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Abstract
Imitation learning seeks to circumvent the diffi-
culty in designing proper reward functions for
training agents by utilizing expert behavior. With
environments modeled as Markov Decision Pro-
cesses (MDP), most of the existing imitation algo-
rithms are contingent on the availability of expert
demonstrations in the same MDP as the one in
which a new imitation policy is to be learned. In
this paper, we study how to imitate tasks when
discrepancies exist between the expert and agent
MDP. These discrepancies across domains could
include differing dynamics, viewpoint, or mor-
phology; we present a novel framework to learn
correspondences across such domains. Impor-
tantly, in contrast to prior works, we use unpaired
and unaligned trajectories containing only states
in the expert domain, to learn this correspondence.
We utilize a cycle-consistency constraint on both
the state space and a domain agnostic latent space
to accomplish this. In addition, we enforce con-
sistency on the temporal position of states via a
normalized position estimator function, to align
the trajectories across the two domains. Once this
correspondence is found, we can directly transfer
the demonstrations on one domain to the other
and use it for imitation. Experiments across a
wide variety of challenging domains demonstrate
the efficacy of our approach.

1. Introduction
Humans possess the innate ability to quickly pick up a
new behavior by simply observing others performing the
same skill. Not only are we able to learn from demon-
strations coming from a third-person point of view, we
are also capable of imitation from experts who are mor-
phologically different or have different embodiments - as
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Figure 1. Problem overview. Cross-domain Imitation from Ob-
servation (xDIO) entails learning from experts which are different
from the agent. Here, the expert is a 4-legged Ant, while the agent
is a HalfCheetah. We learn a domain transformation function from
unpaired, unaligned, state-only trajectories from a set of proxy
tasks and utilize it to imitate the expert on the given inference task.

evidenced by a child imitating an adult with different bio-
mechanics (Jones, 2009). Previous works in neuroscience
(Rizzolatti & Craighero, 2004; Marshall & Meltzoff, 2015)
have attributed this to the human capacity of learning struc-
ture preserving domain correspondences via an invariant
feature space (Umiltà et al., 2008), which allows us to re-
construct the observed behavior in the self-domain. While
imitation learning algorithms (Ho & Ermon, 2016; Ross
et al., 2011) are successful, to some extent, in endowing
autonomous agents with this ability to imitate expert be-
havior, they impose the somewhat unrealistic requirement
that the demonstrations must come from the same domain,
whether that be first-person viewpoint, same morphology or
similar dynamics. The question then arises: can we perform
imitation learning which can overcome all such domain
discrepancies?

Prior work on bridging domain disparities in imitation learn-
ing have focused on each of these differences in isolation:
morphology (Gupta et al., 2017), dynamics (Gangwani &
Peng, 2019) and viewpoint mismatch (Stadie et al., 2017;
Sharma et al., 2019; Liu et al., 2018). These works (Gupta
et al., 2017; Liu et al., 2018; Sharma et al., 2019) utilize
paired, time-aligned demonstrations from both domains, on
a set of proxy tasks, to first build a correspondence map
across the domains and then perform an extra reinforcement



Cross-domain Imitation from Observations

learning (RL) step for learning the final policy on the given
task. This limits their applicability since paired demonstra-
tions are rarely available and RL procedures are expensive.

Recently, (Kim et al., 2020) proposed a general framework
which can perform imitation across a wide array of such dis-
crepancies from unpaired, unaligned demonstrations. How-
ever, they require expert actions, such as the exact kinematic
forces, in order to learn a domain correspondence and as-
sume availability of an expert policy which is utilized in an
interactive learning setting. This is distinctly different to
how humans imitate: we are capable of learning behaviors
solely from observations/states, without access to underly-
ing actions. Furthermore, continuously querying the expert
might be onerous in several situations. Thus, we require
a mechanism for learning policies from observation alone,
where the expert demonstrations can originate in a domain
which is different from the agent domain and access to the
expert is limited. We define this setting as Cross Domain
Imitation from Observation (xDIO).

In this work, we propose a novel framework to tackle the
xDIO problem, encompassing morphological, viewpoint
and dynamics mismatch. We follow a two-step approach
(see Fig. 1), where we first learn a transformation across
the domains using the proxy tasks (Gupta et al., 2017), fol-
lowed by a transfer process and subsequent learning of the
policy. Importantly, in contrast to previous work, we use un-
paired and unaligned trajectories containing only states on
the expert domain trajectories, to learn this transformation.
Additionally, we do not assume any access to the expert
policy or the expert domain except for the given demon-
strations. To learn the state correspondences, we jointly
minimize a divergence between the transition distributions
in the state space as well as in the latent space between the
expert and the agent proxy task trajectories, while learning
to translate between the two domains with the unpaired data
via cycle-consistency (Zhu et al., 2017). However, solely
learning with such state cycle-consistency may only result
in local alignment, and lead to difficulties in optimizing for
complex environments. Thus, to impose global alignment,
we enforce additional consistency on the temporal position
of states across the two domains. This ensures that when a
state is mapped from one domain to the other, the degree
of completion associated by being in that state remains un-
changed. Having learnt this mapping on the proxy tasks, we
transfer demonstrations for a new inference task from the
expert to the agent domain, which are subsequently utilized
to learn a policy via imitation.

Experiments on a wide array of domains that encompass
dynamics, morphological and viewpoint mismatch, demon-
strate the feasibility of learning domain correspondences
from unpaired and unaligned state-only demonstrations. The
primary contributions of this work are as follows:

1. We propose an algorithm for cross-domain imitation
learning by learning transformations across domains,
modeled as Markov Decision Processes (MDP), from
unpaired, unaligned, state-only demonstrations, thereby
ameliorating the need for costly paired, aligned data.

2. Unlike previous work, we do not utilize any costly RL
procedure. Neither do we require interactive querying of
an expert policy.

3. We adopt multiple tasks in the MuJoCo physics en-
gine (Todorov et al., 2012), and show that our framework
can find correspondences and align two domains across
different viewpoints, dynamics and morphologies.

2. Related Works
Imitation learning. Imitation learning (Schaal, 1999) uses
a set of expert demonstrations to learn a policy which suc-
cessfully mimics the expert. A common approach is behav-
ioral cloning (BC) (Pomerleau, 1989; Bojarski et al., 2016),
which amounts to learning to mimic the expert demonstra-
tions via supervised learning. Inverse reinforcement learn-
ing (IRL) is another approach, where one seeks to learn a
reward function that explains the demonstrated actions (Ho
& Ermon, 2016; Abbeel & Ng, 2004; Ziebart et al., 2008).
Recent works (Torabi et al., 2018; Yang et al., 2019; Paul
et al., 2019) extend imitation learning to state-only demon-
strations, where expert actions are not observed - this opens
up the possibility of using imitation in robotics and learning
from weak-supervision sources such as videos. Unlike these
approaches, our work tackles the problem of imitation from
state-only demonstrations coming from a different domain.

Domain transfer in reinforcement learning. Transfer in
the reinforcement learning setting has been attempted by
a wide array of works (Taylor & Stone, 2009). (Ammar
& Taylor, 2011) manually define a common state space be-
tween MDPs and use it to learn a mapping between states.
Unsupervised manifold alignment is used in (Ammar et al.,
2015) to learn a linear map between states with similar local
geometric properties. However, they assume the existence
of hand-crafted features along with a distance metric be-
tween them, which limits its applicability. Recent works in
transfer learning across mismatches in embodiment (Gupta
et al., 2017) and viewpoint (Liu et al., 2018; Sharma et al.,
2019), obtain state correspondences from an proxy task set
comprising paired, time-aligned demonstrations and use
them to learn a state map or a state encoder to a domain
invariant feature space. (Kim et al., 2020) proposed a frame-
work which can learn a map across domains from unpaired,
unaligned demonstrations. However, they require expert
actions to train the framework, along with access to an on-
line expert. Furthermore, most of these approaches (Gupta
et al., 2017; Liu et al., 2018) utilize an RL step which incurs
additional computational cost. In contrast to these methods,
our approach learns an MDP structure preserving state map



Cross-domain Imitation from Observations

Table 1. Comparison to prior work using attributes demonstrated
in the paper. xDIO satisfies all the criteria desired in a holistic
domain adaptive imitation framework.

METHOD
UNPAIRED
TRAJECTO-

RIES

ONLY
STATES

NO
ONLINE
EXPERT

NO RL

IF (Gupta et al., 2017) 7 3 3 7
DAIL (Kim et al., 2020) 3 7 7 3

Ours 3 3 3 3

from unpaired, unaligned demonstrations without requiring
access to expert actions, additional RL or online experts.
Viewpoint agnostic imitation has also been tackled in (Stadie
et al., 2017), where a combination of adversarial learning
(Ho & Ermon, 2016) and domain confusion (Tzeng et al.,
2014) is used to learn a policy without an proxy set. How-
ever, it fails to account for large variations in viewpoint, in
addition to sub-optimal trajectories from the expert domain.
From a theoretical perspective, our approach aligns with the
objective of MDP homomorphisms (Ravindran, 2004). Sim-
ilar ideas are explored in learning MDP similarity metric via
bisimulation (Ferns et al., 2011) and Boltzmann machine
reconstruction error (Ammar et al., 2014). However, these
works find homomorphisms within an MDP and do not
provide ways to discover homomorphisms across MDPs.

Cycle-consistency. Our work draws inspiration from the
literature on cycle-consistency (Zhu et al., 2017; Hoffman
et al., 2018; Smith et al., 2019). CycleGAN (Zhu et al.,
2017) introduced cycle-consistency to learn bidirectional
transformations between domains via Generative Adversar-
ial Networks (Goodfellow et al., 2014) for unpaired image-
to-image translation. This was extended to domain adap-
tation in (Hoffman et al., 2018). Similar techniques are
applied in sim-to-real transfer (Ho et al., 2020; Gamrian &
Goldberg, 2019). Recently, (Rao et al., 2020) propose RL-
CycleGAN to perform sim-to-real transfer by adding extra
supervision from the Q-value function. Unlike these works,
which are restricted on visual alignments, we propose to
learn alignments across differing dynamics/morphology.

3. Problem Setting
Before formally defining the xDIO problem, we first lay
the groundwork in terms of notation. Following (Kim et al.,
2020), we define a domain as a tuple (S,A,P,P0), where
S denotes the state space, A is the action space, P is the
dynamics or transition function, andP0 is the initial distribu-
tion over the states. Given an action a ∈ A, the next state is
governed by the transition dynamics as s′ ∼ P(s′|s, a). An
infinite horizon Markov Decision Process (MDP) is defined
subsequently by including a reward function r : S×A → R,
and a discount factor γ ∈ [0, 1] to the domain tuple. Thus,
while the domain typifies only the agent morphology and
the dynamics, augmenting the domain with a reward and

discount factor describes an MDP for a particular task.
We define an MDP in some domain x for a task T as
MTx =

(
Sx,Ax,Px, rTx , γTx ,P0x

)
. A policy is a map

πTx : Sx → B(Ax), where B is the set of all probability
measures onAx. A trajectory corresponding to the task T in
domain x is a sequence of states ηMT

x
= {s0

x, s
1
x, . . . , s

Hη
x },

where Hη denotes the length of the trajectory. We denote
DMT

x
= {ηiMT

x
}Ni=1 to be a set of such trajectories. In our

work, we consider two domains: expert and agent, indicated
byMTE andMTA respectively.

The objective of xDIO is to learn an optimal policy πTA in
the agent domain, given state-only demonstrations DMT

E
in

the expert domain. In this paper, we propose to first learn
a transformation ψ : SE → SA between the domains and
then leverage ψ to imitate from the expert demonstrations.
Following prior work (Gupta et al., 2017; Liu et al., 2018;
Kim et al., 2020), we assume access to a dataset consist-
ing of expert-agent trajectories for M different proxy tasks:
D = {(DMTj

E

,DMTj
A

)}Mj=1. Proxy tasks encompass simple

primitive skills in both domains and are different from the
inference task T , for which we wish to learn the policy.

We relax certain assumptions made in previous work, which
are critical for real-world applications. Firstly, the trajec-
tories derived from proxy tasks are not paired, i.e., time-
aligned trajectories do not exist in D. This is crucial in
real-world cases, as the tasks may not be executed at the
same rate in different domains. Secondly, expert actions are
not observed: such actions are difficult to obtain in various
scenarios such as videos of humans performing some task.
Finally, we train in an offline fashion and do not require any
expert policy for interactive querying, to guide the learning
process, beyond the provided demonstrations. Table 1 ex-
plicitly details how our setting differs from the ones tackled
in the literature.

Once the domain transformation function ψ is learnt, we
use it to translate the expert domain trajectories DMT

E
, for

the inference task T , to the agent domain to obtain D̂MT
A

.
An inverse dynamics model IA : SA × SA → AA is then
learnt to augment these translated trajectories with actions,
similar to (Torabi et al., 2018). These are subsequently used
to learn the policy πTA via behavioral cloning.

4. Method
A crucial characteristic of a good domain transformation
ψ lies in MDP dynamics preservation. In our framework,
we enforce this from both the local and global perspectives.
For local alignment, we aim to ensure that optimal state
transitions inMTE map to optimal transitions inMTA . Our
proposed method achieves this local alignment by match-
ing the state-transition distributions defined for the true and
transferred trajectories on the proxy tasks in an adversar-



Cross-domain Imitation from Observations

ial manner, while maintaining cycle-consistency. A latent
space is learned via a mutual information objective to only
preserve task-specific information. On the other hand, a
learned temporal position function aims to enforce consis-
tency on the temporal position of the states across the two
domains to ensure global alignment. In the following parts,
we define each of these components in more detail.

4.1. Local alignment via distribution matching

State cycle-consistency. We seek to map optimal tran-
sitions in the expert domain to the agent domain, and
propose to learn domain transformation ψ such that the
state transition distribution is matched over the trajecto-
ries derived from the proxy tasks. We utilize adversar-
ial training to accomplish this. Given unpaired samples
{(stE , st+1

E )} ∈ DMTj
E

and {(stA, st+1
A )} ∈ DMTj

A

drawn

from the jth proxy task, the functionψ is learned in an adver-
sarial manner with a discriminatorDj

A, where ψ tries to map
(stE , s

t+1
E ) onto the distribution of (stA, s

t+1
A ), while Dj

A

tries to distinguish translated samples
(
ψ(stE), ψ(st+1

E )
)

against real samples (stA, s
t+1
A ):

min
ψ

max
DjA

Ljadv = E(stA,s
t+1
A )∼D

M
Tj
A

[
logDj

A(stA, s
t+1
A )

]
+E(stE ,s

t+1
E )∼D

M
Tj
E

[
log(1−Dj

A(ψ(stE), ψ(st+1
E )))

]
(1)

Solely optimizing this adversarial loss can lead to the model
mapping the same set of states to any random permutation
of states in the agent domain, where any of the learned
mappings can induce an output distribution that matches
the agent state transition distribution. Following (Zhu et al.,
2017), we introduce cycle consistency as a means to control
this undesired effect. We learn another state map in the op-
posite direction φ : SA → SE by optimizing an adversarial
loss, minφ maxDjE

Ljadv, with a discriminator Dj
E . Cycle

consistency is then imposed as:

min
ψ,φ
Ljcyc = EsE∼D

M
Tj
E

[
‖φ ◦ ψ(sE)− sE‖22

]
+

EsA∼D
M

Tj
A

[
‖ψ ◦ φ(sA)− sA‖22

]
(2)

Domain invariant latent space. To incentivize ψ, φ to
generalize beyond proxy tasks, we use an encoder-decoder
structure for the transformation function ψ. Concretely,
ψ = DE ◦ EE , where EE : SE → Z represents an encoder
which maps a state in the expert domain to a domain agnostic
latent spaceZ , while DE : Z → SA represents the decoding
function. φ = DA ◦ EA is defined similarly via the same
latent space Z . Prior work (Gupta et al., 2017) has explored
learning such invariant spaces, but use paired data from
both domains, which is a very strong and often unrealistic

assumption, as explained above. Inspired from work based
on information theoretic objectives (Eysenbach et al., 2018;
Wan et al., 2020), we learn the latent space by minimizing
the mutual information between the domain and the latent
transitions:

min
EE ,EA

I
(
d; (zt, zt+1)

)
(3)

where (zt, zt+1) denotes an encoded transition from either
of the domains. Minimizing the mutual information between
the domain (∆ = {E,A}) and the encoded latent transition
for the same proxy task will result in a latent space which
encodes the task-specific information and filters out the
domain-specific nuances.

Note that we can decompose the mutual information
term as I

(
∆; (zt, zt+1)

)
= H(∆) − H(∆|(zt, zt+1)),

where H(·) denotes the entropy. Thus, our ob-
jective in Equation 3 reduces to just maximizing
the conditional entropy H(∆|(zt, zt+1)). Due to in-
tractability of this expression (Alemi et al., 2016;
Poole et al., 2019), we optimize a variational lower
bound Ed∼∆,(std,s

t+1
d )∼D

M
Tj
d

[
− log qj

(
d|(zt, zt+1)

)]
in-

stead, where qj denotes a variational distribution which
approximates the true posterior.

Here, qj is parameterized as a discriminator which outputs
the probability that the generated transition comes from
domain d for the jth proxy task. Maximizing this objective
over the encoder parameters ensures that the discriminator
is maximally confused and the latent transitions for the task,
coming from both domains, are well aligned. The overall
objective is as follows:

min
qj

max
EE ,EA

LMI = Ed∼∆,(std,s
t+1
d )∼D

M
Tj
d

[
− log qj (d|

(zt, zt+1)
)]

(4)

Additionally, we enforce consistency in the latent embed-
ding to further constrain the learnt mapping:

min
ψ,φ
Ljz = EsE∼D

M
Tj
E

[
‖EA ◦ ψ(sE)− EE(sE)‖22

]
+ EsA∼D

M
Tj
A

[
‖EE ◦ φ(sA)− EA(sA)‖22

]
(5)

4.2. Global alignment via temporal position
preservation

Solely learning with state cycle-consistency may result only
in local alignment: an optimal state pair in the expert do-
main may get mapped to an optimal transition in the agent
domain while violating task semantics (transitions from be-
ginning of a task get mapped to terminal ones), and then
back without breaking cycle-consistency. In order to con-
strain the mapping to maintain temporal semantics for a task,
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ŝ0A

<latexit sha1_base64="op5D8u6FwtNYq1+2SXKrN6se3wo="></latexit>sA
<latexit sha1_base64="rgr2r70IOH1/xUoKJnBkdaPXzcY="></latexit>

s0A

<latexit sha1_base64="/3xh897z8wyn5/vj+cEV4JoJL+A="></latexit>

Lj
adv

<latexit sha1_base64="FHod91URYwqVqmABzs0raPaelZA=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwVRJRdFlw48JFBfuANobJ7aQdO5mEmYkQQvwVNy4UceuHuPNvnLRZaOuBgcM593LPHD9mVCrb/jYqK6tr6xvVzdrW9s7unrl/0JVRIoB0IGKR6PtYEkY56SiqGOnHguDQZ6TnT68Kv/dIhKQRv1NpTNwQjzkNKGClJc+sD0OsJoBZdpPfP3gZpJB7ZsNu2jNYy8QpSQOVaHvm13AUQRISroBhKQeOHSs3w0JRYCSvDRNJYgxTPCYDTTkOiXSzWfjcOtbKyAoioR9X1kz9vZHhUMo09PVkEVUueoX4nzdIVHDpZpTHiSIc5oeChFkqsoomrBEVBBRLNcEgqM5qwQQLDEr3VdMlOItfXibd06Zz3rRvzxotu6yjig7RETpBDrpALXSN2qiDAKXoGb2iN+PJeDHejY/5aMUod+roD4zPH2calTM=</latexit>

Lj
cyc

<latexit sha1_base64="JcJJBv8C5/x42NTZ21B6DTtMZb8=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPaUDbbTbN0dxN2N0IJ/QtePCji1T/kzX/jJs1BWx8MPN6bYWZekHCmjet+O5W19Y3Nrep2bWd3b/+gfnjU1XGqCO2QmMeqH2BNOZO0Y5jhtJ8oikXAaS+Y3uV+74kqzWL5aGYJ9QWeSBYygk0uDZOIjeoNt+kWQKvEK0kDSrRH9a/hOCapoNIQjrUeeG5i/Awrwwin89ow1TTBZIondGCpxIJqPytunaMzq4xRGCtb0qBC/T2RYaH1TAS2U2AT6WUvF//zBqkJb/yMySQ1VJLFojDlyMQofxyNmaLE8JklmChmb0UkwgoTY+Op2RC85ZdXSfei6V013YfLRuu2jKMKJ3AK5+DBNbTgHtrQAQIRPMMrvDnCeXHenY9Fa8UpZ47hD5zPHxTajkM=</latexit>

�

<latexit sha1_base64="sNVGIs9M+ZCLY64ntLx1ZV115RU=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPoQcKuKHoMiOAxgnlAsoTZySQZMju7zvQKcclPePGgiFd/x5t/4yTZgyYWNBRV3XR3BbEUBl3328ktLa+sruXXCxubW9s7xd29uokSzXiNRTLSzYAaLoXiNRQoeTPWnIaB5I1geD3xG49cGxGpexzF3A9pX4meYBSt1Hzq3JzaOu4US27ZnYIsEi8jJchQ7RS/2t2IJSFXyCQ1puW5Mfop1SiY5ONCOzE8pmxI+7xlqaIhN346vXdMjqzSJb1I21JIpurviZSGxozCwHaGFAdm3puI/3mtBHtXfipUnCBXbLaol0iCEZk8T7pCc4ZyZAllWthbCRtQTRnaiAo2BG/+5UVSPyt7F2X37rxUcbM48nAAh3ACHlxCBW6hCjVgIOEZXuHNeXBenHfnY9aac7KZffgD5/MHGbiPSw==</latexit>

zE , z0E

<latexit sha1_base64="p3AzDk4Vdblr3QkgEAIj+Yrp5UQ=">AAAB73icbVDLSgNBEOyNrxhfUY9eBoPoQcKuKHqMePEYwTwgWcLsZJIMmZ1dZ3qFuOQnvHhQxKu/482/cZLsQRMLGoqqbrq7glgKg6777eSWlldW1/LrhY3Nre2d4u5e3USJZrzGIhnpZkANl0LxGgqUvBlrTsNA8kYwvJn4jUeujYjUPY5i7oe0r0RPMIpWaj51rk9tHXeKJbfsTkEWiZeREmSodopf7W7EkpArZJIa0/LcGP2UahRM8nGhnRgeUzakfd6yVNGQGz+d3jsmR1bpkl6kbSkkU/X3REpDY0ZhYDtDigMz703E/7xWgr0rPxUqTpArNlvUSyTBiEyeJ12hOUM5soQyLeythA2opgxtRAUbgjf/8iKpn5W9i7J7d16quFkceTiAQzgBDy6hArdQhRowkPAMr/DmPDgvzrvzMWvNOdnMPvyB8/kDDYCPQw==</latexit>

zA, z0A

<latexit sha1_base64="1nTRVMGjhLb6DARA1aZLscFs96M=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaNRo9ELx4xyiOBlcwODYzMzq4zsyZkwyd48aAxXv0ib/6NA+xBwUo6qVR1p7sriAXXxnW/ndzS8srqWn69sLG5tb1T3N2r6yhRDGssEpFqBlSj4BJrhhuBzVghDQOBjWB4NfEbT6g0j+SdGcXoh7QveY8zaqx0+3j/0CmW3LI7BVkkXkZKkKHaKX61uxFLQpSGCap1y3Nj46dUGc4EjgvtRGNM2ZD2sWWppCFqP52eOiZHVumSXqRsSUOm6u+JlIZaj8LAdobUDPS8NxH/81qJ6V34KZdxYlCy2aJeIoiJyORv0uUKmREjSyhT3N5K2IAqyoxNp2BD8OZfXiT1k7J3VnZvTkuVyyyOPBzAIRyDB+dQgWuoQg0Y9OEZXuHNEc6L8+58zFpzTjazD3/gfP4AVzeN1Q==</latexit>

qj
<latexit sha1_base64="ajS+WYtlrow18jQS7JbzPOapbtU=">AAAB+3icbVDLSsNAFL2pr1pfsS7dBIvgqiSi6LLgRkGhgn1AG8NkOmnHTiZhZiKWkF9x40IRt/6IO//GSZuFth4YOJxzL/fM8WNGpbLtb6O0tLyyulZer2xsbm3vmLvVtowSgUkLRywSXR9JwignLUUVI91YEBT6jHT88UXudx6JkDTid2oSEzdEQ04DipHSkmdW+yFSI4xYep156c1Vdv/gmTW7bk9hLRKnIDUo0PTMr/4gwklIuMIMSdlz7Fi5KRKKYkaySj+RJEZ4jIakpylHIZFuOs2eWYdaGVhBJPTjypqqvzdSFEo5CX09mSeV814u/uf1EhWcuynlcaIIx7NDQcIsFVl5EdaACoIVm2iCsKA6q4VHSCCsdF0VXYIz/+VF0j6uO6d1+/ak1rCLOsqwDwdwBA6cQQMuoQktwPAEz/AKb0ZmvBjvxsdstGQUO3vwB8bnDzn9lIA=</latexit>

Lj
MI

<latexit sha1_base64="vsstUUuewUr8D5d5c8yX4IqTE7g=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiSi6LIoBZcV7AOaUCbTSTt08mDmRiihv+HGhSJu/Rl3/o2TNgttPTBwOOde7pnjJ1JotO1vq7S2vrG5Vd6u7Ozu7R9UD486Ok4V420Wy1j1fKq5FBFvo0DJe4niNPQl7/qTu9zvPnGlRRw94jThXkhHkQgEo2gk1w0pjhGz5mzQHFRrdt2eg6wSpyA1KNAaVL/cYczSkEfIJNW679gJehlVKJjks4qbap5QNqEj3jc0oiHXXjbPPCNnRhmSIFbmRUjm6u+NjIZaT0PfTOYZ9bKXi/95/RSDGy8TUZIij9jiUJBKgjHJCyBDoThDOTWEMiVMVsLGVFGGpqaKKcFZ/vIq6VzUnau6/XBZa9wWdZThBE7hHBy4hgbcQwvawCCBZ3iFNyu1Xqx362MxWrKKnWP4A+vzBy1PkcU=</latexit>

EE
<latexit sha1_base64="rjcoFDKzD/BKts+0EL5oAm7ijUE=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRJRdFl8gMsK9gFNKJPppB06mYSZG6GE/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkAiu0XG+rdLK6tr6RnmzsrW9s7tX3T9o6zhVlLVoLGLVDYhmgkvWQo6CdRPFSBQI1gnGN7nfeWJK81g+4iRhfkSGkoecEjSS50UER4jZ7bR/16/WnLozg71M3ILUoECzX/3yBjFNIyaRCqJ1z3US9DOikFPBphUv1SwhdEyGrGeoJBHTfjbLPLVPjDKww1iZJ9Geqb83MhJpPYkCM5ln1IteLv7n9VIMr/yMyyRFJun8UJgKG2M7L8AecMUoiokhhCpustp0RBShaGqqmBLcxS8vk/ZZ3b2oOw/ntcZ1UUcZjuAYTsGFS2jAPTShBRQSeIZXeLNS68V6tz7moyWr2DmEP7A+fwAryJHE</latexit>

DE

<latexit sha1_base64="2wEoK9gv2v/+RHPcRgw812G5Xgk=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRJRdFkfC5cV7AOaUCbTSTt0MgkzN0IJ/Q03LhRx68+482+ctFlo64GBwzn3cs+cIBFco+N8W6WV1bX1jfJmZWt7Z3evun/Q1nGqKGvRWMSqGxDNBJeshRwF6yaKkSgQrBOMb3O/88SU5rF8xEnC/IgMJQ85JWgkz4sIjhCzu2n/ul+tOXVnBnuZuAWpQYFmv/rlDWKaRkwiFUTrnusk6GdEIaeCTSteqllC6JgMWc9QSSKm/WyWeWqfGGVgh7EyT6I9U39vZCTSehIFZjLPqBe9XPzP66UYXvkZl0mKTNL5oTAVNsZ2XoA94IpRFBNDCFXcZLXpiChC0dRUMSW4i19eJu2zuntRdx7Oa42boo4yHMExnIILl9CAe2hCCygk8Ayv8Gal1ov1bn3MR0tWsXMIf2B9/gAluJHA</latexit>

DA
<latexit sha1_base64="kjy37Jex/W3R6OYWPHWhqJz36iM=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRJRdFkVwWUF+4AmlMl00g6dTMLMjVBCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATX6DjfVmlldW19o7xZ2dre2d2r7h+0dZwqylo0FrHqBkQzwSVrIUfBuoliJAoE6wTj29zvPDGleSwfcZIwPyJDyUNOCRrJ8yKCI8Tsbtq/7ldrTt2ZwV4mbkFqUKDZr355g5imEZNIBdG65zoJ+hlRyKlg04qXapYQOiZD1jNUkohpP5tlntonRhnYYazMk2jP1N8bGYm0nkSBmcwz6kUvF//zeimGV37GZZIik3R+KEyFjbGdF2APuGIUxcQQQhU3WW06IopQNDVVTAnu4peXSfus7l7UnYfzWuOmqKMMR3AMp+DCJTTgHprQAgoJPMMrvFmp9WK9Wx/z0ZJV7BzCH1ifPyc/kcE=</latexit>

EA

<latexit sha1_base64="vsstUUuewUr8D5d5c8yX4IqTE7g=">AAAB83icbVDLSsNAFL2pr1pfVZduBovgqiSi6LIoBZcV7AOaUCbTSTt08mDmRiihv+HGhSJu/Rl3/o2TNgttPTBwOOde7pnjJ1JotO1vq7S2vrG5Vd6u7Ozu7R9UD486Ok4V420Wy1j1fKq5FBFvo0DJe4niNPQl7/qTu9zvPnGlRRw94jThXkhHkQgEo2gk1w0pjhGz5mzQHFRrdt2eg6wSpyA1KNAaVL/cYczSkEfIJNW679gJehlVKJjks4qbap5QNqEj3jc0oiHXXjbPPCNnRhmSIFbmRUjm6u+NjIZaT0PfTOYZ9bKXi/95/RSDGy8TUZIij9jiUJBKgjHJCyBDoThDOTWEMiVMVsLGVFGGpqaKKcFZ/vIq6VzUnau6/XBZa9wWdZThBE7hHBy4hgbcQwvawCCBZ3iFNyu1Xqx362MxWrKKnWP4A+vzBy1PkcU=</latexit>

EE
<latexit sha1_base64="rjcoFDKzD/BKts+0EL5oAm7ijUE=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRJRdFl8gMsK9gFNKJPppB06mYSZG6GE/oYbF4q49Wfc+TdO2iy09cDA4Zx7uWdOkAiu0XG+rdLK6tr6RnmzsrW9s7tX3T9o6zhVlLVoLGLVDYhmgkvWQo6CdRPFSBQI1gnGN7nfeWJK81g+4iRhfkSGkoecEjSS50UER4jZ7bR/16/WnLozg71M3ILUoECzX/3yBjFNIyaRCqJ1z3US9DOikFPBphUv1SwhdEyGrGeoJBHTfjbLPLVPjDKww1iZJ9Geqb83MhJpPYkCM5ln1IteLv7n9VIMr/yMyyRFJun8UJgKG2M7L8AecMUoiokhhCpustp0RBShaGqqmBLcxS8vk/ZZ3b2oOw/ntcZ1UUcZjuAYTsGFS2jAPTShBRQSeIZXeLNS68V6tz7moyWr2DmEP7A+fwAryJHE</latexit>

DE

<latexit sha1_base64="2wEoK9gv2v/+RHPcRgw812G5Xgk=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRJRdFkfC5cV7AOaUCbTSTt0MgkzN0IJ/Q03LhRx68+482+ctFlo64GBwzn3cs+cIBFco+N8W6WV1bX1jfJmZWt7Z3evun/Q1nGqKGvRWMSqGxDNBJeshRwF6yaKkSgQrBOMb3O/88SU5rF8xEnC/IgMJQ85JWgkz4sIjhCzu2n/ul+tOXVnBnuZuAWpQYFmv/rlDWKaRkwiFUTrnusk6GdEIaeCTSteqllC6JgMWc9QSSKm/WyWeWqfGGVgh7EyT6I9U39vZCTSehIFZjLPqBe9XPzP66UYXvkZl0mKTNL5oTAVNsZ2XoA94IpRFBNDCFXcZLXpiChC0dRUMSW4i19eJu2zuntRdx7Oa42boo4yHMExnIILl9CAe2hCCygk8Ayv8Gal1ov1bn3MR0tWsXMIf2B9/gAluJHA</latexit>

DA
<latexit sha1_base64="kjy37Jex/W3R6OYWPHWhqJz36iM=">AAAB83icbVDLSsNAFL2pr1pfVZdugkVwVRJRdFkVwWUF+4AmlMl00g6dTMLMjVBCf8ONC0Xc+jPu/BsnbRbaemDgcM693DMnSATX6DjfVmlldW19o7xZ2dre2d2r7h+0dZwqylo0FrHqBkQzwSVrIUfBuoliJAoE6wTj29zvPDGleSwfcZIwPyJDyUNOCRrJ8yKCI8Tsbtq/7ldrTt2ZwV4mbkFqUKDZr355g5imEZNIBdG65zoJ+hlRyKlg04qXapYQOiZD1jNUkohpP5tlntonRhnYYazMk2jP1N8bGYm0nkSBmcwz6kUvF//zeimGV37GZZIik3R+KEyFjbGdF2APuGIUxcQQQhU3WW06IopQNDVVTAnu4peXSfus7l7UnYfzWuOmqKMMR3AMp+DCJTTgHprQAgoJPMMrvFmp9WK9Wx/z0ZJV7BzCH1ifPyc/kcE=</latexit>

EA

<latexit sha1_base64="cJQL6hMgB0xSSdprxvKh2t2svSA="></latexit>sE

<latexit sha1_base64="N+5CjDksqHHabLetFVeYgDX8XUY=">AAAB/3icbVBNS8NAFHypX7V+RQUvXoJF8FQSUfRY8OLBQwVbC00Im+2mXbrZhN2NEGIO/hUvHhTx6t/w5r9x0+agrQMLw8x7vNkJEkalsu1vo7a0vLK6Vl9vbGxube+Yu3s9GacCky6OWSz6AZKEUU66iipG+okgKAoYuQ8mV6V//0CEpDG/U1lCvAiNOA0pRkpLvnngRkiNMWL5TeHnOMOuT3lY+GbTbtlTWIvEqUgTKnR888sdxjiNCFeYISkHjp0oL0dCUcxI0XBTSRKEJ2hEBppyFBHp5dP8hXWslaEVxkI/rqyp+nsjR5GUWRToyTKtnPdK8T9vkKrw0sspT1JFOJ4dClNmqdgqy7CGVBCsWKYJwoLqrBYeI4Gw0pU1dAnO/JcXSe+05Zy37NuzZtuu6qjDIRzBCThwAW24hg50AcMjPMMrvBlPxovxbnzMRmtGtbMPf2B8/gC8FZaB</latexit>Lcyc inf

<latexit sha1_base64="kPI15xLDd9A4+8ezNzlHcjnjPEQ=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WNBBI8V7Qe0oWy2m3bpZhN2J0IN/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLK6tr6RnGztLW9s7tX3j9omjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpG11O/9ci1EbF6wHHC/YgOlAgFo2il+6feTa9ccavuDGSZeDmpQI56r/zV7ccsjbhCJqkxHc9N0M+oRsEkn5S6qeEJZSM64B1LFY248bPZqRNyYpU+CWNtSyGZqb8nMhoZM44C2xlRHJpFbyr+53VSDK/8TKgkRa7YfFGYSoIxmf5N+kJzhnJsCWVa2FsJG1JNGdp0SjYEb/HlZdI8q3oXVffuvFJz8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOi/Ou/Mxby04+cwh/IHz+QMo9I2o</latexit>zE

<latexit sha1_base64="kTslFsjM6cwqi6qEdgpLMPBBQTY="></latexit>

 

<latexit sha1_base64="pKwhhJO7MGz+25jwYhMZmlJ6ET4=">AAAB/HicbVC7TsMwFHV4lvIKdGSxqJCYqgSBYKxgYWAoEn1IbYgc12lNHTuyHaQoCr/CwgBCrHwIG3+D02aAliNZOjrnXt3jE8SMKu0439bS8srq2nplo7q5tb2za+/td5RIJCZtLJiQvQApwignbU01I71YEhQFjHSDyVXhdx+JVFTwO53GxIvQiNOQYqSN5Nu1QYT0GCOW3eT3D34WC5X7dt1pOFPAReKWpA5KtHz7azAUOIkI15ghpfquE2svQ1JTzEheHSSKxAhP0Ij0DeUoIsrLpuFzeGSUIQyFNI9rOFV/b2QoUiqNAjNZRFXzXiH+5/UTHV54GeVxognHs0NhwqAWsGgCDqkkWLPUEIQlNVkhHiOJsDZ9VU0J7vyXF0nnpOGeNZzb03rzsqyjAg7AITgGLjgHTXANWqANMEjBM3gFb9aT9WK9Wx+z0SWr3KmBP7A+fwCJc5VY</latexit>

Lj
pos

<latexit sha1_base64="H16+7dP3VSIqg1uBAzCZFY3wTrY=">AAAB+HicbVC7TsMwFL0pr1IeDTCyWFRITFWCQDBWsDAwFIk+pDZEjuu2po4T2Q5SG/VLWBhAiJVPYeNvcNoM0HIkS0fn3Kt7fIKYM6Ud59sqrKyurW8UN0tb2zu7ZXtvv6miRBLaIBGPZDvAinImaEMzzWk7lhSHAaetYHSd+a0nKhWLxL0ex9QL8UCwPiNYG8m3y90Q6yHBPL2dPjz6E9+uOFVnBrRM3JxUIEfdt7+6vYgkIRWacKxUx3Vi7aVYakY4nZa6iaIxJiM8oB1DBQ6p8tJZ8Ck6NkoP9SNpntBopv7eSHGo1DgMzGQWUy16mfif10l0/9JLmYgTTQWZH+onHOkIZS2gHpOUaD42BBPJTFZEhlhiok1XJVOCu/jlZdI8rbrnVefurFK7yusowiEcwQm4cAE1uIE6NIBAAs/wCm/WxHqx3q2P+WjByncO4A+szx8abZNg</latexit>

Lj
z

<latexit sha1_base64="sjMvicOV04mA5ToP8VPo8H3dJA0=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4KokoeiyK4LGCaQttLJvtpl272YTdiVBCf4MXD4p49Qd589+4/Tho64OBx3szzMwLUykMuu63s7S8srq2Xtgobm5t7+yW9vbrJsk04z5LZKKbITVcCsV9FCh5M9WcxqHkjXBwPfYbT1wbkah7HKY8iGlPiUgwilbya52bh8dOqexW3AnIIvFmpAwz1Dqlr3Y3YVnMFTJJjWl5bopBTjUKJvmo2M4MTykb0B5vWapozE2QT44dkWOrdEmUaFsKyUT9PZHT2JhhHNrOmGLfzHtj8T+vlWF0GeRCpRlyxaaLokwSTMj4c9IVmjOUQ0so08LeSlifasrQ5lO0IXjzLy+S+mnFO6+4d2fl6tUsjgIcwhGcgAcXUIVbqIEPDAQ8wyu8Ocp5cd6dj2nrkjObOYA/cD5/AGmpjmw=</latexit>

P j
E

<latexit sha1_base64="pzQakOip7OteezJHuWk1qPDF5Ls=">AAAB7HicbVBNS8NAEJ34WetX1aOXxSJ4Kokoeqx68VjBtIU2ls12067dbMLuRCihv8GLB0W8+oO8+W/cfhy09cHA470ZZuaFqRQGXffbWVpeWV1bL2wUN7e2d3ZLe/t1k2SacZ8lMtHNkBouheI+CpS8mWpO41DyRji4GfuNJ66NSNQ9DlMexLSnRCQYRSv5tc7Vw2OnVHYr7gRkkXgzUoYZap3SV7ubsCzmCpmkxrQ8N8UgpxoFk3xUbGeGp5QNaI+3LFU05ibIJ8eOyLFVuiRKtC2FZKL+nshpbMwwDm1nTLFv5r2x+J/XyjC6DHKh0gy5YtNFUSYJJmT8OekKzRnKoSWUaWFvJaxPNWVo8ynaELz5lxdJ/bTinVfcu7Ny9XoWRwEO4QhOwIMLqMIt1MAHBgKe4RXeHOW8OO/Ox7R1yZnNHMAfOJ8/Y5GOaA==</latexit>

P j
A

<latexit sha1_base64="u89EdjPaWIekdBZOJUeWKW2j7uM=">AAAB/3icbVDLSsNAFJ3UV62vqODGzWARXJVEFF0W3bhwUcE+oAlhMp20QyczYWYilJiFv+LGhSJu/Q13/o2TNgttPTBwOOde7pkTJowq7TjfVmVpeWV1rbpe29jc2t6xd/c6SqQSkzYWTMheiBRhlJO2ppqRXiIJikNGuuH4uvC7D0QqKvi9niTEj9GQ04hipI0U2AdejPQII5bd5kGWCOUFlEd5YNedhjMFXCRuSeqgRCuwv7yBwGlMuMYMKdV3nUT7GZKaYkbympcqkiA8RkPSN5SjmCg/m+bP4bFRBjAS0jyu4VT9vZGhWKlJHJrJIq2a9wrxP6+f6ujSzyhPUk04nh2KUga1gEUZcEAlwZpNDEFYUpMV4hGSCGtTWc2U4M5/eZF0ThvuecO5O6s3r8o6quAQHIET4IIL0AQ3oAXaAINH8AxewZv1ZL1Y79bHbLRilTv74A+szx/ezZam</latexit>Lpos inf

<latexit sha1_base64="JcJJBv8C5/x42NTZ21B6DTtMZb8=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8cK9gPaUDbbTbN0dxN2N0IJ/QtePCji1T/kzX/jJs1BWx8MPN6bYWZekHCmjet+O5W19Y3Nrep2bWd3b/+gfnjU1XGqCO2QmMeqH2BNOZO0Y5jhtJ8oikXAaS+Y3uV+74kqzWL5aGYJ9QWeSBYygk0uDZOIjeoNt+kWQKvEK0kDSrRH9a/hOCapoNIQjrUeeG5i/Awrwwin89ow1TTBZIondGCpxIJqPytunaMzq4xRGCtb0qBC/T2RYaH1TAS2U2AT6WUvF//zBqkJb/yMySQ1VJLFojDlyMQofxyNmaLE8JklmChmb0UkwgoTY+Op2RC85ZdXSfei6V013YfLRuu2jKMKJ3AK5+DBNbTgHtrQAQIRPMMrvDnCeXHenY9Fa8UpZ47hD5zPHxTajkM=</latexit>

�

<latexit sha1_base64="VDTl65ITq11l5O/a8MLM6sF+L8U=">AAAB+nicbVDLSsNAFL2pr1pfqS7dBIvgqiSi6LIogssKfUEbw2Q6aYdOJmFmopSYT3HjQhG3fok7/8ZJm4W2Hhg4nHMv98zxY0alsu1vo7Syura+Ud6sbG3v7O6Z1f2OjBKBSRtHLBI9H0nCKCdtRRUjvVgQFPqMdP3Jde53H4iQNOItNY2JG6IRpwHFSGnJM6tN7+Y+HYRIjTFiaSvLPLNm1+0ZrGXiFKQGBZqe+TUYRjgJCVeYISn7jh0rN0VCUcxIVhkkksQIT9CI9DXlKCTSTWfRM+tYK0MriIR+XFkz9fdGikIpp6GvJ/OMctHLxf+8fqKCSzelPE4U4Xh+KEiYpSIr78EaUkGwYlNNEBZUZ7XwGAmElW6roktwFr+8TDqndee8bt+d1RpXRR1lOIQjOAEHLqABt9CENmB4hGd4hTfjyXgx3o2P+WjJKHYO4A+Mzx96NpQl</latexit>

P T
E

<latexit sha1_base64="Meo+ylzZ/0K01hJm2NqMsHwwNWA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE0WPRi8eK9gPaUDbbSbt0swm7G6GG/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0M/Vbj6g0j+WDGSfoR3QgecgZNVa6r/eeeuWKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8MrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5F1b07r9Su8ziKcATHcAoeXEINbqEODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QM+to3F</latexit>

Pz

Inference task adaptationLocal and global alignment via proxy tasks

Figure 2. Framework overview. An illustration of our MDP correspondence learning framework. We perform local alignment via
state-transition distribution matching and cycle-consistency in the state space using Lj

adv and Lj
cyc, as well as in a learnt latent space

using Lj
z and Lj

MI (only proxy task is j shown here). The inverse cycle from agent to expert is omitted here for clarity. Global alignment
is performed via consistency on the temporal position of states across the two domains, using the pre-trained position estimators P j

A, P
j
E

in Lj
pos. Further improvement is obtained via inference task adaptation using Lj

pos inf and Lj
cyc inf - this prevents overfitting to the

proxy tasks and makes the learnt transformation more robust and well-conditioned to the target data.

we enforce additional consistency on the temporal position
of states across the two domains.

We encode the temporal position of a state by computing
a normalized score of proximity to the terminal state in
the trajectory. Each state is assigned a value of 1 if they
are terminating goal states and 0 otherwise. These discrete
values are then exponentially weighted by a discount fac-
tor γ ∈ (0, 1) to obtain a continuous estimate of the state
temporal position. Using these temporal encodings, we pre-
train temporal position estimators P jE , P

j
A in a supervised

fashion by optimizing a squared error loss as follows:

min
P jE

Eη∼D
M

Tj
E

Hη∑
t=1

(
P jE(stE)− γHη−t

)2

(6)

P jA is learnt in a similar fashion by optimizing Equation 6
with respect to the agent trajectories. These estimators are
subsequently used to enforce temporal preservation as:

min
ψ,φ
Ljpos = EsE∼D

M
Tj
E

[
‖P jA ◦ ψ(sE)− P jE(sE)‖22

]
+ EsA∼D

M
Tj
A

[
‖P jE ◦ φ(sA)− P jA(sA)‖22

]
. (7)

Our temporal position estimators may be interpreted as state
value functions: trajectories are from a greedy optimal pol-
icy with reward 1 for terminal states, and 0 otherwise.

4.3. Inference task adaptation

As discussed in Section 3, we are provided with the state-
only trajectories DMT

E
on solely the expert domain for the

inference task T . We propose to use these trajectories during
the learning process as additional regularization, referred
to as inference task adaptation. First, we enforce cycle
consistency on the states:

min
ψ,φ
Lcyc inf = EsE∼DMT

E

[
‖φ ◦ ψ(sE)− sE‖22

]
. (8)

In addition, we also enforce temporal preservation in the
latent space. Concretely, we first train a position estimator
P TE by optimizing Equation 6 on the given trajectories as
discussed in Section 4.2. We use the trained position es-
timator, along with a latent space position predictor Pz to
enforce temporal preservation by:

min
EE ,Pz

Lpos inf = EsE∼DMT
E

[
‖Pz ◦ EE(sE)− P TE (sE)‖22

]
.

(9)

4.4. Optimization

Given the alignment dataset D containing trajectories from
the M proxy tasks, we first pre-train the temporal position
estimators {(P jE , P jA)}Mj=1 using Equation 6. This is fol-
lowed by adversarial training of the state maps ψ, φ, where
we use separate discriminators on the state space and latent
space for each proxy task. The full objective is then:

min
ψ,φ

max
{DjE},{D

j
A},{qj}

L =

M∑
j=1

[
λ1

(
Ljadv(D

j
A) + Ljadv(D

j
E)

)

+ λ2

(
Ljcyc + Ljz

)
+ λ3Ljpos − λ4LjMI

]
+ λ5

(
Lcyc inf + Lpos inf

)
, (10)
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where {λi}5i=1 denote hyper-parameters which control the
contribution of each loss term. A pictorial description of the
overall framework is shown in Figure 2.

4.5. Imitation from observation

We use the learned ψ to map the states in the inference task
expert demonstrations DMT

E
to the agent domain. Given

the set of transferred state-only demonstrations D̂MT
A

, we
can use any imitation from observation algorithm to learn
the final policy. In this work, we follow the Behavioral
Cloning from Observation (BCO) approach proposed in
(Torabi et al., 2018). BCO entails learning an inverse dy-
namics model IA : SA × SA → AA to infer missing ac-
tion information. First, we collect a dataset of state-action
triplets P = {(stA, atA, st+1

A )} by random exploration. The
inverse model is subsequently estimated by Maximum Like-
lihood Estimation (MLE) of the observed transitions in P .
Assuming a Gaussian distribution over actions, this reduces
to minimizing an `2 loss as follows,

min
IA

∑
(stA,a

t
A,s

t+1
A )∈P

‖atA − IA(stA, s
t+1
A )‖22 (11)

Next, the learnt inverse model is used to augment D̂MT
A

with
agent specific actions. Finally, these action augmented tra-
jectories are used to learn the final policy πTA via behavioral
cloning. Note that our correspondence learning framework
is agnostic to the imitation from observation algorithm used
for learning the agent policy.

5. Experiments
In this section, we analyze the efficacy of our proposed
method on the xDIO task. We adopt MuJoCo (Todorov
et al., 2012) as the experimental test-bed and evaluate
on several cross-domain tasks, along with a thorough ab-
lation study of different modules in our overall frame-
work. Implementation details are presented in the sup-
plementary materials. Code and videos are available at:
https://driptarc.github.io/xdio.html.

5.1. Tasks

We use a total of 7 environments derived from the Ope-
nAI Gym (Brockman et al., 2016): 2-link Reacher, 3-link
Reacher, Friction-modified 2-link Reacher, Third-person 2-
link Reacher, 4-legged Ant, 6-legged Ant and HalfCheetah.
We use the joint level state-action space for all environments.
These are used to construct six cross-domain tasks:

Dynamics-Reacher2Reacher (D-R2R): Agent domain is
the 2-link Reacher and expert domain is the Friction-
modified 2-link Reacher, created by doubling the friction
co-efficient of the former. The proxy tasks are reaching
for M goals and the inference tasks are reaching for 4 new
goals, placed maximally far away from the proxy goals. See
the supplementary for more details on goal placement.

Viewpoint-Reacher2Reacher (V-R2R): Agent domain is
the 2-link Reacher and expert domain is Third-person 2-link
Reacher that has a “third person” view state space with a
180◦ planar offset. Tasks are the same as D-R2R.

Viewpoint-Reacher2Writer (V-R2W): Agent domain is

Algorithm 1 Learn domain transformation ψ

Input: Proxy task set
{

(DMTj
E

,DMTj
A

)
}M
j=1

, inference task trajectories DMT
E

while not done do
for j = 1, . . . ,M do //Global and local alignment

Sample (sE , s
′
E) ∼ DMTi

E

, (sA, s
′
A) ∼ DMTi

A

and store in buffers BjE , B
j
A

for i = 1, . . . , N do
Sample mini-batch i from BjE , B

j
A

Update Dj
E , D

j
A by maximizing Liadv(Dj

E) and Ljadv(D
j
E) respectively

Update qj by minimizing LjMI

Update ψ, φ by minimizing λ1

(
Ljadv(D

j
A) + Ljadv(D

j
E)
)

+ λ2

(
Ljcyc + Ljz

)
+ λ3Ljpos − λ4LjMI

end for
end for
Sample (sE , s

′
E) ∼ DMT

E
and store in buffers BM+1

E //Inference task adaptation
for i = 1, . . . , N do

Sample mini-batch i from BM+1
E

Update Vz by minimizing Lpos inf
Update ψ, φ by minimizing Lcyc inf + Lpos inf

end for
end while

https://driptarc.github.io/xdio.html
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Table 2. Cross-domain imitation performance of the policy learnt on transferred trajectories for inference tasks. All rewards are normalized
by expert performance on corresponding task.

METHOD V-R2R V-R2W D-R2R M-R2R M-A2A M-A2C

IF 0.32± 0.10 0.57± 0.20 0.48± 0.30 0.61± 0.23 0.09± 0.08 0.00± 0.00
CCA 0.16± 0.27 0.86± 0.30 0.47± 0.20 0.16± 0.13 0.30± 0.30 0.75± 0.50
CYCLEGAN 0.17± 0.10 0.72± 0.16 0.13± 0.02 0.12± 0.06 0.22± 0.20 0.80± 0.28
OURS 0.95± 0.03 0.93± 0.01 0.99± 0.02 0.96± 0.07 0.78± 0.08 1.00± 0.00

Figure 3. Adaptation complexity. Performance of learned policy as as the number of cross-domain demonstrations is varied. Our
framework consistently performs better than baselines and achieves results close to Self-demo.

M-A2C M-A2A M-R2R

Ex
pe

rt
A
ge
nt

Figure 4. Cross-domain tasks. Different morphologically mis-
matched tasks used in our experiments.

the 2-link Reacher and expert domain is Third-person 2-
link Reacher. The proxy tasks are same as D-R2R and
the inference task is tracing a letter on a plane as fast as
possible (Kim et al., 2020). The inference task differs from
the proxy tasks in two key aspects: the end effector must
draw a straight line from the letter’s vertex to vertex and not
slow down at the vertices.

Morphology-Reacher2Reacher (M-R2R): Agent domain
is the 2-link Reacher, while expert domain is the 3-link
Reacher. Otherwise same as D-R2R.

Morphology-Ant2Ant (M-A2A): Agent domain is the 4-
legged Ant, while expert domain is the 6-legged Ant. Other-
wise same as D-R2R.

Morphology-Ant2Cheetah (M-A2C): Agent domain is
the HalfCheetah, while expert domain is the 4-legged Ant.
Otherwise same as D-R2R.

5.2. Baselines

We compare our framework to other methods which are able
to learn state correspondences from unpaired and unaligned
demonstrations without access to expert actions - Canoni-
cal Correlation Analysis (Hotelling, 1992), Invariant Fea-
tures (Gupta et al., 2017) and CycleGAN (Zhu et al., 2017).
Canonical Correlation Analysis (CCA) (Hotelling, 1992)
finds invertible linear transformations to a space where do-
main data are maximally correlated when given unpaired,
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Table 3. Ablation study on each module’s contribution to final policy performance.

METHOD V-R2R V-R2W D-R2R M-R2R M-A2A M-A2C

OURS 0.95± 0.05 0.93± 0.00 0.99± 0.02 0.96± 0.07 0.78± 0.08 1.00± 0.00
- W/O INFERENCE ADAPTATION 0.81± 0.11 0.88± 0.03 0.74± 0.22 0.78± 0.11 0.46± 0.12 0.78± 0.23
- W/O LMI 0.60± 0.30 0.92± 0.03 0.76± 0.30 0.67± 0.34 0.28± 0.20 0.80± 0.21
- W/O TEMPORAL PRESERVATION 0.64± 0.31 0.84± 0.00 0.70± 0.32 0.72± 0.32 0.36± 0.50 0.43± 0.50

Figure 5. Alignment Complexity. Performance of learned policy as as the number of proxy tasks is varied. Notably, even with a reduced
number of proxy tasks, our method outperforms the baselines in most cases.

unaligned demonstrations. Invariant Features (IF) learns
state maps via a domain agnostic space from paired and
aligned demonstrations - we use Dynamic Time Warping
(Müller, 2007) on the learned latent space to compute the
pairings from the unpaired data. CycleGAN learns the state
correspondence via adversarial learning with an additional
cycle-consistency on state reconstruction. For all the base-
lines, we follow a similar procedure towards learning the
final policy - the correspondence is learnt through the proxy
tasks and then is used to transfer trajectories for policy train-
ing via BCO. Reported results are averaged across 10 runs.
Experts on Reacher tasks are trained using PPO (Schulman
et al., 2017), while those for Ant/Cheetah are trained using
A3C (Mnih et al., 2016).

5.3. Cross-domain imitation performance

We compare imitation policies learnt by our framework
against those learnt using baselines in Table 2. As may be
observed, the proposed method achieves near expert per-
formance across all the cross-domain tasks encompassing
viewpoint, dynamics and morphological mismatch. On the

other hand, baselines consistently fail to generalize across
the same tasks. There are two key reasons which can be
hypothesized for this poor performance. Firstly, IF requires
time-aligned trajectories, and the alignment when done by
algorithms like DTW, rather than human intervention, may
not be good enough given that our experiments involve
diverse starting states, up to 1.5× differences in demonstra-
tion lengths (shown in Figure 6), and varying task execution
rates. Secondly, baselines which learn from unpaired data
(CCA and CycleGAN), also fail due to the lack of a mecha-
nism to preserve MDP task characteristics, which is taken
care of in our method via temporal order preservation and
domain alignment. Figure 7 illustrates the learnt state-maps
for some of the cross-domain tasks. The proposed frame-
work translates the expert states in a manner that preserves
task semantics.

Varying the number of demonstrations. Given an ade-
quate set of proxy tasks, we experiment by varying the num-
ber of cross-domain demonstrations required for training
the policy on the inference task. To serve as an upper-bound
on performance, we imitate on agent domain demonstra-
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Figure 6. Trajectory length distributions. Distributions of trajec-
tory lengths of the proxy tasks used for M-A2C.

tions, drawn from an expert, on the inference task and de-
note this as the Self-demo baseline. As shown in Figure
3, our framework produces transferred demonstrations of
equal effectiveness to the self-demonstrations. This clearly
demonstrates the effectiveness of our framework.

Varying the number of proxy tasks. The number of proxy
tasks play a vital role in learning the correspondence across
the domains. We perform experiments by varying the num-
ber of proxy tasks in the alignment set needed to learn
the state-map for imitation, given sufficient cross-domain
demonstrations for the inference tasks. The results are
shown in Figure 5. In general, more proxy tasks equate to
better domain alignment as the solution space over possible
state maps is constrained, and the learnt mapping general-
izes better to the inference tasks.

5.4. Ablation study

We perform a set of ablation studies by removing each piece
of the framework, demonstrating the importance of includ-
ing each component. The results are shown in Table 3. We
begin by excluding inference task adaptation. This leads
to a small drop in performance across all tasks, reinforcing
the need for adapting on the inference task to incorporate
the new state distribution introduced by the inference task.
Notably, even without adaptation, the performance in al-
most all the tasks exceeds those of the baselines. Removing
the mutual information objective leads to a similar drop in
performance across all tasks. Excluding temporal position
preservation also reduces performance – demonstrating the
significance of preserving task semantics via global align-
ment, which cycle-consistency alone fails to ensure.

6. Conclusion
In this paper, we present a novel framework to tackle the
xDIO task by learning a state-map across domains us-
ing both local and global alignment. Local alignment is
performed via transition distribution matching and cycle-
consistency in both the state and latent space, while global

Expert

Ours

CCA

IF

Cycle
GAN

3-link

2-link

Figure 7. Visualization of domain transformations. State maps
learned by our framework and the baselines on the M-R2R task.
Our framework is able to map the end effector in a manner which
preserves task semantics.

alignment is enforced via the idea of temporal position
preservation. While previous approaches rely on paired data
and expert actions, we provide a general framework that can
learn the mapping from unpaired, unaligned demonstrations
without expert actions. We demonstrate the efficacy of our
approach on multiple cross-domain tasks encompassing dy-
namics, viewpoint and morphological mismatch. Our future
work will concentrate on extending our method for learning
correspondence using random trajectories, thus mitigating
the need for proxy tasks.
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