2).

Let M be the number of rows, d be the hidden dimension
and Qm,Km be the matrix of queries and keys for the m-th
row of input. We define tied row attention (before softmax
is applied) to be:

MX

m=1

QmK
T
m

�(M,d)
(1)

The denominator �(M,d) would be the normalization con-
stant

p
d in standard scaled-dot product attention. In tied

row attention, we explore two normalization functions to
prevent attention weights linearly scaling with the number
of input sequences: �(M,d) = M

p
d (mean normaliza-

tion) and �(M,d) =
p
Md (square-root normalization).

Our final model uses square-root normalization.

Pre-training Objective We adapt the masked language
modeling objective (Devlin et al., 2019) to the MSA setting.

The loss for an MSA x, and masked MSA x̃ is as follows:

LMLM(x; ✓) =
X

(m,i)2mask

log p(xmi|x̃; ✓) (2)

The probabilities are the output of the MSA transformer,
softmax normalized over the amino acid vocabulary inde-
pendently per position i in each sequence m. We consider
masking tokens uniformly at random over the MSA or mask-
ing entire columns of the MSA. Masking tokens uniformly
at random results in best performance (Table A.2). Note
that the masked token can be predicted not only from con-
text amino acids at different positions but also from related
sequences at the same position.

Pre-training Dataset Models are trained on a dataset of
26 million MSAs. An MSA is generated for each UniRef50
(Suzek et al., 2007) sequence by searching UniClust30
(Mirdita et al., 2017) with HHblits (Steinegger et al., 2019).
The average depth of the MSAs is 1192. See Fig. A.2 for
MSA depth distribution.

Models and Training We train 100M parameters model
with 12 layers, 768 embedding size, and 12 attention heads,
using a batch size of 512 MSAs, learning rate 10�4, no
weight decay, and an inverse square root learning rate sched-
ule with 16000 warmup steps. All models are trained on
32 V100 GPUs for 100k updates. The four models with
best contact precision are then further trained to 150k up-
dates. Finally, the best model at 150k updates is trained to
450k updates. Unless otherwise specified, all downstream
experiments use this model.

Despite the use of axial attention and tied attention to lower
the memory requirements, large MSAs still do not easily
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fit in memory at training time. The baseline model fits a
maximum of N = 214 tokens on a 32 GB V100 GPU at
training time. To work around this limitation we subsample
the input MSAs to reduce the number of sequences and limit
the maximum sequence length to 1024.

MSA Subsampling During Inference At inference time,
memory is a much smaller concern. Nevertheless we do
not provide the full MSA to the model as it would be com-
putationally expensive and the model’s performance can
decrease when the input is much larger than that used during
training. Instead, we explore four strategies for subsampling
the sequences provided to the model.

• Random: This strategy parallels the one used at train-
ing time, and selects random sequences from the MSA
(ensuring that the reference sequence is always in-
cluded).

• Diversity Maximizing: This is a greedy strategy
which starts from the reference and adds the sequence
with highest average hamming distance to current set
of sequences.

• Diversity Minimizing: This strategy is equivalent to
the Diversity Maximizing strategy, but adds the se-
quence with lowest average hamming distance. It is
used to explore the effects of diversity on model per-
formance.

• HHFilter: This strategy applies hhfilter (Steinegger
et al., 2019) with the -diff M parameter, which re-
turns M or more sequences that maximize diversity
(the result is usually close to M ). If more than M

sequences are returned we apply the Diversity Maxi-
mizing strategy on top of the output.

4. Results
We study the MSA Transformer in a panel of structure pre-
diction tasks, evaluating unsupervised contact prediction
from the attentions of the model, and performance of fea-
tures in supervised contact and secondary structure predic-
tion pipelines.

To calibrate the difficulty of the masked language model-
ing task for MSAs, we compare against two simple predic-
tion strategies using the information in the MSA: (i) col-
umn frequency baseline, and (ii) nearest sequence baseline.
These baselines implement the intuition that a simple model
could use the column frequencies to make a prediction at
the masked positions, or copy the identity of the missing
character from the most similar sequence in the input. Ta-
ble A.1 reports masked language modeling performance.
The MSA Transformer model (denoising accuracy of 64.0)

Table 1. Average long-range precision for MSA and single-
sequence models on the unsupervised contact prediction task.

Model L L/2 L/5

Potts 39.3 52.2 62.8

TAPE 11.2 14.0 17.9
ProTrans-T5 35.6 46.1 57.8
ESM-1b 41.1 53.3 66.1

MSA Transformer 57.4 71.7 82.1

significantly outperforms the PSSM (accuracy 41.4) and
nearest-neighbor (accuracy 46.7) baselines.

4.1. Unsupervised Contact Prediction

Rao et al. (2021) showed that transformer protein language
models learned to capture information about protein struc-
ture in their attention maps using little to no supervision.
This is done by training a small logistic regression (one pa-
rameter per attention head) on a limited number of protein
structures to predict the probability of a contact between
residues i and j based on the attentions between the residues
for all attention heads. The logistic regression weights are
shared for all pairs of positions (see Appendix A.1 for more
details).

We use the same validation methodology. A logistic regres-
sion with 144 parameters is fit on 20 training structures from
the trRosetta dataset (Yang et al., 2019). This is then used to
predict the probability of protein contacts on another 14842
structures from the trRosetta dataset (training structures are
excluded). At inference time, we use hhfilter to subsample
256 sequences.

We compare to two state-of-the-art transformer protein lan-
guage models: ESM-1b (Rives et al., 2020) with 650M
parameters and ProTrans-T5 (Elnaggar et al., 2020) with
3B parameters. For the single-sequence protein language
models we use the sequence belonging to the structure as
input. We also compare against Potts models using the
APC-corrected (Dunn et al., 2008) Frobenius norm of the
coupling matrix computed on the MSA (Kamisetty et al.,
2013).

Table 1 compares unsupervised contact prediction perfor-
mance of the models. The MSA Transformer significantly
outperforms all baselines, increasing top-L long-range con-
tact precision by a full 15 points over the previous state-of-
the-art. Table 2 shows results on harder test sets CAMEO
hard targets (Haas et al., 2018) and CASP13-FM (Shrestha
et al., 2019). The CASP13-FM test set consists of 31 free
modeling domains (from 25 targets); the CAMEO hard tar-
gets are a set of 131 domains (out of which we evaluate on
the 129 that fit within the 1024 character maximum con-
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Figure 3. Contact prediction from a small set of input sequences. Predictions are compared under diversity minimizing and diversity
maximizing sequence selection strategies. Visualized for 4zjp chain A. Raw contact probabilities are shown below the diagonal, top L
contacts are shown above the diagonal. (blue: true positive, red: false positive, grey: ground-truth contacts). Top-L long-range contact
precision below each plot. Contact precision improves with more sequences under both selection strategies. Maximizing the diversity
enables identification of long-range contacts from a small set of sequences.

Table 2. Unsupervised contact prediction on CASP13 and CAMEO
(long-range precision). Note the large improvement of MSA Trans-
former over classical Potts models and ESM-1b.

CASP13-FM CAMEO

Model L L/5 L L/5

Potts 16.9 31.5 24.0 42.8
ProTrans-T5 16.5 27.0 25.9 43.4
ESM-1b 17.0 30.4 30.9 52.7
MSA Transformer 43.4 71.1 43.4 66.2

text length of the model). On the CASP13-FM test set,
unsupevised contact prediction with the MSA Transformer
(43.4 top-L long-range precision) is competitive with the
trRosetta base model (45.7 top-L long-range precision), a
fully supervised structure prediction model.

Fig. 2 shows the top-L long-range precision distribution
across all structures, comparing the MSA Transformer with
Potts models and ESM-1b. The MSA Transformer matches
or exceeds Potts models on 98.5% of inputs and matches or
exceeds ESM-1b on 91.0% of inputs. Fig. 2 also shows un-
supervised contact performance as a function of MSA depth.
The model outperforms ESM-1b and Potts models across
all MSA depths and has a significant advantage for lower
depth MSAs. We find no statistically significant correlation
between sequence length and contact precision.

4.2. Supervised Contact Prediction

Used independently, features from current state-of-the-art
protein language models fall short of co-evolutionary fea-
tures from Potts models on supervised contact prediction
tasks (Rives et al., 2020).

Table 3. Supervised contact prediction on CASP13 and CAMEO
(long-range precision). ⇤Uses outer-concatenation of the query
sequence representation as features. †Additionally uses the row
attention maps as features.

CASP13-FM CAMEO

Model L L/5 L L/5

trRosettabase 45.7 69.6 50.9 75.5
trRosettafull 51.8 80.1 53.2 77.5

Co-evolutionary 40.1 65.2 47.3 72.1
ProTrans-T5 25.0 41.4 40.8 63.3
ESM-1b 28.2 50.2 44.4 68.4
MSA Transformer⇤ 54.5 80.2 53.6 78.0
MSA Transformer† 54.6 77.5 55.8 79.1

We evaluate the MSA Transformer as a component of a
supervised structure prediction pipeline. Following Rives
et al. (2020), we train a deep residual network with 32 pre-
activation blocks, each with a filter size of 64, using learning
rate 0.001. The network is supervised with binned pairwise
distance distributions (distograms) using the trRosetta train-
ing set (Yang et al., 2019) of 15051 MSAs and structures.

We evaluate two different ways of extracting features from
the model. In the first, we use the outer concatenation of the
output embeddings of the query sequence. In the second,
we combine the outer concatenation with the symmetrized
row self-attention maps. For comparison, we train the same
residual network over co-evolutionary features from Potts
models (Seemayer et al., 2014). Additionally we compare
to features from state-of-the-art protein language models
ESM-1b and ProTrans-T5 using the outer concatenation of
the sequence embeddings. Dropout of 0.1 is used for all
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Table 4. CB513 8-class secondary structure prediction accuracy.

Model CB513

Netsurf 72.1

HMM Profile 71.2± 0.1
ProTrans-T5 71.4± 0.3
ESM-1b 71.6± 0.1
MSA Transformer 73.4 ± 0.3

language model-based contact predictors. We also compare
to trRosetta (Yang et al., 2019), a state-of-the-art supervised
structure prediction method prior to AlphaFold2 (Jumper
et al., 2020).

The MSA Transformer produces a substantial improvement
over co-evolutionary features for supervised contact pre-
diction. Table 3 shows a comparison between the models
on the CASP13-FM and CAMEO test sets. The best MSA
Transformer model, using the combination of attention maps
with features from the final hidden layer, outperforms all
other models including the trRosetta baseline model (which
uses 36 residual blocks) and the trRosetta full model (which
uses 61 residual blocks, data augmentation via MSA sub-
sampling, and predicts inter-residue orientations). Model
ensembling over all 5 released models is used in the eval-
uation of the trRosetta models. Table A.4 gives additional
comparisons with LSTM and transformer protein language
models available in the literature.

4.3. Secondary Structure Prediction

To further evaluate the quality of representations generated
by the MSA Transformer, we train a state-of-the-art down-
stream head based on the Netsurf architecture (Klausen
et al., 2019). The downstream model is trained to predict
8-class secondary structure from the pretrained representa-
tions. We evaluate models on the CB513 test set (Cuff &
Barton, 1999). The models are trained on the Netsurf train-
ing dataset. Representations from the MSA Transformer
(72.9%) surpass the performance of HMM profiles (71.2%)
and ESM-1b embeddings (71.6%) (Table 4).

4.4. Ablation Study

We perform an ablation study over seven model hyperpa-
rameters, using unsupervised contact prediction on the vali-
dation set for evaluation. For each combination of hyperpa-
rameters, a model is pre-trained with the masked language
modeling objective for 100k updates. Training curves for
the models are shown in Fig. A.3 and Top-L long-range
precision is reported in Table A.2.

The ablation studies show the use of tied attention plays a
critical role in model performance. After 100k updates, a
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Figure 4. Comparison of MSA selection strategies. Model perfor-
mance increases with more sequences. Selection strategies that
maximize diversity of the input (MaxHamming and hhfilter) per-
form best. Random selection is nearly as good, suggesting the
model has learned to compensate for the varying diversity during
training time. Minimizing diversity performs worst. Using diver-
sity maximizing approaches the MSA Transformer outperforms
ESM-1b and Potts baselines using just 16 input sequences.

model trained with square-root normalized tied attention
outperforms untied attention by more than 17 points and
outperforms mean normalized tied-attention by more than 6
points on long-range contact precision.

Parameter count also affects contact precision. A model
with half the embedding size (384) and only 30M parameters
reaches a long-range precision of 52.8 after 100k updates,
3.5 points lower than the base model, yet 11.7 points higher
than the state-of-the-art 650M parameter single-seequence
model. See Appendix A.3 for further discussion.

5. Model Analysis
We examine how the model uses its input MSA in experi-
ments to understand the role of sequence diversity, attention
patterns, and covariation in the MSA.

5.1. Effect of MSA diversity

The diversity of the input sequences strongly influences
inference of structure. We explore three inference time
strategies to control the diversity of the input sequence
sets: (i) diversity maximizing, (ii) diversity minimizing,
and (iii) random selection (see Section 3). Fig. 4 shows
average performance across the test set for each selection
strategy as the number of sequences used for input increases.
Two approaches to maximize diversity, greedy hamming
distance maximization and hhfilter, perform equivalently.
Both strategies surpass ESM-1b performance with just 16
input sequences. In comparison, the diversity minimizing
strategy, hamming distance minimization, performs poorly,
requiring 256 sequences to surpass ESM-1b. Random se-
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Figure 5. Left: Average correlation between row-attention and
column entropy. This is computed by taking an average over the
first dimension of each L⇥ L row-attention map and computing
correlation with per-column entropy of the MSA. Right: Average
correlation between column-attention and sequence weights. This
is computed by taking an average over the first two dimensions for
each L⇥M⇥M column-attention map and computing correlation
with sequence weights (see Appendix A.5). Both quantities are
measures of MSA diversity. The relatively high correlation (>
0.57) of some attention heads to these measures suggests the model
explicitly looks at diverse sequences.

lection performs well, although it falls behind the diversity
maximizing strategies. The qualitative effects of MSA di-
versity are illustrated in Fig. 3, where the addition of just
one high-diversity sequence outperforms the addition of 31
low-diversity sequences.

In principle, the model’s attention could allow it to identify
and focus on the most informative parts of the input MSA.
We find row attention heads that preferentially attend to
highly variable columns. We also identify specific column
attention heads that attend to more informative sequences.
In this experiment random subsampling is used to select
inputs for the model. Fig. 5 compares the distribution of
attention weights with two measures of MSA diversity: (i)
per-column entropy of the MSA; and (ii) computed sequence
weights (Appendix A.5). Per column entropy gives a mea-
sure of how variable a position is in the MSA. Computed
sequence weights measure how informative a sequence is in
the context of the other sequences in the MSA. Sequences
with few similar sequences receive high weights. The maxi-
mum average Pearson correlation between a row attention
head and column entropy is 0.59. The maximum average
Pearson correlation between a column attention head and
sequence weights is 0.58. These correlations between at-
tention weights and measures of MSA diversity suggest
the model is specifically looking for informative sequences
when processing the input.

5.2. Attention Corresponds to Protein Contacts

In Section 4.1, we use the heads in the model’s tied row
attention directly to predict contacts in the protein’s three-
dimensional folded structure. Following Rao et al. (2021)
we fit a sparse logistic regression to the model’s row atten-
tion maps to identify heads that correspond with contacts.
Fig. A.1 shows the weight values in the learned sparse lo-

gistic regression fit using 20 structures. A sparse subset (45
/ 144) of heads are predictive of protein contacts. The most
predictive heads are concentrated in the final layers.

5.3. Inference: Covariance vs. Sequence Patterns

Potts models and single-sequence language models predict
protein contacts in fundamentally different ways. Potts mod-
els are trained on a single MSA; they extract information
directly from the covariance between mutations in columns
of the MSA. Single-sequence language models do not have
access to the MSA, and instead make predictions based on
patterns seen during training. The MSA Transformer may
use both covariance-based and pattern-based inference. To
disentangle the two modes, we independently ablate the
covariance and sequence patterns in the model’s input via
random shuffling. To ensure that there is enough informa-
tion in the input for covariance-based extraction to succeed,
we subsample each MSA to 1024 sequences using hhfilter,
using only MSAs with at least 1024 sequences, and apply
the model to unshuffled and shuffled inputs.

To remove covariance information, we randomly permute
the values in each column of the MSA. This preserves per-
column amino acid frequencies (PSSM information) while
destroying pairwise correlations between columns. Under
this condition, Potts model performance drops to the random
guess baseline. Since ESM-1b takes a single sequence as
input, the permutation trivially produces the same sequence,
and the result is unaffected. Unlike the Potts model, the
MSA Transformer retains some ability to predict contacts,
which increases sharply as a function of MSA Depth. This
indicates that the model can make predictions from patterns
in the sequence profile in the absence of covariance.

To remove sequence patterns seen during training, we ran-
domly permute the order of positions (columns) in the MSA.
This preserves all covariance information between pairs of
columns, but results in a scrambled input dissimilar to a
real protein. Under this condition, Potts model performance
is unaffected since its parameterization is invariant to se-
quence order. ESM-1b performance drops to the random
guess baseline. The MSA Transformer does depend on
sequence order, and predicts spurious contacts along the di-
agonal of the reordered sequence. When predicted contacts
with sequence separation < 6 are removed, the remaining
predictions align with the correct contacts. This shows the
model can predict directly from covariance when presented
with sequence patterns unobserved in training.

Together these ablations independently destroy the informa-
tion used by Potts models and single-sequence language
models, respectively. Under both conditions, the MSA
Transformer maintains some capability to predict contacts,
demonstrating that it uses both modes of inference.
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Figure 6. The MSA Transformer uses both covariance and similarity to training sequences to perform inference. Left: Examples (pdbid:
5ahw, chain: A) of model performance after independently shuffling each column of an MSA to destroy covariance information, and after
independently permuting the order of positions to destroy sequence patterns. The MSA Transformer maintains reasonable performance
under both conditions. A Potts model fails on the covariance-shuffled MSA, while a single-sequence language model (ESM-1b) fails on
the position-shuffled sequence. Right: Model performance before and after shuffling, binned by depth of the original (non-subsampled)
MSA. 1024 sequence selected with hhfilter are used as input to MSA Transformer and Potts models. MSAs with fewer than 1024
sequences are not considered in this analysis. Average Top-L long-range precision drops from 52.9 (no ablation) to 15.9 (shuffled
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drops to the Null baseline under the first condition and ESM-1b performance drops to the Null baseline under the second condition. The
MSA Transformer produces reasonable predictions under both scenarios, implying it uses both modes of inference.

6. Discussion
Prior work in unsupervised protein language modeling has
focused on inference from individual sequences. We study
an approach to perform inference from a set of aligned se-
quences in an MSA. We use axial attention to efficiently
parameterize attention over the rows and columns of the
MSA. This approach enables the model to extract infor-
mation from dependencies in the input set and generalize
patterns across MSAs. We find the internal representations
of the model enable state-of-the-art unsupervised structure
learning with an order of magnitude fewer parameters than
current protein language models.

While supervised methods have produced breakthrough re-
sults for protein structure prediction (Jumper et al., 2020),
unsupervised learning provides a way to extract the informa-
tion contained in massive datasets of sequences produced
by low cost gene sequencing. Unsupervised methods can
learn from billions of sequences, enabling generalization to
regions of sequence space not covered by structural knowl-
edge.

Models fit to MSAs are widely used in computational bi-
ology including in applications such as fitness landscape
prediction (Riesselman et al., 2018), pathogenicity predic-
tion (Sundaram et al., 2018; Frazer et al., 2020), remote

homology detection (Hou et al., 2018), and protein design
(Russ et al., 2020). The improvements we observe for struc-
ture learning suggest the unsupervised language modeling
approach here could also apply to these problems.

Improvement in unsupervised learning of structure and func-
tion with protein language models has been linked to scale
of the models (Rives et al., 2020). Further scaling the ap-
proach studied here in the number of parameters and input
sequences is a potential direction for investigating the limits
of unsupervised learning for protein sequences.
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