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Abstract
Recent efforts to unravel the mystery of implicit
regularization in deep learning have led to a the-
oretical focus on matrix factorization — matrix
completion via linear neural network. As a step
further towards practical deep learning, we pro-
vide the first theoretical analysis of implicit regu-
larization in tensor factorization — tensor comple-
tion via certain type of non-linear neural network.
We circumvent the notorious difficulty of tensor
problems by adopting a dynamical systems per-
spective, and characterizing the evolution induced
by gradient descent. The characterization sug-
gests a form of greedy low tensor rank search,
which we rigorously prove under certain condi-
tions, and empirically demonstrate under others.
Motivated by tensor rank capturing the implicit
regularization of a non-linear neural network, we
empirically explore it as a measure of complexity,
and find that it captures the essence of datasets on
which neural networks generalize. This leads us to
believe that tensor rank may pave way to explain-
ing both implicit regularization in deep learning,
and the properties of real-world data translating
this implicit regularization to generalization.

1 Introduction
The ability of neural networks to generalize when having
far more learnable parameters than training examples, even
in the absence of any explicit regularization, is an enigma
lying at the heart of deep learning theory. Conventional
wisdom is that this generalization stems from an implicit
regularization — a tendency of gradient-based optimization
to fit training examples with predictors whose “complexity”
is as low as possible. The fact that “natural” data gives rise
to generalization while other types of data (e.g. random) do
not, is understood to result from the former being amenable
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to fitting by predictors of lower complexity. A major chal-
lenge in formalizing this intuition is that we lack definitions
for predictor complexity that are both quantitative (i.e. admit
quantitative generalization bounds) and capture the essence
of natural data (in the sense of it being fittable with low com-
plexity). Consequently, existing analyses typically focus on
simplistic settings, where a notion of complexity is apparent.
A prominent example of such a setting is matrix completion.

In matrix completion, we are given a randomly chosen sub-
set of entries from an unknown matrix W ∗ ∈ Rd,d′ , and
our goal is to recover unseen entries. This can be viewed
as a prediction problem, where the set of possible inputs is
X = {1, ... , d}×{1, ... , d′}, the possible labels are Y = R,
and the label of (i, j) ∈ X is [W ∗]i,j . Under this view-
point, observed entries constitute the training set, and the
average reconstruction error over unobserved entries is the
test error, quantifying generalization. A predictor, i.e. a
function from X to Y , can then be seen as a matrix, and a
natural notion of complexity is its rank. It is known empiri-
cally (cf. Gunasekar et al. (2017); Arora et al. (2019)) that
this complexity measure is oftentimes implicitly minimized
by matrix factorization — linear neural network1 trained
via gradient descent with small learning rate and near-zero
initialization. Mathematically characterizing the implicit
regularization in matrix factorization is a highly active area
of research. Though initially conjectured to be equivalent
to norm minimization (see Gunasekar et al. (2017)), recent
studies (Arora et al., 2019; Razin & Cohen, 2020; Li et al.,
2021) suggest that this is not the case, and instead adopt a
dynamical view, ultimately establishing that (under certain
conditions) the implicit regularization in matrix factoriza-
tion is performing a greedy low rank search.

A central question that arises is the extent to which the study
of implicit regularization in matrix factorization is relevant
to more practical settings. Recent experiments (see Razin
& Cohen (2020)) have shown that the tendency towards
low rank extends from matrices (two-dimensional arrays)
to tensors (multi-dimensional arrays). Namely, in the task
of N -dimensional tensor completion, which (analogously

1That is, parameterization of learned predictor (matrix) as a
product of matrices. With such parameterization it is possible
to explicitly constrain rank (by limiting shared dimensions of
multiplied matrices), but the setting of interest is where rank is
unconstrained, meaning all regularization is implicit.
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to matrix completion) can be viewed as a prediction prob-
lem over N input variables, training a tensor factorization2

via gradient descent with small learning rate and near-zero
initialization tends to produce tensors (predictors) with low
tensor rank. Analogously to how matrix factorization may
be viewed as a linear neural network, tensor factorization
can be seen as a certain type of non-linear neural network
(two layer network with multiplicative non-linearity, cf. Co-
hen et al. (2016b)), and so it represents a setting much closer
to practical deep learning.

In this paper we provide the first theoretical analysis of
implicit regularization in tensor factorization. We circum-
vent the notorious difficulty of tensor problems (see Hillar
& Lim (2013)) by adopting a dynamical systems perspec-
tive. Characterizing the evolution that gradient descent with
small learning rate and near-zero initialization induces on
the components of a factorization, we show that their norms
are subject to a momentum-like effect, in the sense that they
move slower when small and faster when large. This im-
plies a form of greedy low tensor rank search, generalizing
phenomena known for the case of matrices. We employ the
finding to prove that, with the classic Huber loss from robust
statistics (Huber, 1964), arbitrarily small initialization leads
tensor factorization to follow a trajectory of rank one tensors
for an arbitrary amount of time or distance. Experiments
validate our analysis, demonstrating implicit regularization
towards low tensor rank in a wide array of configurations.

Motivated by the fact that tensor rank captures the implicit
regularization of a non-linear neural network, we empiri-
cally explore its potential to serve as a measure of complex-
ity for multivariable predictors. We find that it is possible
to fit standard image recognition datasets — MNIST (Le-
Cun, 1998) and Fashion-MNIST (Xiao et al., 2017) — with
predictors of extremely low tensor rank, far beneath what
is required for fitting random data. This leads us to believe
that tensor rank (or more advanced notions such as hierarchi-
cal tensor ranks) may pave way to explaining both implicit
regularization of contemporary deep neural networks, and
the properties of real-world data translating this implicit
regularization to generalization.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the tensor factorization model, as well as
its interpretation as a neural network. Section 3 character-
izes its dynamics, followed by Section 4 which employs
the characterization to establish (under certain conditions)
implicit tensor rank minimization. Experiments, demon-
strating both the dynamics of learning and the ability of
tensor rank to capture the essence of standard datasets, are

2The term “tensor factorization” refers throughout to the clas-
sic CP factorization; other (more advanced) factorizations will be
named differently (see Kolda & Bader (2009); Hackbusch (2012)
for an introduction to various tensor factorizations).

given in Section 5. In Section 6 we review related work.
Finally, Section 7 concludes. Extension of our results to
tensor sensing (more general setting than tensor completion)
is discussed in Appendix A.

2 Tensor Factorization
Consider the task of completing an N -dimensional tensor
(N ≥ 3) with axis lengths d1, . . . , dN ∈ N, or, in stan-
dard tensor analysis terminology, an order N tensor with
modes of dimensions d1, . . . , dN . Given a set of observa-
tions {yi1,...,iN ∈ R}(i1,...,iN )∈Ω, where Ω is a subset of
all possible index tuples, a standard (undetermined) loss
function for the task is:

L : Rd1,...,dN → R≥0 (1)

L(W) =
1

|Ω|
∑

(i1,...,iN )∈Ω
` ([W]i1,...,iN − yi1,...,iN ) ,

where ` : R → R≥0 is differentiable and locally smooth.
A typical choice for `(·) is `(z) = 1

2z
2, corresponding

to `2 loss. Other options are also common, for example
that given in Equation (8), which corresponds to the Huber
loss from robust statistics (Huber, 1964) — a differentiable
surrogate for `1 loss.

Performing tensor completion with an R-component ten-
sor factorization amounts to optimizing the following (non-
convex) objective:

φ
(
{wn

r }Rr=1
N
n=1

)
:= L (We) , (2)

defined over weight vectors {wn
r ∈ Rdn}Rr=1

N
n=1, where:

We :=
∑R

r=1
w1
r ⊗ · · · ⊗wN

r (3)

is referred to as the end tensor of the factorization, with
⊗ representing outer product.3 The minimal number of
componentsR required in order forWe to be able to express
a given tensorW ∈ Rd1,...,dN , is defined to be the tensor
rank ofW . One may explicitly restrict the tensor rank of
solutions produced by the tensor factorization via limitingR.
However, since our interest lies in the implicit regularization
induced by gradient descent, i.e. in the type of end tensors
(Equation (3)) it will find when applied to the objective φ(·)
(Equation (2)) with no explicit constraints, we treat the case
where R can be arbitrarily large.

In line with analyses of matrix factorization (e.g. Gunasekar
et al. (2017); Arora et al. (2018; 2019); Eftekhari & Zy-
galakis (2020); Li et al. (2021)), we model small learning
rate for gradient descent through the infinitesimal limit,

3For any {wn ∈Rdn}Nn=1, the outer product w1⊗ · · ·⊗wN ,
denoted also ⊗N

n=1w
n, is the tensor in Rd1,...,dN defined by

[⊗N
n=1w

n]i1,...,iN =
∏N

n=1[wn]in .
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Figure 1: Prediction tasks over discrete variables can be viewed as
tensor completion problems. Consider the task of learning a predic-
tor from domain X = {1, . . . , d1} × · · · × {1, . . . , dN} to range
Y = R (figure assumes N = 3 and d1 = · · · = dN = 5 for the
sake of illustration). Each input sample is associated with a loca-
tion in an orderN tensor with mode (axis) dimensions d1, . . . , dN ,
where the value of a variable (depicted as a shade of gray) deter-
mines the index of the corresponding mode (marked by “A”, “B”
or “C”). The associated location stores the label of the sample.
Under this viewpoint, training samples are observed entries, drawn
according to an unknown distribution from a ground truth tensor.
Learning a predictor amounts to completing the unobserved entries,
with test error measured by (weighted) average reconstruction error.
In many standard prediction tasks (e.g. image recognition), only
a small subset of the input domain has non-negligible probability.
From the tensor completion perspective this means that observed
entries reside in a restricted part of the tensor, and reconstruction
error is weighted accordingly (entries outside the support of the
distribution are neglected).

i.e. through gradient flow:

d

dt
wn
r (t) := − ∂

∂wn
r

φ
(
{wn′

r′ (t)}Rr′=1
N
n′=1

)
(4)

, t ≥ 0 , r = 1, . . . , R , n = 1, . . . , N ,

where {wn
r (t)}Rr=1

N
n=1 denote the weight vectors at time t

of optimization.

Our aim is to theoretically investigate the prospect of im-
plicit regularization towards low tensor rank, i.e. of gradient
flow with near-zero initialization learning a solution that can
be represented with a small number of components.

2.1 Interpretation as Neural Network

Tensor completion can be viewed as a prediction problem,
where each mode corresponds to a discrete input variable.
For an unknown tensorW∗ ∈ Rd1,...,dN , inputs are index
tuples of the form (i1, . . . , iN ), and the label associated
with such an input is [W∗]i1,...,iN . Under this perspective,
the training set consists of the observed entries, and the
average reconstruction error over unseen entries measures
test error. The standard case, in which observations are
drawn uniformly across the tensor and reconstruction error
weighs all entries equally, corresponds to a data distribution
that is uniform, but other distributions are also viable.

Consider for example the task of predicting a continuous la-

bel for a 100-by-100 binary image. This can be formulated
as an order 10000 tensor completion problem, where all
modes are of dimension 2. Each input image corresponds
to a location (entry) in the tensor W∗, holding its contin-
uous label. As image pixels are (typically) not distributed
independently and uniformly, locations in the tensor are not
drawn uniformly when observations are generated, and are
not weighted equally when reconstruction error is computed.
See Figure 1 for further illustration of how a general pre-
diction task (with discrete inputs and scalar output) can be
formulated as a tensor completion problem.

Under the above formulation, tensor factorization can be
viewed as a two layer neural network with multiplicative
non-linearity. Given an input, i.e. a location in the tensor,
the network produces an output equal to the value that the
factorization holds at the given location. Figure 2 illustrates
this equivalence between solving tensor completion with a
tensor factorization and solving a prediction problem with
a non-linear neural network. A major drawback of matrix
factorization as a theoretical surrogate for modern deep
learning is that it misses the critical aspect of non-linearity.
Tensor factorization goes beyond the realm of linear predic-
tors — a significant step towards practical neural networks.

3 Dynamical Characterization
In this section we derive a dynamical characterization for the
norms of individual components in the tensor factorization.
The characterization implies that with small learning rate
and near-zero initialization, components tend to be learned
incrementally, giving rise to a bias towards low tensor rank
solutions. This finding is used in Section 4 to prove (under
certain conditions) implicit tensor rank minimization, and is
demonstrated empirically in Section 5.4

Hereafter, unless specified otherwise, when referring to a
norm we mean the standard Frobenius (Euclidean) norm,
denoted by ‖·‖.

The following lemma establishes an invariant of the dynam-
ics, showing that the differences between squared norms of
vectors in the same component are constant through time.

Lemma 1. For all r ∈ {1, . . . , R} and n, n̄ ∈ {1, . . . , N}:

‖wn
r (t)‖2−

∥∥wn̄
r (t)

∥∥2
= ‖wn

r (0)‖2−
∥∥wn̄

r (0)
∥∥2
, t ≥ 0 .

Proof sketch (for proof see Lemma 9 in Subappendix C.2.2).
The claim readily follows by showing that under gradient
flow d

dt‖w
n
r (t)‖2 = d

dt‖w
n̄
r (t)‖2 for all t ≥ 0.

4We note that all results in this section apply even if the tensor
completion loss L(·) (Equation (1)) is replaced by any differen-
tiable and locally smooth function. The proofs in Appendix C
already account for this more general setting.
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Figure 2: Tensor factorizations correspond to a class of non-linear neural networks. Figure 1 illustrates how a prediction task can be
viewed as a tensor completion problem. The current figure extends this correspondence, depicting an equivalence between solving tensor
completion via tensor factorization, and learning a predictor using the non-linear neural network portrayed above. The input to the network
is a tuple I = (i1, . . . , iN ) ∈ {1, . . . , d1} × · · · × {1, . . . , dN}, encoded via one-hot vectors (x1, . . . ,xN ) ∈ Rd1 × · · · × RdN . For
example, in the diagram, I stands for a binary image with N pixels (in which case d1 = · · · = dN = 2). The one-hot representations
are passed through a hidden layer consisting of: (i) locally connected linear operator with R channels, the r’th one computing
〈w1

r,x1〉, . . . , 〈wN
r ,xN 〉 with filters (learnable weights) {wn

r }Nn=1; and (ii) channel-wise global product pooling (multiplicative non-
linearity). The resulting activations are then reduced through summation to a scalar — the output of the network. All in all, given input
tuple I = (i1, . . . , iN ), the network outputs the I’th entry of

∑R
r=1 w

1
r ⊗ · · · ⊗wN

r . Notice that the number of components R and the
weight vectors {wn

r }r,n in the factorization correspond to the width and the learnable filters of the network, respectively.

Lemma 1 naturally leads to the definition below.
Definition 1. The unbalancedness magnitude of the weight
vectors {wn

r ∈ Rdn}Rr=1
N
n=1 is defined to be:

maxr∈{1,...,R}, n,n̄∈{1,...,N}

∣∣∣‖wn
r ‖

2 −
∥∥wn̄

r

∥∥2
∣∣∣ .

By Lemma 1, the unbalancedness magnitude is constant
during optimization, and thus, is determined at initializa-
tion. When weight vectors are initialized near the origin —
regime of interest — the unbalancedness magnitude is small,
approaching zero as initialization scale decreases.

Theorem 1 below provides a dynamical characterization for
norms of individual components in the tensor factorization.
Theorem 1. Assume unbalancedness magnitude ε ≥ 0 at
initialization, and denote byWe(t) the end tensor (Equa-
tion (3)) at time t ≥ 0 of optimization. Then, for any r ∈
{1, . . . , R} and time t ≥ 0 at which ‖ ⊗Nn=1 w

n
r (t)‖ > 0:5

• If γr(t) := 〈−∇L(We(t)),⊗Nn=1ŵ
n
r (t)〉 ≥ 0, then:

d

dt
‖ ⊗Nn=1 w

n
r (t)‖ ≤ Nγr(t)(‖ ⊗Nn=1 w

n
r (t)‖ 2

N + ε)N−1

d

dt
‖ ⊗Nn=1 w

n
r (t)‖ ≥ Nγr(t) ·

‖ ⊗Nn=1 w
n
r (t)‖2

‖ ⊗Nn=1 w
n
r (t)‖ 2

N + ε
,

(5)

• otherwise, if γr(t) < 0, then:

d

dt
‖ ⊗Nn=1 w

n
r (t)‖ ≥ Nγr(t)(‖ ⊗Nn=1 w

n
r (t)‖ 2

N + ε)N−1

d

dt

∥∥⊗Nn=1w
n
r (t)

∥∥ ≤ Nγr(t) ·
∥∥⊗Nn=1w

n
r (t)

∥∥2

∥∥⊗Nn=1w
n
r (t)

∥∥ 2
N + ε

,

(6)
5When ‖ ⊗N

n=1 w
n
r (t)‖ is zero it may not be differentiable.

where ŵn
r (t) := wn

r (t)/‖wn
r (t)‖ for n = 1, . . . , N .

Proof sketch (for proof see Subappendix C.3). Differentia-
ting a component’s norm with respect to time, we obtain
d
dt‖ ⊗

N
n=1 w

n
r (t)‖ = γr(t) ·

∑N
n=1

∏
n′ 6=n ‖wn′

r (t)‖2. The
desired bounds then follow from using conservation of
unbalancedness magnitude (as implied by Lemma 1), and
showing that ‖wn′

r (t)‖2 ≤ ‖ ⊗Nn=1 wn
r (t)‖2/N + ε for all

t ≥ 0 and n′ ∈ {1, . . . , N}.

Theorem 1 shows that when unbalancedness magnitude at
initialization (denoted ε) is small, the evolution rates of
component norms are roughly proportional to their size ex-
ponentiated by 2− 2/N , where N is the order of the tensor
factorization. Consequently, component norms are subject
to a momentum-like effect, by which they move slower
when small and faster when large. This suggests that when
initialized near zero, components tend to remain close to the
origin, and then, upon reaching a critical threshold, quickly
grow until convergence, creating an incremental learning
effect that yields implicit regularization towards low tensor
rank. This phenomenon is used in Section 4 to formally
prove (under certain conditions) implicit tensor rank mini-
mization, and is demonstrated empirically in Section 5.

When the unbalancedness magnitude at initialization is ex-
actly zero, our dynamical characterization takes on a partic-
ularly lucid form.

Corollary 1. Assume unbalancedness magnitude zero at
initialization. Then, with notations of Theorem 1, for any
r ∈ {1, . . . , R}, the norm of the r’th component evolves by:

d

dt

∥∥⊗Nn=1w
n
r (t)

∥∥ = Nγr(t) ·
∥∥⊗Nn=1w

n
r (t)

∥∥2− 2
N , (7)

where by convention ŵn
r (t) = 0 if wn

r (t) = 0.
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Proof sketch (for proof see Subappendix C.4). If the time t
is such that ‖ ⊗Nn=1 wn

r (t)‖ > 0, Equation (7) readily fol-
lows from applying Theorem 1 with ε = 0. For the case
where ‖ ⊗Nn=1 wn

r (t)‖ = 0, we show that the component
⊗Nn=1w

n
r (t) must be identically zero throughout, hence both

sides of Equation (7) are equal to zero.

It is worthwhile highlighting the relation to matrix factor-
ization. There, an implicit bias towards low rank emerges
from incremental learning dynamics similar to above, with
singular values standing in place of component norms. In
fact, the dynamical characterization given in Corollary 1 is
structurally identical to the one provided by Theorem 3 in
Arora et al. (2019) for singular values of a matrix factor-
ization. We thus obtained a generalization from matrices
to tensors, notwithstanding the notorious difficulty often
associated with the latter (cf. Hillar & Lim (2013)),

4 Implicit Tensor Rank Minimization
In this section we employ the dynamical characterization
derived in Section 3 to theoretically establish implicit regu-
larization towards low tensor rank. Specifically, we prove
that under certain technical conditions, arbitrarily small ini-
tialization leads tensor factorization to follow a trajectory of
rank one tensors for an arbitrary amount of time or distance.
As a corollary, we obtain that if the tensor completion prob-
lem admits a rank one solution, and all rank one trajectories
uniformly converge to it, tensor factorization with infinitesi-
mal initialization will converge to it as well. Our analysis
generalizes to tensor factorization recent results developed
in Li et al. (2021) for matrix factorization. As typical in tran-
sitioning from matrices to tensors, this generalization entails
significant challenges necessitating use of fundamentally
different techniques.

For technical reasons, our focus in this section lies on the
Huber loss from robust statistics (Huber, 1964), given by:

`h : R→R≥0 , `h(z) :=

{
1
2z

2 , |z| < δh

δh(|z| − 1
2δh) , otherwise

, (8)

where δh > 0, referred to as the transition point of the loss,
is predetermined. Huber loss is often used as a differentiable
surrogate for `1 loss, in which case δh is chosen to be small.
We will assume it is smaller than observed tensor entries:6

Assumption 1. δh < |yi1,...,iN | ,∀(i1, . . . , iN ) ∈ Ω.

We will consider an initialization {anr ∈ Rdn}Rr=1
N
n=1 for

the weight vectors of the tensor factorization, and will scale
this initialization towards zero. In line with infinitesimal
initializations being captured by unbalancedness magnitude
zero (cf. Section 3), we assume that this is the case:

6Note that this entails assumption of non-zero observations.

Assumption 2. The initialization {anr }Rr=1
N
n=1 has unbal-

ancedness magnitude zero.

We further assume that within {anr }r,n there exists a leading
component (subset {anr̄ }n), in the sense that it is larger than
others, while having positive projection on the attracting
force at the origin, i.e. on minus the gradient of the loss L(·)
(Equation (1)) at zero:

Assumption 3. There exists r̄ ∈ {1, . . . , R} such that:
〈
−∇L(0),⊗Nn=1â

n
r̄

〉
> 0 ,

‖anr̄ ‖ > ‖anr ‖·
(

‖∇L(0)‖
〈−∇L(0),⊗N

n=1â
n
r̄ 〉

)1/(N−2)

,∀r 6= r̄ ,
(9)

where ânr̄ := anr̄ /‖anr̄ ‖ for n = 1, . . . , N .

Let α > 0, and suppose we run gradient flow on the tensor
factorization (see Section 2) starting from the initialization
{anr }r,n scaled by α. That is, we set:

wn
r (0) = α · anr , r = 1, . . . , R , n = 1, . . . , N ,

and let {wn
r (t)}r,n evolve per Equation (4). Denote by

We(t), t ≥ 0, the trajectory induced on the end tensor
(Equation (3)). We will study the evolution of this trajectory
through time. A hurdle that immediately arises is that, by
the dynamical characterization of Section 3, when the ini-
tialization scale α tends to zero (regime of interest), the time
it takesWe(t) to escape the origin grows to infinity.7 We
overcome this hurdle by considering a reference sphere — a
sphere around the origin with sufficiently small radius:

S := {W ∈ Rd1,...,dN : ‖W‖ = ρ} , (10)

where ρ ∈ (0,min(i1,...,iN )∈Ω |yi1,...,iN | − δh) can be cho-
sen arbitrarily. With the reference sphere S at hand, we
define a time-shifted version of the trajectoryWe(t), align-
ing t = 0 with the moment at which S is reached:

We(t) :=We

(
t+ inf{t′ ≥ 0 :We(t

′) ∈ S}
)

, (11)

where by definition inf{t′ ≥ 0 :We(t
′) ∈ S} = 0 ifWe(t)

does not reach S. Unlike the original trajectory We(t),
the shifted one We(t) disregards the process of escaping
the origin, and thus admits a concrete meaning to the time
elapsing from optimization commencement.

We will establish proximity ofWe(t) to trajectories of rank
one tensors. We say that W1(t) ∈ Rd1,...,dN , t ≥ 0, is
a rank one trajectory, if it coincides with some trajectory

7To see this, divide both sides of Equation (7) from Corollary 1
by ‖⊗N

n=1w
n
r (t)‖2−2/N , and integrate with respect to t. It follows

that the norm of a component at any fixed time tends to zero as
initialization scale α decreases. This implies that for any D > 0,
when taking α → 0, the time required for a component to reach
norm D grows to infinity.
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of an end tensor in a one-component factorization, i.e. if
there exists an initialization for gradient flow over a tensor
factorization with R = 1 components, leading the induced
end tensor to evolve by W1(t). If the latter initialization
has unbalancedness magnitude zero (cf. Definition 1), we
further say thatW1(t) is a balanced rank one trajectory.8

We are now in a position to state our main result, by which ar-
bitrarily small initialization leads tensor factorization to fol-
low a (balanced) rank one trajectory for an arbitrary amount
of time or distance.

Theorem 2. Under Assumptions 1, 2 and 3, for any distance
from origin D > 0, time duration T > 0, and degree of ap-
proximation ε ∈ (0, 1), if initialization scale α is sufficiently
small,9 then: (i)We(t) reaches the reference sphere S; and
(ii) there exists a balanced rank one trajectoryW1(t) em-
anating from S, such that ‖We(t) −W1(t)‖ ≤ ε at least
until t ≥ T or ‖We(t)‖ ≥ D.

Proof sketch (for proof see Subappendix C.5). Using the
dynamical characterization from Section 3 (Lemma 1 and
Corollary 1), and the fact that ∇L(·) is locally constant
around the origin, we establish that (i)We(t) reaches the
reference sphere S; and (ii) at that time, the norm of the
r̄’th component is of constant scale (independent of α),
while the norms of all other components are O(αN ). Thus,
taking α towards zero leads We(t) to arrive at S while
being arbitrarily close to the initialization of a balanced
rank one trajectory —W1(t). Since the objective is locally
smooth, this ensuresWe(t) is within distance ε fromW1(t)
for an arbitrary amount of time or distance. That is, if α
is sufficiently small, ‖We(t) −W1(t)‖ ≤ ε at least until
t ≥ T or ‖We(t)‖ ≥ D.

As an immediate corollary of Theorem 2, we obtain that
if all balanced rank one trajectories uniformly converge to
a global minimum, tensor factorization with infinitesimal
initialization will do so too. In particular, its implicit regular-
ization will direct it towards a solution with tensor rank one.

Corollary 2. Assume the conditions of Theorem 2 (Assump-
tions 1, 2 and 3), and in addition, that all balanced rank
one trajectories emanating from S converge to a tensor
W∗ ∈ Rd1,...,dN uniformly, in the sense that they are all
confined to some bounded domain, and for any ε > 0,
there exists a time T after which they are all within dis-
tance ε from W∗. Then, for any ε > 0, if initialization
scale α is sufficiently small, there exists a time T for which
‖We(T )−W∗‖ ≤ ε.

8Note that the definitions of rank one trajectory and balanced
rank one trajectory allow forW1(t) to have rank zero (i.e. to be
equal to zero) at some or all times t ≥ 0.

9Hiding problem-dependent constants, an initialization scale
of εD−1 exp(−O(D2T )) suffices. Exact constants are specified
at the beginning of the proof in Subappendix C.5.

Proof sketch (for proof see Subappendix C.6). Let T ′ > 0
be a time at which all balanced rank one trajectories that
emanated from S are within distance ε/2 from W∗. By
Theorem 2, if α is sufficiently small,We(t) is guaranteed to
be within distance ε/2 from a balanced rank one trajectory
that emanated from S , at least until time T ′. Recalling that
We(t) is a time-shifted version ofWe(t), the desired result
follows from the triangle inequality.

5 Experiments
In this section we present our experiments. Subsection 5.1
corroborates our theoretical analyses (Sections 3 and 4),
evaluating tensor factorization (Section 2) on synthetic low
(tensor) rank tensor completion problems. Subsection 5.2
explores tensor rank as a measure of complexity, examining
its ability to capture the essence of standard datasets. For
brevity, we defer a description of implementation details, as
well as some experiments, to Appendix B.

5.1 Dynamics of Learning

Recently, Razin & Cohen (2020) empirically showed that,
with small learning rate and near-zero initialization, gra-
dient descent over tensor factorization exhibits an implicit
regularization towards low tensor rank. Our theory (Sec-
tions 3 and 4) explains this implicit regularization through a
dynamical analysis — we prove that the movement of com-
ponent norms is attenuated when small and enhanced when
large, thus creating an incremental learning effect which be-
comes more potent as initialization scale decreases. Figure 3
demonstrates this phenomenon empirically on synthetic low
(tensor) rank tensor completion problems. Figures 5, 6 and 7
in Subappendix B.1 extend the experiment, corroborating
our analyses in a wide array of settings.

5.2 Tensor Rank as Measure of Complexity

Implicit regularization in deep learning is typically viewed
as a tendency of gradient-based optimization to fit training
examples with predictors whose “complexity” is as low as
possible. The fact that “natural” data gives rise to gener-
alization while other types of data (e.g. random) do not,
is understood to result from the former being amenable to
fitting by predictors of lower complexity. A major chal-
lenge in formalizing this intuition is that we lack defini-
tions for predictor complexity that are both quantitative
(i.e. admit quantitative generalization bounds) and capture
the essence of natural data (types of data on which neural
networks generalize in practice), in the sense of it being
fittable with low complexity.

As discussed in Subsection 2.1, learning a predictor with
multiple discrete input variables and a continuous output
can be viewed as a tensor completion problem. Specifically,
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Figure 3: Dynamics of gradient descent over tensor factorization — incremental learning of components yields low tensor rank solutions.
Presented plots correspond to the task of completing a (tensor) rank 5 ground truth tensor of size 10-by-10-by-10-by-10 (order 4) based
on 2000 observed entries chosen uniformly at random without repetition (smaller sample sizes led to solutions with tensor rank lower
than that of the ground truth tensor). In each experiment, the `2 loss (more precisely, Equation (1) with `(z) := z2) was minimized
via gradient descent over a tensor factorization with R = 1000 components (large enough to express any tensor), starting from (small)
random initialization. First (left) three plots show (Frobenius) norms of the ten largest components under three standard deviations
for initialization — 0.05, 0.01, and 0.005. Further reduction of initialization scale yielded no noticeable change. The rightmost plot
compares reconstruction errors (Frobenius distance from ground truth) from the three runs. To facilitate more efficient experimentation,
we employed an adaptive learning rate scheme (see Subappendix B.2 for details). Notice that, in accordance with the theoretical analysis
of Section 3, component norms move slower when small and faster when large, creating an incremental process in which components are
learned one after the other. This effect is enhanced as initialization scale is decreased, producing low tensor rank solutions that accurately
reconstruct the low (tensor) rank ground truth tensor. In particular, even though the factorization consists of 1000 components, when
initialization is sufficiently small, only five (tensor rank of the ground truth tensor) substantially depart from zero. Appendix B provides
further implementation details, as well as similar experiments with: (i) Huber loss (see Equation (8)) instead of `2 loss; (ii) ground truth
tensors of different orders and (tensor) ranks; and (iii) tensor sensing (see Appendix A).

with N ∈ N, d1, . . . , dN ∈ N, learning a predictor from do-
mainX = {1, . . . , d1}×· · ·×{1, . . . , dN} to range Y = R
corresponds to completion of an order N tensor with mode
(axis) dimensions d1, . . . , dN . Under this correspondence,
any predictor can simply be thought of as a tensor, and vice
versa. We have shown that solving tensor completion via
tensor factorization amounts to learning a predictor through
a certain neural network (Subsection 2.1), whose implicit
regularization favors solutions with low tensor rank (Sec-
tions 3 and 4). Motivated by these connections, the current
subsection empirically explores tensor rank as a measure of
complexity for predictors, by evaluating the extent to which
it captures natural data, i.e. allows the latter to be fit with
low complexity predictors.

As representatives of natural data, we chose the classic
MNIST dataset (LeCun, 1998) — perhaps the most com-
mon benchmark for demonstrating ideas in deep learning —
and its more modern counterpart Fashion-MNIST (Xiao
et al., 2017). A hurdle posed by these datasets is that they
involve classification into multiple categories, whereas the
equivalence to tensors applies to predictors whose output is
a scalar. It is possible to extend the equivalence by equat-
ing a multi-output predictor with multiple tensors, in which
case the predictor is associated with multiple tensor ranks.
However, to facilitate a simple presentation, we avoid this
extension and simply map each dataset into multiple one-
vs-all binary classification problems. For each problem, we
associate the label 1 with the active category and 0 with
all the rest, and then attempt to fit training examples with
predictors of low tensor rank, reporting the resulting mean
squared error, i.e. the residual of the fit. This is compared

against residuals obtained when fitting two types of random
data: one generated via shuffling labels, and the other by
replacing inputs with noise.

Both MNIST and Fashion-MNIST comprise 28-by-28
grayscale images, with each pixel taking one of 256 possi-
ble values. Tensors associated with predictors are thus of
order 784, with dimension 256 in each mode (axis).10 A
general rank one tensor can then be expressed as an outer
product between 784 vectors of dimension 256 each, and
accordingly has roughly 784 · 256 degrees of freedom. This
significantly exceeds the number of training examples in the
datasets (60000), hence it is no surprise that we could easily
fit them, as well as their random variants, with a predictor
whose tensor rank is one. To account for the comparatively
small training sets, and render their fit more challenging,
we quantized pixels to hold one of two values, i.e. we re-
duced images from grayscale to black and white. Following
the quantization, tensors associated with predictors have
dimension two in each mode, and the number of degrees of
freedom in a general rank one tensor is roughly 784 · 2 —
well below the number of training examples. We may thus
expect to see a difference between the tensor ranks needed
for fitting original datasets and those required by the random

10In practice, when associating predictors with tensors, it is
often beneficial to modify the representation of the input (cf. Cohen
et al. (2016b)). For example, in the context under discussion,
rather than having the discrete input variables hold pixel intensities,
they may correspond to small image patches, where each patch is
represented by the index of a centroid it is closest to, with centroids
determined via clustering applied to all patches across all images
in the dataset. For simplicity, we did not transform representations
in our experiments, and simply operated over raw image pixels.
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Figure 4: Evaluation of tensor rank as measure of complexity — standard datasets can be fit accurately with predictors of extremely low
tensor rank (far beneath what is required by random datasets), suggesting it may capture the essence of natural data. Left and right plots
show results of fitting MNIST and Fashion-MNIST datasets, respectively, with predictors of increasing tensor rank. Original datasets
are compared against two random variants: one generated by replacing images with noise (“rand image”), and the other via shuffling
labels (“rand label”). As described in the text (Subsection 5.2), for simplicity of presentation, each dataset was mapped into multiple
(ten) one-vs-all prediction tasks (label 1 for active category, 0 for the rest), with fit measured via mean squared error. Separately for
each one-vs-all prediction task and each value k ∈ {1, . . . , 15} for the tensor rank, we applied an approximate numerical method (see
Subappendix B.2.2 for details) to find the predictor of tensor rank k (or less) with which the mean squared error over training examples
is minimal. We report this mean squared error, as well as that obtained by the predictor on the test set (to mitigate impact of outliers,
large squared errors over test samples were clipped — see Subappendix B.2.2 for details). Plots show, for each value of k, mean (as
marker) and standard deviation (as error bar) of these errors taken over the different one-vs-all prediction tasks. Notice that the original
datasets are fit accurately (low train error) by predictors of tensor rank as low as one, whereas random datasets are not (with tensor rank
one, residuals of their fit are close to trivial, i.e. to the variance of the label). This suggests that tensor rank as a measure of complexity for
predictors has potential to capture the essence of natural data. Notice also that, as expected, accurate fit with low tensor rank coincides
with accurate prediction on test set, i.e. with generalization. For further details, as well as an experiment showing that linear predictors are
incapable of accurately fitting the datasets, see Appendix B.

ones. This is confirmed by Figure 4, displaying the results
of the experiment.

Figure 4 shows that with predictors of low tensor rank,
MNIST and Fashion-MNIST can be fit much more accu-
rately than the random datasets. Moreover, as one would
presume, accurate fit with low tensor rank coincides with
accurate prediction on unseen data (test set), i.e. with gener-
alization. Combined with the rest of our results, we interpret
this finding as an indication that tensor rank may shed light
on both implicit regularization of neural networks, and the
properties of real-world data translating this implicit regu-
larization to generalization.

6 Related Work
Theoretical analysis of implicit regularization induced by
gradient-based optimization in deep learning is a highly ac-
tive area of research. Works along this line typically focus
on simplified settings, delivering results such as: characteri-
zations of dynamical or statistical aspects of learning (Du
et al., 2018; Gidel et al., 2019; Arora et al., 2019; Brutzkus
& Globerson, 2020; Gissin et al., 2020; Chou et al., 2020);
solutions for test error when data distribution is known
(Advani & Saxe, 2017; Goldt et al., 2019; Lampinen &
Ganguli, 2019); and proofs of complexity measures being
implicitly minimized in certain situations, either exactly
or approximately.11 The latter type of results is perhaps

11Recent results of Vardi & Shamir (2021) imply that under
certain conditions, implicit minimization of a complexity measure
must be approximate (cannot be exact).

the most common, covering complexity measures based
on: frequency content of input-output mapping (Rahaman
et al., 2019; Xu, 2018); curvature of training objective (Mu-
layoff & Michaeli, 2020); and norm or margin of weights
or input-output mapping (Soudry et al., 2018; Gunasekar
et al., 2018a;b; Jacot et al., 2018; Ji & Telgarsky, 2019b;
Mei et al., 2019; Wu et al., 2020; Nacson et al., 2019; Ji &
Telgarsky, 2019a; Oymak & Soltanolkotabi, 2019; Ali et al.,
2020; Woodworth et al., 2020; Chizat & Bach, 2020; Yun
et al., 2021). An additional complexity measure, arguably
the most extensively studied, is matrix rank.

Rank minimization in matrix completion (or sensing) is a
classic problem in science and engineering (cf. Davenport
& Romberg (2016)). It relates to deep learning when solved
via linear neural network, i.e. through matrix factorization.
The literature on matrix factorization for rank minimization
is far too broad to cover here — we refer to Chi et al. (2019)
for a recent review. Notable works proving rank minimiza-
tion via matrix factorization trained by gradient descent
with no explicit regularization are Tu et al. (2016); Ma et al.
(2018); Li et al. (2018). Gunasekar et al. (2017) conjectured
that this implicit regularization is equivalent to norm mini-
mization, but the recent studies Arora et al. (2019); Razin &
Cohen (2020); Li et al. (2021) argue otherwise, and instead
adopt a dynamical view, ultimately establishing that (under
certain conditions) the implicit regularization in matrix fac-
torization is performing a greedy low rank search. These
studies are relevant to ours in the sense that we generalize
some of their results to tensor factorization. As typical in
transitioning from matrices to tensors (see Hillar & Lim
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(2013)), this generalization entails significant challenges
necessitating use of fundamentally different techniques.

Recovery of low (tensor) rank tensors from incomplete ob-
servations via tensor factorizations is a setting of grow-
ing interest (cf. Acar et al. (2011); Narita et al. (2012);
Anandkumar et al. (2014); Jain & Oh (2014); Yokota et al.
(2016); Karlsson et al. (2016); Xia & Yuan (2017); Zhou
et al. (2017); Cai et al. (2019) and the survey Song et al.
(2019)).12 However, the experiments of Razin & Cohen
(2020) comprise the only evidence we are aware of for suc-
cessful recovery under gradient-based optimization with
no explicit regularization (in particular without imposing
low tensor rank through a factorization).13 The current pa-
per provides the first theoretical support for this implicit
regularization.

We note that the equivalence between tensor factorizations
and different types of neural networks has been studied ex-
tensively, primarily in the context of expressive power (see,
e.g., Cohen et al. (2016b); Cohen & Shashua (2016); Sharir
et al. (2016); Cohen & Shashua (2017); Cohen et al. (2017);
Sharir & Shashua (2018); Levine et al. (2018b); Cohen et al.
(2018); Levine et al. (2018a); Balda et al. (2018); Khrulkov
et al. (2018); Levine et al. (2019); Khrulkov et al. (2019);
Levine et al. (2020)). Connections between tensor analysis
and generalization in deep learning have also been made
(cf. Li et al. (2020)), but to the best of our knowledge, the
notion of quantifying the complexity of predictors through
their tensor rank (supported empirically in Subsection 5.2)
is novel to this work.

7 Conclusion
In this paper we provided the first theoretical analysis of
implicit regularization in tensor factorization. To circumvent
the notorious difficulty of tensor problems (see Hillar &
Lim (2013)), we adopted a dynamical systems perspective,
and characterized the evolution that gradient descent (with
small learning rate and near-zero initialization) induces on
the components of a factorization. The characterization
suggests a form of greedy low tensor rank search, rigorously
proven under certain conditions. Experiments demonstrated
said phenomena.

A major challenge in mathematically explaining general-
ization in deep learning is to define measures for predictor
complexity that are both quantitative (i.e. admit quantitative
generalization bounds) and capture the essence of “natural”

12It stands in contrast to inferring representations for fully ob-
served low (tensor) rank tensors via tensor factorizations (cf. Wang
et al. (2020)) — a setting where implicit regularization (as conven-
tionally defined in deep learning) is not applicable.

13In a work parallel to ours, Milanesi et al. (2021) provides
further empirical evidence for such implicit regularization.

data (types of data on which neural networks generalize
in practice), in the sense of it being fittable with low com-
plexity. Motivated by the fact that tensor factorization is
equivalent to a certain non-linear neural network, and by
our analysis implying that the implicit regularization of this
network minimizes tensor rank, we empirically explored
the potential of the latter to serve as a measure of predic-
tor complexity. We found that it is possible to fit standard
image recognition datasets (MNIST and Fashion-MNIST)
with predictors of extremely low tensor rank (far beneath
what is required for fitting random data), suggesting that it
indeed captures aspects of natural data.

The neural network to which tensor factorization is equiva-
lent entails multiplicative non-linearity. It was shown in Co-
hen & Shashua (2016) that more prevalent non-linearities,
for example rectified linear unit (ReLU), can be accounted
for by considering generalized tensor factorizations. Study-
ing the implicit regularization in generalized tensor factor-
izations (both empirically and theoretically) is regarded as a
promising direction for future work.

There are two drawbacks to tensor factorization when ap-
plied to high-dimensional prediction problems. The first is
technical, and relates to numerical stability — an order N
tensor factorization involves products of N numbers, thus
is susceptible to arithmetic underflow or overflow if N is
large. Care should be taken to avoid this pitfall, for exam-
ple by performing computations in log domain (as done in
Cohen & Shashua (2014); Cohen et al. (2016a); Sharir et al.
(2016)). The second limitation is more fundamental, arising
from the fact that tensor rank — the complexity measure im-
plicitly minimized — is oblivious to the ordering of tensor
modes (axes). This means that the implicit regularization
does not take into account how predictor inputs are arranged
(e.g., in the context of image recognition, it does not take
into account spatial relationships between pixels). A po-
tentially promising path for overcoming this limitation is
introduction of hierarchy into the tensor factorization, equiv-
alent to adding depth to the corresponding neural network
(cf. Cohen et al. (2016b)). It may then be the case that a hi-
erarchical tensor rank (see Hackbusch (2012)), which does
account for mode ordering, will be implicitly minimized.
We hypothesize that hierarchical tensor ranks may be key
to explaining both implicit regularization of contemporary
deep neural networks, and the properties of real-world data
translating this implicit regularization to generalization.
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A Extension to Tensor Sensing
Our theoretical analyses (Sections 3 and 4) are presented in the context of tensor completion, but readily extend to the more
general task of tensor sensing — reconstruction of an unknown tensor from linear measurements (projections). In this
appendix we outline the extension. Empirical demonstrations for tensor sensing are given in Subappendix B.1 (Figure 7).

For a ground truth tensorW∗ ∈ Rd1,...,dN and measurement tensors {Ai ∈ Rd1,...,dN }mi=1, the goal in tensor sensing is
to reconstructW∗ based on {〈Ai,W∗〉 ∈ R}mi=1, where 〈 · , · 〉 represents the standard inner product. Similarly to tensor
completion (cf. Equation (1)), a standard loss function for the task is:

Ls(W) =
1

m

∑m

i=1
` (〈Ai,W〉 − 〈Ai,W∗〉) ,

where Ls : Rd1,...,dN → R≥0, and ` : R → R≥0 is differentiable and locally smooth. Note that tensor completion is a
special case, in which the measurement tensors hold 1 at a single entry and 0 elsewhere.

Beginning with Section 3, its results (in particular Lemma 1, Theorem 1 and Corollary 1) hold (and are proven in
Subappendix C) for any differentiable and locally smooth L(·), thus they apply as is to tensor sensing. Turning to Section 4,
the extension of Theorem 2 and Corollary 2 to tensor sensing (with Huber loss) is straightforward. Proofs rely on the
specifics of tensor completion only in the preliminary Lemmas 12, 13 and 14 (Subappendix C.5.1), for which analogous
lemmas may readily be established. Thus, up to slight changes in constants if maxi=1,...,m ‖Ai‖ > 1, the results carry over.

A.1 Stronger Results Under Restricted Isometry Property

In the classic setting of matrix sensing (tensor sensing with orderN = 2), a commonly studied condition on the measurement
matrices is the restricted isometry property. This condition allows for efficient recovery when the ground truth matrix has
low rank, and holds with high probability when the entries of the measurement matrices are drawn independently from
a zero-mean sub-Gaussian distribution (cf. Recht et al. (2010)). The notion of restricted isometry property extends from
matrix to tensor sensing (i.e. from order N = 2 to arbitrary N ∈ N≥2) — see Rauhut et al. (2017); Ibrahim et al. (2020).
When it applies, the tensor sensing analogues of Theorem 2 and Corollary 2 can be strengthened as described below.

In the context of tensor sensing, the restricted isometry property is defined as follows.

Definition 2. We say that the measurement tensors {Ai ∈ Rd1,...,dN }mn=1 satisfy r-restricted isometry property (r-RIP)
with parameter δ ∈ [0, 1) if:

(1− δ) ‖W‖2 ≤
∑m

i=1
〈Ai,W〉2 ≤ (1 + δ) ‖W‖2 ,

for allW ∈ Rd1,...,dN of tensor rank r or less.

By Ibrahim et al. (2020), given m ∈ O(log(N) ·
∑N
n=1 dn) measurement tensors with entries drawn independently from a

zero-mean sub-Gaussian distribution, 1-RIP holds with high probability. In this case, we may strengthen the tensor sensing
analogue of Theorem 2, such that it ensures that arbitrarily small initialization leads tensor factorization to follow a rank
one trajectory for an arbitrary amount of time, regardless of the distance traveled. That is, with the notations of Theorem 2,
for any time duration T > 0 and degree of approximation ε ∈ (0, 1), if initialization is sufficiently small, W e(t) is within
ε distance from a balanced rank one trajectory emanating from S at least until time t ≥ T . To see it is so, notice that since
the loss function during gradient flow is monotonically non-increasing,

∑m
i=1〈Ai,W1(t)〉2 is bounded through time for any

rank one trajectoryW1(t). In turn, since the measurement tensors satisfy 1-RIP, all such trajectories emanating from S
are confined to a ball of radius D > 0 about the origin, for some D > 0. By the tensor sensing analogue of Theorem 2,
sufficiently small initialization ensures that there existsW1(t) — a balanced rank one trajectory emanating from S — such
thatWe(t) is within ε distance from it at least until t ≥ T or ‖We(t)‖ ≥ D + 1. However, we know that ‖W1(t)‖ ≤ D,
and soWe(t) cannot reach norm of D + 1 before time T , as that would entail a contradiction — ‖W1(t)‖ > D. As a
consequence of the above, in the tensor sensing analogue of Corollary 2, when 1-RIP is satisfied we need not assume all
balanced rank one trajectories emanating from S are jointly bounded.
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Figure 5: Dynamics of gradient descent over tensor factorization (with Huber loss) — incremental learning of components yields low
tensor rank solutions. This figure is identical to Figure 3, except that the minimized objective (Equation (1)) is based on Huber loss (`h(·)
from Equation (8)) instead of `2 loss. In accordance with Assumption 1, the transition point δh was set to 5 · 10−7 — smaller than
the absolute value of observed entries (though larger δh led to similar results). For further details see caption of Figure 3, as well as
Subappendix B.2.1.

Figure 6: Dynamics of gradient descent over (order 3) tensor factorization — incremental learning of components yields low tensor rank
solutions. This figure is identical to Figure 3, except that: (i) the ground truth tensor is of (tensor) rank 3 with size 10-by-10-by-10 (order
3), completed based on 300 observed entries (smaller sample sizes led to solutions with tensor rank lower than that of the ground truth
tensor); and (ii) the employed tensor factorization consists of R = 100 components (large enough to express any tensor). For further
details see caption of Figure 3, as well as Subappendix B.2.1.

Figure 7: Dynamics of gradient descent over tensor factorization (on tensor sensing task) — incremental learning of components yields
low tensor rank solutions. This figure is identical to Figure 3, except that reconstruction of the ground truth tensor is based on 2000 linear
measurements (instead of 2000 randomly chosen entries), i.e. on {〈Ai,W∗〉}2000i=1 , whereW∗ ∈ Rd1,...,dN is the ground truth tensor and
A1, . . . ,A2000 ∈ Rd1,...,dN are measurement tensors sampled independently from a zero-mean Gaussian distribution (see Appendix A
for a description of the tensor sensing task). For further details see caption of Figure 3, as well as Subappendix B.2.1.

B Further Experiments and Implementation Details

B.1 Further Experiments

Figures 5, 6 and 7 supplement Figure 3 from Subsection 5.1 by including, respectively: (i) Huber loss (Equation (8)) instead
of `2 loss; (ii) ground truth tensors of different orders and (tensor) ranks; and (iii) tensor sensing (see Appendix A). Table 1
supplements Figure 4, reporting mean squared errors of linear predictors fitted to the different datasets.

B.2 Implementation Details

Below are implementation details omitted from our experimental reports (Section 5 and Subappendix B.1). Source code for
reproducing our results and figures can be found at https://github.com/noamrazin/imp_reg_in_tf (based
on the PyTorch framework (Paszke et al., 2017)).

https://github.com/noamrazin/imp_reg_in_tf
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Table 1: Linear predictors are incapable of accurately fitting the datasets in the experiment reported by Figure 4. Table presents mean
squared errors (over train and test sets) attained by fitting linear predictors to the one-vs-all prediction tasks induced by MNIST and
Fashion-MNIST datasets, as well as their random variants (in compliance with Figure 4, to mitigate impact of outliers, large squared
errors over test samples were clipped — see Subappendix B.2.2 for details). For each dataset, mean and standard deviation of train and
test errors, taken over the different one-vs-all prediction tasks, are reported. Notice that all errors are not far from 0.09 — the variance of
the label — which is trivial to achieve. For further details see caption of Figure 4, as well as Subappendix B.2.2.

MNIST FASHION-MNIST
TRAIN TEST TRAIN TEST

ORIGINAL 3.90 · 10−2 ± 8.37 · 10−3 3.92 · 10−2 ± 8.04 · 10−2 4.09 · 10−2 ± 1.50 · 10−2 4.24 · 10−2 ± 1.58 · 10−2

RAND IMAGE 8.88 · 10−2 ± 4.24 · 10−3 9.11 · 10−2 ± 4.80 · 10−3 8.88 · 10−2 ± 3.11 · 10−5 9.12 · 10−2 ± 2.07 · 10−4

RAND LABEL 8.89 · 10−2 ± 4.22 · 10−3 9.09 · 10−2 ± 4.77 · 10−3 8.88 · 10−2 ± 7.46 · 10−5 9.11 · 10−2 ± 2.23 · 10−4

B.2.1 DYNAMICS OF LEARNING (FIGURES 3, 5, 6 AND 7)

The number of components R was set to ensure an unconstrained search space, i.e. to 102 and 103 for tensor sizes 10-by-
10-by-10 and 10-by-10-by-10-by-10 respectively.14 Gradient descent was initialized randomly by sampling each weight
independently from a zero-mean Gaussian distribution, and was run until the loss reached a value lower than 10−8 or 106

iterations elapsed. For each figure, experiments were carried out with standard deviation of initialization varying over
{0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, 0.00005}. Reported are representative runs illustrating the different types of
dynamics encountered. To facilitate more efficient experimentation, we employed an adaptive learning rate scheme, where
at each iteration a base learning rate is divided by the square root of an exponential moving average of squared gradient
norms. That is, with base learning rate η = 10−2 and weighted average coefficient β = 0.99, at iteration t the learning
rate was set to ηt = η/(

√
γt/(1− βt) + 10−6), where γt = β · γt−1 + (1− β) ·

∑
R
r=1

N
n=1‖∂/∂wn

rφ({wn
r (t)}Rr=1

N
n=1)‖2

and γ0 = 0. Note that only the learning rate (step size) is affected by this scheme, not the direction of movement. When
compared to optimization with a fixed (small) learning rate, no significant difference in the dynamics was observed, while
run times were significantly shorter.

Generating a ground truth rank R∗ tensorW∗ ∈ Rd1,...,dN was done by computingW∗ =
∑R∗

r=1 w
∗1
r ⊗ · · · ⊗w∗Nr , with

{w∗nr ∈ Rdn}R∗r=1
N
n=1 drawn independently from the standard normal distribution. For convenience, the ground truth tensor

was normalized to be of unit Frobenius norm. In tensor completion experiments (Figures 3, 5 and 6), the subset of observed
entries was chosen uniformly at random. For tensor sensing (Figure 7), we sampled the entries of all measurement tensors
independently from a zero-mean Gaussian distribution with standard deviation 10−2 (ensures measurement tensors have
expected square Frobenius norm of 1).

B.2.2 TENSOR RANK AS MEASURE OF COMPLEXITY (FIGURE 4 AND TABLE 1)

For both MNIST and Fashion-MNIST datasets, we quantized pixels to hold either 0 or 1 by rounding grayscale values to
the nearest integer. Random input datasets were created by replacing all pixels in all images with random values (0 or 1)
drawn independently from the uniform distribution. Random label datasets were generated by shuffling labels according to a
random permutation, separately for train and test sets.

Given a prediction task, fitting the corresponding tensor completion problem with a predictor of tensor rank k (or less) was
done by minimizing the mean squared error over a k-component tensor factorization. Stochastic gradient descent, using the
Adam optimizer (Kingma & Ba, 2014) with learning rate 5 · 10−4, default β1, β2 coefficients, and a batch size of 5000, was
run until the loss reached a value lower than 10−8 or 104 iterations elapsed. For numerical stability, factorization weights
were initialized near one. Namely, their initial values were sampled independently from a Gaussian distribution with mean
one and standard deviation 10−3. To accelerate convergence, label values (0 or 1) were scaled up by two during optimization
(thereby ensuring symmetry about initialization), with predictions of resulting models scaled down by the same factor during
evaluation. Results reported in Table 1 were obtained using the ridge regression implementation of scikit-learn (Pedregosa
et al., 2011) with α = 0.5 (setting α = 0, i.e. using unregularized linear regression, led to numerical issues due to bad
conditioning of the data). Lastly, to mitigate impact of outliers, in both Figure 4 and Table 1 squared errors over test samples
were clipped at one, i.e. taken to be the minimum between one and the calculated error.

14For any d1, . . . , dN ∈ N, setting R = (ΠN
n=1dn)/max{dn}Nn=1 suffices for expressing all tensors in Rd1,...,dN (cf. Hackbusch

(2012)).
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C Deferred Proofs

C.1 Notations

For N ∈ N, let [N ] := {1, . . . , N}. We use 〈·, ·〉 to denote the standard Euclidean (Frobenius) inner product between two
vectors, matrices, or tensors, and ‖·‖ to denote the norm induced by it. Furthermore, we denote the outer and Kronecker
products by ⊗ and �, respectively. For a tensorW ∈ Rd1,...,dN and n ∈ [N ], we let JWKn be the mode-n matricization of
W , i.e. its arrangement as a matrix where the rows correspond to the n’th mode and the columns correspond to all other
modes (see Subsection 2.4 in Kolda & Bader (2009)).

C.2 Useful Lemmas

C.2.1 TECHNICAL

Following are several technical lemmas, which are used throughout the proofs.

Lemma 2. For anyW ∈ Rd1,...,dN and {wn ∈ Rdn}Nn=1, where d1, . . . , dN ∈ N, it holds that:
〈
W,⊗Nn′=1w

n′
〉

=
〈
JWKn · �n′ 6=nwn′ ,wn

〉
, n = 1, . . . , N .

Proof. To simplify presentation, we prove the equality for n = 1. For n = 2, . . . , N , an analogous computation yields the
desired result. By opening up the inner product and applying straightforward computations, we conclude:

〈
W,⊗Nn′=1w

n′
〉

=

d1∑

i1=1

. . .

dN∑

iN=1

[W]i1,...,iN ·
N∏

n′=1

[wn′ ]in′

=

d1∑

i1=1

[w1]i1

d2∑

i2=1

. . .

dN∑

iN=1

[W]i1,...,iN ·
N∏

n′=2

[wn′ ]in′

=
〈
JWK1 · �Nn′=2w

n′ ,w1
〉

.

Lemma 3. For any {an ∈ Rdn}Nn=1, {bn ∈ Rdn}Nn=1, where d1, . . . , dN ∈ N, it holds that:

∥∥⊗Nn=1a
n −⊗Nn=1b

n
∥∥ ≤

N∑

n=1

‖an − bn‖ ·
∏

n′ 6=n

max
{
‖an

′
‖, ‖bn

′
‖
}

.

Proof. The proof is by induction over N ∈ N. For N = 1, the claim is trivial. Assuming it holds for N − 1 ≥ 1, we show
that it holds for N as well:

∥∥⊗Nn=1a
n −⊗Nn=1b

n
∥∥ =

∥∥⊗Nn=1a
n −

(
⊗N−1
n=1 a

n
)
⊗ bN +

(
⊗N−1
n=1 a

n
)
⊗ bN −⊗Nn=1b

n
∥∥

≤
∥∥aN − bN

∥∥ ·
∥∥⊗N−1

n=1 a
n
∥∥+

∥∥⊗N−1
n=1 a

n −⊗N−1
n=1 b

n
∥∥ ·
∥∥bN

∥∥

≤
∥∥aN − bN

∥∥ ·
N−1∏

n=1

max {‖an‖ , ‖bn‖}

+
∥∥⊗N−1

n=1 a
n −⊗N−1

n=1 b
n
∥∥ ·max

{∥∥aN
∥∥ ,
∥∥bN

∥∥} .

The proof concludes by the inductive assumption for N − 1.

Lemma 4. Let B‖·‖, Bdist > 0 and {anr ∈ Rdn}Rr=1
N
n=1, {bnr ∈ Rdn}Rr=1

N
n=1, where d1, . . . , dN ∈ N, such that

max{‖anr ‖, ‖bnr ‖}Rr=1
N
n=1 ≤ B‖·‖ and (

∑R
r=1

∑N
n=1 ‖anr − bnr ‖2)1/2 ≤ Bdist. Then:

∥∥∥∥∥
R∑

r=1

⊗Nn=1a
n
r −

R∑

r=1

⊗Nn=1b
n
r

∥∥∥∥∥ ≤
√
RNBN−1

‖·‖ Bdist .
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Proof. Applying the triangle inequality and Lemma 3, we have that:
∥∥∥∥∥
R∑

r=1

⊗Nn=1a
n
r −

R∑

r=1

⊗Nn=1b
n
r

∥∥∥∥∥ ≤
R∑

r=1

∥∥⊗Nn=1a
n
r −⊗Nn=1b

n
r

∥∥

≤
R∑

r=1

N∑

n=1

‖anr − bnr ‖ ·
∏

n′ 6=n

max
{
‖an

′

r ‖, ‖bn
′

r ‖
}

≤ BN−1
‖·‖

R∑

r=1

N∑

n=1

‖anr − bnr ‖ .

The desired result readily follows from the fact that ‖x‖1 ≤
√
d · ‖x‖ for any x ∈ Rd:

∥∥∥∥∥
R∑

r=1

⊗Nn=1a
n
r −

R∑

r=1

⊗Nn=1b
n
r

∥∥∥∥∥ ≤ B
N−1
‖·‖

R∑

r=1

N∑

n=1

‖anr − bnr ‖

≤ BN−1
‖·‖

√
RN

(
R∑

r=1

N∑

n=1

‖anr − bnr ‖
2

)1/2

≤
√
RNBN−1

‖·‖ Bdist .

Lemma 5. Let f : [0, T2)→ R and g : [0, T1)→ R be continuous functions, where T1 < T2. Suppose that g(t) is bounded,
f(0) > 0, and:

d

dt
f(t) = f(t)p · g(t) , t ∈ [0, T1) , (12)

for 1 < p ∈ R. Then, f(t) > 0 for all t ∈ [0, T1].

Proof. Consider the initial value problem induced by Equation (12) over the interval [0, T1), with an initial value of f(0).
One can verify by differentiation that it is solved by:

h(t) =

(
f(0)1−p − (p− 1)

∫ t

t′=0

g(t′)dt′
)− 1

p−1

.

Since the problem has a unique solution (see, e.g., Theorem 2.2 in Teschl (2012)), it follows that for any t ∈ [0, T1):15

f(t) = h(t) =

(
f(0)1−p − (p− 1)

∫ t

t′=0

g(t′)dt′
)− 1

p−1

≥
(
f(0)1−p + (p− 1)

∫ t

t′=0

|g(t′)| dt′
)− 1

p−1

.

Recall that g(t) is bounded. Hence, from the inequality above and continuity of f(·) we conclude:

f(t) ≥
(
f(0)1−p + (p− 1) · supt′∈[0,T1) |g(t′)| · T1

)− 1
p−1

> 0 , t ∈ [0, T1] .

Lemma 6. Let θ, θ′ : [0, T ]→ Rd, where T > 0, be two curves born from gradient flow over a continuously differentiable
function f : Rd → R:

θ(0) = θ0 ∈ Rd , d
dtθ(t) = −∇f(θ(t)) , t ∈ [0, T ] ,

θ′(0) = θ′0 ∈ Rd , d
dtθ
′(t) = −∇f(θ′(t)) , t ∈ [0, T ] .

15A technical subtlety is that, in principle, h(·) may asymptote at some sT1 ∈ [0, T1). However, since the initial value problem has a
unique solution, f(t) = h(t) until that time. This means h(·) cannot asymptote before T1 as that would contradict continuity of f(·) over
[0, T2).
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Let D > 0, and suppose that f(·) is β-smooth over DD+1 for some β ≥ 0,16 where DD+1 := {θ ∈ Rd : ‖θ‖ ≤ D + 1}.
Then, if ‖θ(0)− θ′(0)‖ < exp(−β · T ), it holds that:

‖θ(t)− θ′(t)‖ ≤ ‖θ(0)− θ′(0)‖ · exp (β · t) (13)

at least until t ≥ T or ‖θ′(t)‖ ≥ D. That is, Equation (13) holds for all t ∈ [0,min{T, TD}], where TD := inf{t ≥ 0 :
‖θ′(t)‖ ≥ D}.

Proof. If ‖θ′(0)‖ ≥ D, the claim trivially holds. Suppose ‖θ′(0)‖ < D, and notice that in this case ‖θ(0)‖ < ‖θ′(0)‖ +
exp(−β · T ) < D + 1. We examine the initial time at which ‖θ′(t)‖ ≥ D or ‖θ(t)‖ ≥ D + 1. That is, let sTD :=
inf {t ∈ [0, T ] : ‖θ′(t)‖ ≥ D or ‖θ(t)‖ ≥ D + 1}, where we take sTD := T if the set is empty. Since both ‖θ′(t)‖ and
‖θ(t)‖ are continuous in t, it must be that sT > 0. Furthermore, ‖θ′(t)‖ ≤ D and ‖θ(t)‖ ≤ D + 1 for all t ∈ [0, sTD].

Now, define the function g : [0, T ]→ R≥0 by g(t) := ‖θ(t)− θ′(t)‖2. For any t ∈ [0, sTD] it holds that:

d

dt
g(t) = 2

〈
θ(t)− θ′(t), ddtθ(t)−

d
dtθ
′(t)
〉

= −2 〈θ(t)− θ′(t),∇f(θ(t))−∇f(θ′(t))〉 .

By the Cauchy-Schwartz inequality and β-smoothness of f(·) over DD+1 we have:

d

dt
g(t) ≤ 2β · ‖θ(t)− θ′(t)‖2 = 2β · g(t) . (14)

Thus, Gronwall’s inequality leads to g(t) ≤ g(0) · exp(2β · t). Taking the square root of both sides then establishes
Equation (13) for all t ∈ [0, sTD].

If sTD = T , the proof concludes since Equation (13) holds over [0, T ]. Otherwise, if sTD < T , then either ‖θ′( sTD)‖ = D or
‖θ( sTD)‖ = D + 1. It suffices to show that in both cases TD ≤ sTD. In case ‖θ′( sTD)‖ = D, the definition of TD implies
TD = sTD. On the other hand, suppose ‖θ( sTD)‖ = D+ 1. Since ‖θ(0)− θ′(0)‖ < exp(−β ·T ), the fact that Equation (13)
holds for sTD gives

∥∥θ( sTD)− θ′( sTD)
∥∥ ≤ 1. Therefore, it must be that

∥∥θ′( sTD)
∥∥ ≥ D, and so TD ≤ sTD, completing the

proof.

C.2.2 TENSOR FACTORIZATION

Suppose that we minimize the objective φ(·) (Equations (2) and (3)) via gradient flow over an R-component tensor
factorization (Equation (4)), where we allow the loss L(·) in Equation (2) to be any differentiable and locally smooth
function. Under this setting, the following lemmas establish several results which will be of use when proving the main
theorems.

Lemma 7. For any {wn
r ∈ Rdn}Rr=1

N
n=1:

∂

∂wn
r

φ
(
{wn′

r′ }Rr′=1
N
n′=1

)
= J∇L (We)Kn · �n′ 6=nwn′

r , r = 1, . . . , R , n = 1, . . . , N ,

whereWe denotes the end tensor (Equation (3)) induced by {wn
r }Rr=1

N
n=1.

Proof. For r ∈ [R], n ∈ [N ], we treat {wn′

r′ }(r′,n′)6=(r,n) as fixed, and with slight abuse of notation consider:

φr,n (wn
r ) := φ

(
{wn′

r′ }Rr′=1
N
n′=1

)
.

For ∆ ∈ Rdn , from the first order Taylor approximation of L(·) we have that:

φr,n (wn
r + ∆) = L

(
We +

(
⊗n−1
n′=1w

n′

r

)
⊗∆⊗

(
⊗Nn′=n+1w

n′

r

))

= L (We) +
〈
∇L (We),

(
⊗n−1
n′=1w

n′

r

)
⊗∆⊗

(
⊗Nn′=n+1w

n′

r

)〉
+ o (‖∆‖) .

16That is, for any θ1, θ2 ∈ DD+1 it holds that ‖∇f(θ1)−∇f(θ2)‖ ≤ β · ‖θ1 − θ2‖.
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Since L (We) = φr,n(wn
r ), by applying Lemma 2 we arrive at:

φr,n (wn
r + ∆) = φr,n (wn

r ) +
〈
J∇L(We)Kn · �n′ 6=nwn′

r ,∆
〉

+ o(‖∆‖) .

Uniqueness of the linear approximation of φr,n(·) at wn
r then implies:

∂

∂wn
r

φ
(
{wn′

r′ }Rr′=1
N
n′=1

)
=

d

dwn
r

φr,n (wn
r ) = J∇L (We)Kn · �n′ 6=nwn′

r .

Lemma 8. For any r ∈ [R] and n ∈ [N ]:

d

dt
‖wn

r (t)‖2 = −2
〈
∇L (We(t)),⊗Nn′=1w

n′

r (t)
〉

.

Proof. Fix r ∈ [R] and n ∈ [N ]. Differentiating ‖wn
r (t)‖2 with respect to time, we have:

d

dt
‖wn

r (t)‖2 = 2
〈
wn
r (t), ddtw

n
r (t)

〉
= −2

〈
wn
r (t),

∂

∂wn
r

φ
(
{wn′

r′ (t)}Rr′=1
N
n′=1

)〉
.

Applying Lemmas 7 and 2 completes the proof.

Lemma 9 (Lemma 1 restated). For all r ∈ [R] and n, n̄ ∈ [N ]:

‖wn
r (t)‖2 −

∥∥wn̄
r (t)

∥∥2
= ‖wn

r (0)‖2 −
∥∥wn̄

r (0)
∥∥2

, t ≥ 0 .

Proof of Lemma 9. For any r ∈ [R] and n, n̄ ∈ [N ], by Lemma 8 it holds that:

d

dt
‖wn

r (t)‖2 = −2
〈
∇L (We(t)),⊗Nn′=1w

n′

r (t)
〉

=
d

dt
‖wn̄

r (t)‖2 .

Integrating both sides with respect to time gives:

‖wn
r (t)‖2 − ‖wn

r (0)‖2 =
∥∥wn̄

r (t)
∥∥2 −

∥∥wn̄
r (0)

∥∥2
.

Rearranging the equality above establishes the desired result.

Lemma 10. Let R̃ > R, and define:

w̃n
r (t) :=

{
wn
r (t) , r ∈ {1, . . . , R}

0 ∈ Rdn , r ∈ {R+ 1, . . . , R̃}
, t ≥ 0 , n = 1, . . . , N . (15)

Then, {w̃n
r (t)}R̃r=1

N
n=1 follow a gradient flow path of an R̃-component factorization.

Proof. We verify that {w̃n
r (t)}R̃r=1

N
n=1 satisfy the differential equations governing gradient flow. Fix n ∈ [N ]. For any

r ∈ [R] and t ≥ 0 we have:

d

dt
w̃n
r (t) =

d

dt
wn
r (t) = − ∂

∂wn
r

φ
(
{wn′

r′ (t)}Rr′=1
N
n′=1

)
.

Noticing thatWe(t) =
∑R
r′=1⊗Nn′=1w

n′

r′ (t) =
∑R̃
r′=1⊗Nn′=1w̃

n′

r′ (t) = W̃e(t), and invoking Lemma 7, we may write:

d

dt
w̃n
r (t) = − J∇L (We(t))Kn · �n′ 6=nw

n′

r (t)

= −
r
∇L

(
W̃e(t)

)z
n
· �n′ 6=nw̃n′

r (t)

= − ∂

∂w̃n
r

φ
(
{w̃n′

r′ (t)}R̃r′=1
N
n′=1

)
.
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On the other hand, for any r ∈ {R+ 1, . . . , R̃}, recalling that w̃n
r (t) is identically zero:

d

dt
w̃n
r (t) = 0 = −

r
∇L

(
W̃e(t)

)z
n
· �n′ 6=nw̃n′

r (t) = − ∂

∂w̃n
r

φ
(
{w̃n′

r′ (t)}R̃r′=1
N
n′=1

)
,

for all t ≥ 0, completing the proof.

Lemma 11. For any r ∈ [R]:

• If ‖w1
r(0)‖ = · · · = ‖wN

r (0)‖ = 0, then:
∥∥w1

r(t)
∥∥ = · · · =

∥∥wN
r (t)

∥∥ = 0 , t ≥ 0 . (16)

• On the other hand, if ‖w1
r(0)‖ = · · · = ‖wN

r (0)‖ > 0, then:
∥∥w1

r(t)
∥∥ = · · · =

∥∥wN
r (t)

∥∥ > 0 , t ≥ 0 . (17)

Proof. The proof is divided into two separate parts, establishing Equations (16) and (17) under their respective conditions.

Proof of Equation (16) (if ‖w1
r(0)‖ = · · · = ‖wN

r (0)‖ = 0): To simplify presentation, we assume without loss of
generality that r = R. Consider the following initial value problem induced by gradient flow over φ(·):

w̃n
r̄ (0) = wn

r̄ (0) , r̄ = 1, . . . , R , n = 1, . . . , N ,
d

dt
w̃n
r̄ (t) = − ∂

∂w̃n
r̄

φ
(
{w̃n′

r′ (t)}Rr′=1
N
n′=1

)
, t ≥ 0 , r̄ = 1, . . . , R , n = 1, . . . , N .

(18)

By definition, {wn
r̄ (t)}Rr̄=1

N
n=1 is a solution to the initial value problem above. Since it has a unique solution (see, e.g.,

Theorem 2.2 in Teschl (2012)), we need only show that there exist {w̃n
r̄ (t)}Rr̄=1

N
n=1 satisfying Equation (18) such that

w̃1
R(t) = · · · = w̃N

R (t) = 0 for all t ≥ 0.

If R = 1, i.e. the factorization consists of a single component, by Lemma 7:

− ∂

∂w̃n
1

φ
(
{w̃n′

1 }Nn′=1

)
= −

r
∇L

(
⊗Nn′=1w̃

n′

1

)z
n
· �n′ 6=nw̃n′

1 , n = 1, . . . , N ,

for any w̃1
1 ∈ Rd1 , . . . , w̃N

1 ∈ RdN . Hence, w̃1
1(t) = · · · = w̃N

1 (t) = 0 for all t ≥ 0 form a solution to the initial value
problem in Equation (18). To see it is so, notice that the initial conditions are met, and:

d

dt
w̃n

1 (t) = 0 = − ∂

∂w̃n
1

φ
(
{w̃n′

1 (t)}Nn′=1

)
, t ≥ 0 , n = 1, . . . , N .

If R > 1, with slight abuse of notation we denote by φ({w̃n
r̄ }R−1

r̄=1
N
n=1) := L(

∑R−1
r̄=1 ⊗Nn=1w̃

n
r̄ ) the objective over an

(R− 1)-component tensor factorization. Let {w̃n
r̄ (t)}R−1

r̄=1
N
n=1 be curves obtained by running gradient flow on this objective,

initialized such that:
w̃n
r̄ (0) := wn

r̄ (0) , r̄ = 1, . . . , R− 1 , n = 1, . . . , N .

Additionally, define w̃1
R(t) = · · · = w̃N

R (t) = 0 for all t ≥ 0. According to Lemma 10, {w̃n
r̄ (t)}Rr̄=1

N
n=1 form a valid

solution to the original gradient flow over an R-component factorization, i.e. satisfy Equation (18). Thus, uniqueness of the
solution implies w1

R(t) = · · · = wN
R (t) = 0 for all t ≥ 0, completing the proof for Equation (16).

Proof of Equation (17) (if ‖w1
r(0)‖ = · · · = ‖wN

r (0)‖ > 0): From Lemma 1 it follows that ‖w1
r(t)‖ = · · · = ‖wN

r (t)‖
for any t ≥ 0. Hence, it suffices to show that ‖w1

r(t)‖ stays positive. Assume by way of contradiction that there exists t̄ > 0
for which ‖w1

r(t̄ )‖ = 0. Define:
t0 := inf

{
t ≥ 0 : ‖w1

r(t)‖ = 0
}

,
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the initial time at which ‖w1
r(t)‖ meets zero. Due to the fact that ‖w1

r(t)‖ is continuous in t, ‖w1
r(t0)‖ = 0 and t0 > 0.

Furthermore, ‖w1
r(t)‖ > 0 for all t ∈ [0, t0). We may therefore differentiate ‖w1

r(t)‖ with respect to time over the interval
[0, t0) as follows:

d

dt

∥∥w1
r(t)

∥∥ =
(
d
dt

∥∥w1
r(t)

∥∥2
)
· 2−1

∥∥w1
r(t)

∥∥−1

=
∥∥w1

r(t)
∥∥−1 〈−∇L (We(t)),⊗Nn=1w

n
r (t)

〉

=
∥∥w1

r(t)
∥∥N−1 〈−∇L (We(t)),⊗Nn=1ŵ

n
r (t)

〉
,

where in the second transition we made use of Lemma 8, and ŵn
r (t) := wn

r (t)/‖wn
r (t)‖ for n = 1, . . . , N . Define

g(t) := 〈−∇L (We(t)),⊗Nn=1ŵ
n
r (t)〉. Since ∇L(We(t)) is continuous with respect to time, g(t) is bounded over [0, t0]

and continuous over [0, t0). Thus, invoking Lemma 5 with g(t), T1 := t0 and f(t) := ‖w1
r(t)‖, we get that ‖w1

r(t)‖ > 0
for all t ∈ [0, t0], in contradiction to ‖w1

r(t0)‖ = 0. This means that ‖w1
r(t)‖ > 0 for all t ≥ 0, concluding the proof for

Equation (17).

C.3 Proof of Theorem 1

Fix r ∈ [R] and t ≥ 0. Since ‖ ⊗Nn=1 w
n
r (t)‖ =

∏N
n=1 ‖wn

r (t)‖, the product rule gives:

d

dt

∥∥⊗Nn=1w
n
r (t)

∥∥ =

N∑

n=1

d

dt
‖wn

r (t)‖ ·
∏

n′ 6=n

‖wn′

r (t)‖ .

Notice that for any n ∈ [N ] we have ‖wn
r (t)‖ > 0, as otherwise ‖ ⊗Nn′=1 w

n′

r (t)‖ must be zero. Thus, applying Lemma 8
we get d

dt‖w
n
r (t)‖ = 1

2‖w
n
r (t)‖−1 d

dt‖w
n
r (t)‖2 = ‖wn

r (t)‖−1〈−∇L (We(t)),⊗Nn′=1w
n′

r (t)〉. Combined with the equation
above, we arrive at:

d

dt

∥∥⊗Nn=1w
n
r (t)

∥∥ =

N∑

n=1

‖wn
r (t)‖−1

〈
−∇L (We(t)),⊗Nn′=1w

n′

r (t)
〉
·
∏

n′ 6=n

‖wn′

r (t)‖

=
〈
−∇L (We(t)),⊗Nn′=1ŵ

n′

r (t)
〉
·
N∑

n=1

∏

n′ 6=n

‖wn′

r (t)‖2 .

(19)

By Lemma 1, the differences between squared norms of vectors in the same component are constant through time. In
particular, the unbalancedness magnitude (Definition 1) is conserved during gradient flow, implying that for any n ∈ [N ]:

‖wn
r (t)‖2 ≤ min

n′∈[N ]
‖wn′

r (t)‖2 + ε ≤
∥∥∥⊗Nn′=1w

n′

r (t)
∥∥∥

2
N

+ ε . (20)

Now, suppose that γr(t) := 〈−∇L(We(t)),⊗Nn=1ŵ
n
r (t)〉 ≥ 0. Going back to Equation (19), applying the inequality in

Equation (20) for each ‖wn′

r (t)‖2 yields the desired upper bound from Equation (5). On the other hand, multiplying and
dividing each summand in Equation (19) by the corresponding ‖wn

r (t)‖2, we may equivalently write:

d

dt

∥∥⊗Nn=1w
n
r (t)

∥∥ =
〈
−∇L (We(t)),⊗Nn′=1ŵ

n′

r (t)
〉
·
N∑

n=1

‖wn
r (t)‖−2

N∏

n′=1

‖wn′

r (t)‖2

=
〈
−∇L (We(t)),⊗Nn′=1ŵ

n′

r (t)
〉∥∥⊗Nn=1w

n
r (t)

∥∥2 ·
N∑

n=1

‖wn
r (t)‖−2 .

Noticing that Equation (20) implies ‖wn
r (t)‖−2 ≥ (‖ ⊗Nn′=1 w

n′

r (t)‖ 2
N + ε)−1, the lower bound from Equation (5) readily

follows.

If γr(t) < 0, Equation (6) is established by following the same computations, up to differences in the direction of inequalities
due to the negativity of γr(t).
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C.4 Proof of Corollary 1

Fix r ∈ [R] and t ≥ 0. The lower and upper bounds in Theorem 1 are equal to Nγr(t) ·
∥∥⊗Nn=1w

n
r (t)

∥∥2−2/N
for

unbalancedness magnitude ε = 0. Therefore, if ‖ ⊗Nn=1 w
n
r (t)‖ > 0, Equation (7) immediately follows from Theorem 1.

If ‖⊗Nn=1w
n
r (t)‖ = 0, we claim that necessarily ‖⊗Nn=1w

n
r (t′)‖ = 0 for all t′ ≥ 0, in which case both sides of Equation (7)

are zero. Indeed, since the unbalancedness magnitude is zero at initialization and ‖ ⊗Nn=1 w
n
r (t)‖ =

∏N
n=1 ‖wn

r (t)‖, by
Lemma 11 we know that either ‖ ⊗Nn=1 w

n
r (t′)‖ = 0 for all t′ ≥ 0, or ‖ ⊗Nn=1 w

n
r (t′)‖ > 0 for all t′ ≥ 0. Hence, given that

‖ ⊗Nn=1 w
n
r (t)‖ = 0, the norm of the component must be identically zero through time.

C.5 Proof of Theorem 2

For conciseness, we consider the case where the number of components R ≥ 2. For R = 1, existence of a time T0 > 0
at which We(T0) ∈ S follows by analogous steps, disregarding parts pertaining to factorization components 2, . . . , R.
Furthermore, proximity to a balanced rank one trajectory becomes trivial as, by Assumption 2 and Lemma 1,We(t) is in
itself such a trajectory.

Assume without loss of generality that Assumption 3 holds for r̄ = 1.

Before delving into the proof details, let us introduce some notation and specify the exact requirement on the initialization
scale α. We let Lh : Rd1,...,dN → R≥0 be the tensor completion objective induced by the Huber loss (Equation (1) with
`h(·) in place of `(·)), and φh(·) be the corresponding tensor factorization objective (Equation (2) with Lh(·) in place of
L(·)). For reference sphere radius ρ ∈ (0,min(i1,...,iN )∈Ω |yi1,...,iN | − δh), distance from origin D > 0, time duration
T > 0, and degree of approximation ε ∈ (0, 1), let:

‖ar‖ := ‖a1
r‖ = · · · = ‖aNr ‖ , r = 1, . . . , R ,

A := maxr∈[R] ‖ar‖ ,
A−1 := maxr∈{2,...,R} ‖ar‖ ,

D̃ :=
√
N (max{D, ρ}+ 1)

1
N ,

β := RN
(

(D̃ + 1)2(N−1) + δh(D̃ + 1)N−2
)

,

ε̂ < min
{

2−
N
2 R−NN−N (D̃ + 1)N−N

2

· exp(−NβT ) · εN , ρ(R− 1)−1
}

,

ε̃ := min

{
ε̂ , (R− 1)−1

(
ρ−

[
ρ

1
N − (R− 1)

1
N · ε̂ 1

N

]N)}
.

(21)

With the constants above in place, for the results of the theorem to hold it suffices to require that:

α < min

{
R−

1
NA−1ρ

1
N ,

(
A2−N
−1 − ‖a1‖2−N ‖∇L(0)‖

〈−∇L(0),⊗N
n=1â

n
1 〉

) 1
N−2

· ε̃ 1
N

}
. (22)

The proof is sectioned into three parts. We begin with several preliminary lemmas in Subappendix C.5.1. Then, Sub-
appendix C.5.2 establishes the existence of a time T0 > 0 at which We(t) initially reaches the reference sphere S,
i.e. ‖We(T0)‖ = ρ, while ‖ ⊗Nn=1 wn

2 (T0)‖, . . . , ‖ ⊗Nn=1 wn
R(T0)‖ are still O(αN ). Consequently, as shown in Sub-

appendix C.5.3, at that time the weight vectors of the R-component tensor factorization are close to weight vectors
corresponding to a balanced rank one trajectory emanating from S, denotedW1(t). The proof concludes by showing that
this implies the time-shifted trajectoryWe(t) is within ε distance fromW1(t) at least until t ≥ T or ‖We(t)‖ ≥ D.

C.5.1 PRELIMINARY LEMMAS

Lemma 12. LetW ∈ Rd1,...,dN be such that ‖W‖ ≤ ρ, where ρ ∈ (0,min(i1,...,iN )∈Ω |yi1,...,iN | − δh). Then:

∇Lh(W) =
δh
|Ω|
∑

(i1,...,iN )∈Ω
sign(−yi1,...,iN ) · Ei1,...,iN ,

where Ei1,...,iN ∈ Rd1,...,dN holds 1 in its (i1, . . . , iN )’th entry and 0 elsewhere.
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Proof. Fix I := (i1, . . . , iN ) ∈ Ω, and let `′h(·) denote the derivative of `h(·). If yI > 0, we have that [W]I − yI ≤
‖W‖− yI ≤ min(i1,...,iN )∈Ω |yi1,...,iN | − δh − yI ≤ −δh. Therefore, `′h([W]I − yI) = −δh = sign(−yI)δh. Similarly, if
yI < 0, we have that [W]I − yI ≥ δh and `′h([W]I − yI) = δh = sign(−yI)δh. Note that yI cannot be exactly zero as, by
Assumption 1, min(i1,...,iN )∈Ω |yi1,...,iN | > δh > 0. The proof concludes by the chain rule:

∇Lh(W) =
1

|Ω|
∑

I∈Ω
`′h([W]I − yI) · EI

=
δh
|Ω|
∑

I∈Ω
sign(−yI) · EI .

Lemma 13. The function Lh(·) is 1-smooth, i.e. for anyW1,W2 ∈ Rd1,...,dN :

‖∇Lh(W1)−∇Lh(W2)‖ ≤ ‖W1 −W2‖ .

Proof. LetW1,W2 ∈ Rd1,...,dN . Denote by `′h(·) the derivative of `h(·), i.e.:

`′h(z) =





−δh , z < −δh
z , |z| ≤ δh
δh , z > δh,

.

The result readily follows from the triangle inequality and the fact that `′h(·) is 1-Lipschitz:

‖∇Lh(W1)−∇Lh(W2)‖ =

∥∥∥∥∥
1

|Ω|
∑

I∈Ω

[`′h([W1]I − yI) · EI − `′h([W2]I − yI) · EI ]

∥∥∥∥∥

≤ 1

|Ω|
∑

I∈Ω

|`′h([W1]I − yI)− `′h([W2]I − yI)|

≤ 1

|Ω|
∑

I∈Ω

|[W1]I − [W2]I |

≤ ‖W1 −W2‖ ,

where EI ∈ Rd1,...,dN holds 1 in its I’th entry and 0 elsewhere, for I = (i1, . . . , iN ) ∈ Ω.

Lemma 14. Let G ≥ 0, and denote DG := {{wn
r ∈ Rdn}Rr=1

N
n=1 : (

∑R
r=1

∑N
n=1 ‖wn

r ‖2)1/2 ≤ G}. Then, the objective
φh(·) is RN(G2(N−1) + δhG

N−2)-smooth over DG, i.e.:

∥∥∇φh
(
{wn

r }Rr=1
N
n=1

)
−∇φh

(
{w̃n

r }Rr=1
N
n=1

)∥∥ ≤ RN(G2(N−1) + δhG
N−2) ·

√∑R

r=1

∑N

n=1
‖wn

r − w̃n
r ‖

2 ,

for any {wn
r }Rr=1

N
n=1, {w̃n

r }Rr=1
N
n=1 ∈ DG.

Proof. Let {wn
r }Rr=1

N
n=1, {w̃n

r }Rr=1
N
n=1 ∈ DG. By Lemma 7 we may write:

∥∥∇φh
(
{wn

r }Rr=1
N
n=1

)
−∇φh

(
{w̃n

r }Rr=1
N
n=1

)∥∥2

=

R∑

r=1

N∑

n=1

∥∥∥J∇Lh (We)Kn · �n′ 6=nwn′

r − J∇Lh
(
W̃e

)
Kn · �n′ 6=nw̃n′

r

∥∥∥
2

,
(23)

whereWe and W̃e are the end tensors (Equation (3)) of {wn
r }Rr=1

N
n=1 and {w̃n

r }Rr=1
N
n=1, respectively. We turn to bound

the square root of each term in the sum. Fix r ∈ [R], n ∈ [N ]. By the triangle inequality and sub-multiplicativity of the
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Frobenius norm, we have:
∥∥∥J∇Lh (We)Kn · �n′ 6=nwn′

r − J∇Lh
(
W̃e

)
Kn · �n′ 6=nw̃n′

r

∥∥∥ ≤
∥∥∥J∇Lh (We)Kn − J∇Lh

(
W̃e

)
Kn
∥∥∥

︸ ︷︷ ︸
(I)

·
∥∥∥�n′ 6=nwn′

r

∥∥∥
︸ ︷︷ ︸

(II)

+
∥∥∥J∇Lh

(
W̃e

)
Kn
∥∥∥

︸ ︷︷ ︸
(III)

·
∥∥∥�n′ 6=nwn′

r −�n′ 6=nw̃n′

r

∥∥∥
︸ ︷︷ ︸

(IV )

.

Below, we derive upper bounds for (I), (II), (III) and (IV ) separately. Starting with (I), by Lemma 13, the triangle
inequality and Lemma 3, it follows that:

(I) =
∥∥∥∇Lh (We)−∇Lh

(
W̃e

)∥∥∥

≤
∥∥∥We − W̃e

∥∥∥

≤
R∑

r′=1

∥∥∥⊗Nn′=1w
n′

r′ −⊗Nn′=1w̃
n′

r′

∥∥∥

≤ GN−1
R∑

r′=1

N∑

n′=1

∥∥∥wn′

r′ − w̃n′

r′

∥∥∥ .

Moving on to (II), we have that ‖ �n′ 6=n wn′

r ‖ =
∏
n′ 6=n ‖wn′

r ‖ ≤ GN−1. For (III), the triangle inequality and the fact
that `′h(·), the derivative of `h(·), is bounded (in absolute value) by δh yield:

(III) =

∥∥∥∥∥
1

|Ω|
∑

I∈Ω

`′h

(
[W̃e]I − yI

)
· EI

∥∥∥∥∥ ≤ δh ,

where EI ∈ Rd1,...,dN holds 1 in its I’th entry and 0 elsewhere, for I = (i1, . . . , iN ) ∈ Ω. Lastly, since ‖ �n′ 6=n wn′

r −
�n′ 6=nw̃n′

r ‖ = ‖ ⊗n′ 6=n wn′

r −⊗n′ 6=nw̃n′

r ‖, by Lemma 3 we have that:

(IV ) ≤ GN−2
∑

n′ 6=n

∥∥∥wn′

r − w̃n′

r

∥∥∥ ≤ GN−2
N∑

n′=1

∥∥∥wn′

r − w̃n′

r

∥∥∥ .

Putting it all together, we arrive at the following bound:
∥∥∥J∇Lh (We)Kn · �n′ 6=nwn′

r − J∇Lh
(
W̃e

)
Kn · �n′ 6=nw̃n′

r

∥∥∥

≤ G2(N−1)
R∑

r′=1

N∑

n′=1

∥∥∥wn′

r′ − w̃n′

r′

∥∥∥+ δhG
N−2

N∑

n′=1

∥∥∥wn′

r − w̃n′

r

∥∥∥

≤ (G2(N−1) + δhG
N−2)

R∑

r′=1

N∑

n′=1

∥∥∥wn′

r′ − w̃n′

r′

∥∥∥ .

Applying the bound above to Equation (23), for all r ∈ [R], n ∈ [N ], leads to:

∥∥∇φh
(
{wn

r }Rr=1
N
n=1

)
−∇φh

(
{w̃n

r }Rr=1
N
n=1

)∥∥2

≤ RN(G2(N−1) + δhG
N−2)2

(∑R

r=1

∑N

n=1
‖wn

r − w̃n
r ‖
)2

≤ R2N2(G2(N−1) + δhG
N−2)2

∑R

r=1

∑N

n=1
‖wn

r − w̃n
r ‖

2 ,

where the last transition is by the fact that ‖x‖1 ≤
√
d · ‖x‖ for any x ∈ Rd. Taking the square root of both sides concludes

the proof.
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Lemma 15. Let t′ > 0 and r ∈ [R]. Denote γr(t) := 〈−∇Lh(We(t)),⊗Nn=1ŵ
n
r (t)〉, where ŵn

r (t) := wn
r (t)/‖wn

r (t)‖ if
wn
r (t) 6= 0, and ŵn

r (t) := 0 otherwise, for n = 1, . . . , N . Suppose that ∇Lh(We(t)) = ∇Lh(0) for all t ∈ [0, t′). Then,
γr(t) is monotonically non-decreasing over the interval [0, t′).

Proof. In the following, unless explicitly stated otherwise, t is to be considered in the time interval [0, t′).

Recall that by Assumption 2 we have that ‖w1
r(0)‖ = · · · = ‖wN

r (0)‖. If ‖w1
r(0)‖ = · · · = ‖wN

r (0)‖ = 0, then
according to Lemma 11 ‖w1

r(t)‖ = · · · = ‖wN
r (t)‖ = 0 for all t ≥ 0. In this case γr(t) = 0 over [0, t′), and is therefore

non-decreasing.

Otherwise, if ‖w1
r(0)‖ = · · · = ‖wN

r (0)‖ > 0, from Lemma 11 we get that ‖w1
r(t)‖ = · · · = ‖wN

r (t)‖ > 0 for all t ≥ 0.
Thus:

γr(t) =
∥∥⊗Nn=1w

n
r (t)

∥∥−1 〈−∇Lh(We(t)),⊗Nn=1w
n
r (t)〉

=
∥∥⊗Nn=1w

n
r (t)

∥∥−1 〈−∇Lh(0),⊗Nn=1w
n
r (t)〉 ,

where the second transition is due to∇Lh(We(t)) = ∇Lh(0). Differentiating with respect to time, we have that:

d

dt
γr(t) = − d

dt

[∥∥⊗Nn=1w
n
r (t)

∥∥] ·
∥∥⊗Nn=1w

n
r (t)

∥∥−2 〈−∇Lh(0),⊗Nn=1w
n
r (t)

〉
︸ ︷︷ ︸

(I)

+
∥∥⊗Nn=1w

n
r (t)

∥∥−1 〈−∇Lh(0), ddt ⊗
N
n=1 w

n
r (t)

〉
︸ ︷︷ ︸

(II)

.
(24)

We now treat (I) and (II) separately. Plugging the expression for d
dt‖⊗

N
n=1 w

n
r (t)‖ from Corollary 1 into (I), and recalling

that ∇Lh(We(t)) = ∇Lh(0), leads to:

(I) = N
∥∥⊗Nn=1w

n
r (t)

∥∥−1−2/N 〈−∇Lh(0),⊗Nn=1w
n
r (t)

〉2
.

Due to the fact that ‖ ⊗Nn=1 w
n
r (t)‖−2/N = ‖w1

r(t)‖−2 = · · · = ‖wN
r (t)‖−2, we may equivalently write:

(I) =
∥∥⊗Nn=1w

n
r (t)

∥∥−1
N∑

n=1

‖wn
r (t)‖−2

〈
−∇Lh(0),⊗Nn′=1w

n′

r (t)
〉2

. (25)

For any n ∈ [N ], by Lemma 8 we know that d
dt‖w

n
r (t)‖2 = −2〈∇Lh (0),⊗Nn′=1w

n′

r (t)〉, which implies d
dt‖w

n
r (t)‖ =

‖wn
r (t)‖−1〈−∇Lh (0),⊗Nn′=1w

n′

r (t)〉. Going back to Equation (25), we can see that:

(I) =
∥∥⊗Nn=1w

n
r (t)

∥∥−1
N∑

n=1

(
d
dt ‖w

n
r (t)‖

)2
.

Turning our attention to (II), by Lemmas 2 and 7 it follows that:

(II) =

N∑

n=1

〈
−∇Lh(0),

(
⊗n−1
n′=1w

n′

r (t)
)
⊗ d

dtw
n
r (t)⊗

(
⊗Nn′=n+1w

n′

r (t)
)〉

=

N∑

n=1

〈
J−∇Lh (0)Kn · �n′ 6=nwn′

r (t), ddtw
n
r (t)

〉

=

N∑

n=1

∥∥ d
dtw

n
r (t)

∥∥2
.

Plugging the expressions we derived for (I) and (II) into Equation (24) yields:

d

dt
γr(t) =

∥∥⊗Nn=1w
n
r (t)

∥∥−1 ·
N∑

n=1

[∥∥ d
dtw

n
r (t)

∥∥2 −
(
d
dt ‖w

n
r (t)‖

)2]
. (26)
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Notice that for any n ∈ [N ]:

∥∥ d
dtw

n
r (t)

∥∥2 ≥
∥∥Πwn

r (t)

(
d
dtw

n
r (t)

)∥∥2

=

∥∥∥∥〈 ddtwn
r (t),wn

r (t)〉 wn
r (t)

‖wn
r (t)‖2

∥∥∥∥
2

=
(
‖wn

r (t)‖−1 〈 d
dtw

n
r (t),wn

r (t)
〉)2

=
(
d
dt ‖w

n
r (t)‖

)2
,

where Πwn
r (t)(·) denotes the orthogonal projection onto the subspace spanned by wn

r (t). The right hand side in Equation (26)
is therefore non-negative, i.e. d

dtγr(t) ≥ 0, concluding the proof.

C.5.2 STAGE I: END TENSOR REACHES REFERENCE SPHERE

Proposition 1. The end tensor initially reaches reference sphere S (Equation (10)) at some time T0 > 0, and:

∥∥⊗Nn=1w
n
r (t)

∥∥ ≤ ε̃ , t ∈ [0, T0] , r = 2, . . . , R , (27)
∣∣∥∥⊗Nn=1w

n
1 (T0)

∥∥− ρ
∣∣ ≤ (R− 1) · ε̃ , (28)

where ε̃ is as defined in Equation (21).

Towards proving Proposition 1, we establish the following key lemma.

Lemma 16. Let t′ ≤ α2−N‖a1‖2−N (N−2)−1

〈−∇Lh(0),⊗N
n=1â

n
1 〉

, and suppose that∇Lh(We(t)) = ∇Lh(0) for all t ∈ [0, t′). Then:

∥∥⊗Nn=1w
n
1 (t)

∥∥ ≥
(
α2−N‖a1‖2−N − (N − 2)

〈
−∇Lh(0),⊗Nn=1â

n
1

〉
· t
)− N

N−2 , t ∈ [0, t′) , (29)
∥∥⊗Nn=1w

n
r (t)

∥∥ ≤
(
α2−N‖ar‖2−N − (N − 2) ‖∇Lh(0)‖ · t

)− N
N−2 , t ∈ [0, t′) , r = 2, . . . , R . (30)

In particular:

∥∥⊗Nn=1w
n
r (t)

∥∥ ≤ αN
(
‖ar‖2−N − ‖a1‖2−N ‖∇Lh(0)‖

〈−∇Lh(0),⊗N
n=1â

n
1 〉

)− N
N−2

, t ∈ [0, t′) , r = 2, . . . , R . (31)

Proof. For simplicity of notation we denote γr(t) := 〈−∇Lh(We(t)),⊗Nn=1ŵ
n
r (t)〉, where ŵn

r (t) := wn
r (t)/‖wn

r (t)‖ if
wn
r (t) 6= 0, and ŵn

r (t) := 0 otherwise, for r = 1, . . . , R, n = 1, . . . , N . In the following, unless explicitly stated otherwise,
t is to be considered in the time interval [0, t′).

Since {anr }Rr=1
N
n=1 have unbalancedness magnitude zero (Assumption 2) so do {wn

r (0)}Rr=1
N
n=1 (recall wn

r (0) = α · anr for
r = 1, . . . , R, n = 1, . . . , N ). According to Corollary 1 the evolution of a component’s norm is given by:

d

dt

∥∥⊗Nn=1w
n
r (t)

∥∥ = Nγr(t) ·
∥∥⊗Nn=1w

n
r (t)

∥∥2− 2
N , r = 1, . . . , R . (32)

Proof of Equation (29) (lower bound for ‖⊗Nn=1 w
n
1 (t)‖): By Lemma 15, γ1(t) is monotonically non-decreasing. Thus,

from Equation (32) we have:
d

dt

∥∥⊗Nn=1w
n
1 (t)

∥∥ ≥ Nγ1(0) ·
∥∥⊗Nn=1w

n
1 (t)

∥∥2− 2
N . (33)

Assumption 3 (second line in Equation (9)) necessarily means that wn
1 (0) = α · an1 6= 0 for all n ∈ [N ]. Recalling that the

unbalancedness magnitude is zero at initialization, from Lemma 11 we get that ‖w1
1(t)‖ = · · · = ‖wN

1 (t)‖ > 0, and so
‖⊗Nn=1w

n
1 (t)‖2−2/N > 0, for all t ∈ [0, t′). Therefore, we may divide both sides of Equation (33) by ‖⊗Nn=1w

n
1 (t)‖2−2/N .
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Doing so, and integrating with respect to time, leads to:

∫ t

t̂=0

[∥∥⊗Nn=1w
n
1 (t̂)

∥∥2/N−2 d

dt̂

∥∥⊗Nn=1w
n
1 (t̂)

∥∥
]
dt̂ ≥ Nγ1(0) · t

=⇒ N

2−N

(∥∥⊗Nn=1w
n
1 (t)

∥∥2/N−1 −
∥∥⊗Nn=1w

n
1 (0)

∥∥2/N−1
)
≥ Nγ1(0) · t

=⇒
∥∥⊗Nn=1w

n
1 (t)

∥∥2/N−1 ≤
∥∥⊗Nn=1w

n
1 (0)

∥∥2/N−1 − (N − 2)γ1(0) · t .

(34)

Notice that γ1(0) = 〈−∇Lh(We(0)),⊗Nn=1ŵ
n
1 (0)〉 = 〈−∇Lh(0),⊗Nn=1â

n
1 〉. Since ‖⊗Nn=1 w

n
1 (0)‖ =

∏N
n=1 ‖wn

1 (0)‖ =
αN‖a1‖N and t < t′ ≤ α2−N‖a1‖2−N (N − 2)−1γ1(0)−1, we can see that:

∥∥⊗Nn=1w
n
1 (0)

∥∥2/N−1 − (N − 2)γ1(0) · t = α2−N ‖a1‖2−N − (N − 2)γ1(0) · t > 0 .

Therefore, Equation (29) readily follows by rearranging the last inequality in Equation (34):

∥∥⊗Nn=1w
n
1 (t)

∥∥ ≥
(
α2−N ‖a1‖2−N − (N − 2)γ1(0) · t

)− N
N−2

.

Proof of Equations (30) and (31) (upper bounds for ‖ ⊗Nn=1 wn
r (t)‖): Fix some r ∈ {2, . . . , R}. First, we deal with

the case where ‖w1
r(0)‖ = · · · = ‖wN

r (0)‖ = 0. If it is so, by Lemma 11 we have that ‖w1
r(t)‖ = · · · = ‖wN

r (t)‖ = 0 for
all t ∈ [0, t′). Hence, ‖ ⊗Nn=1 w

n
r (t)‖ = 0 for all t ∈ [0, t′), i.e. Equations (30) and (31) trivially hold.

Now we move to the case where ‖w1
r(0)‖ = · · · = ‖wN

r (0)‖ > 0. From Lemma 11 we know that ‖w1
r(t)‖ = · · · =

‖wN
r (t)‖ > 0 for all t ∈ [0, t′). Since∇Lh(We(t)) = ∇Lh(0), by the Cauchy-Schwartz inequality we then have:

γr(t) =
〈
−∇Lh(0),⊗Nn=1ŵ

n
r (t)

〉
≤ ‖∇Lh(0)‖

∥∥⊗Nn=1ŵ
n
r (t)

∥∥ = ‖∇Lh(0)‖ .

Combined with Equation (32), we arrive at the following upper bound:

d

dt

∥∥⊗Nn=1w
n
r (t)

∥∥ ≤ N ‖∇Lh(0)‖ ·
∥∥⊗Nn=1w

n
r (t)

∥∥2− 2
N .

Dividing both sides of the inequality by ‖ ⊗Nn=1 wn
r (t)‖2−2/N (is positive since ‖w1

r(t)‖ = · · · = ‖wN
r (t)‖ > 0), and

integrating with respect to time, yields:

∫ t

t̂=0

[∥∥⊗Nn=1w
n
r (t̂)

∥∥2/N−2 d

dt̂

∥∥⊗Nn=1w
n
r (t̂)

∥∥
]
dt̂ ≤ N ‖∇Lh(0)‖ · t

=⇒ N

2−N

(∥∥⊗Nn=1w
n
r (t)

∥∥2/N−1 −
∥∥⊗Nn=1w

n
r (0)

∥∥2/N−1
)
≤ N ‖∇Lh(0)‖ · t .

Rearranging the inequality above, and making use of the fact that ‖ ⊗Nn=1 wn
r (0)‖ =

∏N
n=1 ‖wn

r (0)‖ = αN‖ar‖N , we
arrive at:

∥∥⊗Nn=1w
n
r (t)

∥∥2/N−1 ≥
∥∥⊗Nn=1w

n
r (0)

∥∥2/N−1 − (N − 2) ‖∇Lh(0)‖ · t

= α2−N ‖ar‖2−N − (N − 2) ‖∇Lh(0)‖ · t .
(35)

Noticing γ1(0) = 〈−∇Lh(We(0)),⊗Nn=1ŵ
n
1 (0)〉 = 〈−∇Lh(0),⊗Nn=1â

n
1 〉, by Assumption 3 we have that ‖a1‖ >

‖ar‖ ‖∇Lh(0)‖1/(N−2) · γ1(0)−1/(N−2). Therefore:

t′ ≤ α2−N‖a1‖2−N (N − 2)−1γ1(0)−1 < α2−N‖ar‖2−N (N − 2)−1‖∇Lh(0)‖−1 .

This implies that the right hand side in Equation (35) is positive for all t ∈ [0, t′). Thus, rearranging Equation (35) establishes
Equation (30):

∥∥⊗Nn=1w
n
r (t)

∥∥ ≤
(
α2−N‖ar‖2−N − (N − 2) ‖∇Lh(0)‖ · t

)− N
N−2 .



Implicit Regularization in Tensor Factorization

Equation (31) then directly follows:

∥∥⊗Nn=1w
n
r (t)

∥∥ ≤
(
α2−N‖ar‖2−N − (N − 2) ‖∇Lh(0)‖ · t′

)− N
N−2

≤
(
α2−N‖ar‖2−N − α2−N‖a1‖2−N ‖∇Lh(0)‖ γ1(0)−1

)− N
N−2

= αN
(
‖ar‖2−N − ‖a1‖2−N ‖∇Lh(0)‖ γ1(0)−1

)− N
N−2 .

Proof of Proposition 1. Notice that at initialization ‖We(0)‖ ≤
∑R
r=1 ‖ ⊗Nn=1 w

n
r (0)‖ ≤ RαNAN < ρ. We can therefore

examine the trajectory up until the time at which ‖We(t)‖ = ρ, i.e. until it reaches the reference sphere S . Formally, define:

T0 := inf {t ≥ 0 :We(t) ∈ S} ,

where by convention T0 :=∞ if the set on the right hand side is empty. For all t ∈ [0, T0), clearly, ‖We(t)‖ < ρ, and so
by Lemma 12 ∇Lh(We(t)) = ∇Lh(0). We claim that T0 is finite. Assume by way of contradiction that T0 = ∞. For
t′ := α2−N‖a1‖2−N (N − 2)−1〈−∇Lh(0),⊗Nn=1â

n
1 〉−1, by Equation (29) from Lemma 16 we have that ‖ ⊗Nn=1 w

n
1 (t)‖

is lower bounded by a quantity that goes to ∞ as t → t′−. On the other hand, by Equation (31) from Lemma 16,
‖ ⊗Nn=1 w

n
2 (t)‖, . . . , ‖ ⊗Nn=1 w

n
R(t)‖ are bounded over [0, t′). Taken together, there must exist t̂ ∈ [0, t′) at which:

∥∥We(t̂)
∥∥ ≥ ‖ ⊗Nn=1 w

n
1 (t̂)‖ −

R∑

r=2

‖ ⊗Nn=1 w
n
r (t̂)‖ ≥ ρ .

Since ‖We(t)‖ is continuous in t, and ‖We(0)‖ < ρ, this contradicts our assumption that T0 =∞. Hence, T0 <∞, and in
particular T0 < t′. Notice that continuity of ‖We(t)‖ further implies that ‖We(T0)‖ = ρ, i.e. T0 is the initial time at which
We(t) reaches the reference sphere S. Applying our assumption on the size of α (Equation (22)) to Equation (31) from
Lemma 16 establishes Equation (27). Equation (28) then readily follows by the triangle inequality:

∣∣∥∥⊗Nn=1w
n
1 (T0)

∥∥− ρ
∣∣ =

∣∣∥∥⊗Nn=1w
n
1 (T0)

∥∥− ‖We(T0)‖
∣∣

≤
∥∥⊗Nn=1w

n
1 (T0)−We(T0)

∥∥

=

∥∥∥∥
∑R

r=2
⊗Nn=1w

n
r (T0)

∥∥∥∥
≤ (R− 1) · ε̃ .

C.5.3 STAGE II: END TENSOR FOLLOWS RANK ONE TRAJECTORY

As shown in Proposition 1 (Subappendix C.5.2), the end tensor initially reaches reference sphere S at some time T0 > 0, for
which Equations (27) and (28) hold. Therefore, the time-shifted trajectory is given byWe(t) =We(t+ T0) for all t ≥ 0.
Denote the corresponding time-shifted factorization weight vectors by:

swn
r (t) := wn

r (t+ T0) , t ≥ 0 , r = 1, . . . , R , n = 1, . . . , N .

We are now at a position to define the approximating rank one trajectoryW1(t) emanating from S. Let {w̃n(t)}Nn=1 be a
curve born from gradient flow when minimizing φh(·) with a one-component tensor factorization, initialized at:

w̃n(0) :=
ρ1/N

‖swn
1 (0)‖

· swn
1 (0) , n = 1, . . . , N .

Notice that by definition ‖w̃1(0)‖ = · · · = ‖w̃N (0)‖ = ρ1/N . Therefore, {w̃n(0)}Nn=1 have unbalancedness magnitude
zero (Definition 1). DenotingW1(t) := ⊗Nn=1w̃

n(t), for t ≥ 0, we can see thatW1(t) is a balanced rank one trajectory.
Furthermore, ‖W1(0)‖ = ‖ ⊗Nn=1 w̃n(0)‖ =

∏N
n=1 ‖w̃n(0)‖ = ρ, meaningW1(0) ∈ S. It will be convenient to treat
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{w̃n(t)}Nn=1 as an R-component factorization with components 2, . . . , R being zero. To this end, denote w̃n
1 (t) := w̃n(t),

and define w̃n
r (t) := 0 for all t ≥ 0, r ∈ {2, . . . , R} and n ∈ [N ]. Notice that, according to Lemma 10, {w̃n

r (t)}Rr=1
N
n=1

indeed follow a gradient flow path of an R-component factorization.

Next, we turn to bound the distance between {swn
r (0)}Rr=1

N
n=1 and {w̃n

r (0)}Rr=1
N
n=1. From Equation (27) in Proposition 1,

recalling ε̃ ≤ ε̂ (by their definition in Equation (21)), we obtain:

‖swn
r (0)‖ = ‖wn

r (T0)‖ = ‖ ⊗Nn′=1 w
n′

r (T0)‖ 1
N ≤ ε̃ 1

N ≤ ε̂ 1
N , r = 2, . . . , R , n = 1, . . . , N . (36)

As for the first component, for any n ∈ [N ], the fact that ‖swn
1 (0)‖ = ‖wn

1 (T0)‖ = ‖⊗Nn′=1w
n′

1 (T0)‖1/N and Equation (28)
from Proposition 1 yield the following bound:

(ρ− (R− 1) · ε̃)
1
N ≤ ‖swn

1 (0)‖ ≤ (ρ+ (R− 1) · ε̃)
1
N .

On the one hand, since the `1 norm is no greater than the `p norm for p < 1, we have that (ρ + (R − 1) · ε̃)1/N ≤
ρ1/N + (R− 1)1/N · ε̃1/N ≤ ρ1/N + (R− 1)1/N · ε̂1/N . On the other hand, since by definition ε̃ ≤ (R− 1)−1(ρ− [ρ1/N −
(R− 1)1/N · ε̂1/N ]N ), it is straightforward to verify that (ρ− (R− 1) · ε̃)1/N ≥ ρ1/N − (R− 1)1/N · ε̂1/N . Put together,
while noticing that ‖swn

1 (0)− w̃n
1 (0)‖ =

∣∣‖swn
1 (0)‖ − ρ1/N

∣∣, we arrive at:

‖swn
1 (0)− w̃n

1 (0)‖ =
∣∣∣‖swn

1 (0)‖ − ρ 1
N

∣∣∣ ≤ (R− 1)
1
N · ε̂ 1

N , n ∈ [N ] . (37)

Equations (36) and (37) lead to the following bound on the distance between {swn
r (0)}Rr=1

N
n=1 and {w̃n

r (0)}Rr=1
N
n=1:

R∑

r=1

N∑

n=1

‖swn
r (0)− w̃n

r (0)‖2 =

N∑

n=1

‖swn
1 (0)− w̃n

1 (0)‖2 +

R∑

r=2

N∑

n=1

‖swn
r (0)‖2

≤ (R− 1)
2
NN · ε̂ 2

N + (R− 1)N · ε̂ 2
N

≤ 2(R− 1)N · ε̂ 2
N ,

where the last transition is by (R− 1)2/N ≤ (R− 1). Let D̃ :=
√
N (max{D, ρ}+ 1)

1
N and β := RN((D̃ + 1)2(N−1) +

δh(D̃+ 1)N−2) (as defined in Equation (21)). According to Lemma 14, the objective φh(·) is β-smooth over the closed ball
of radius D̃ + 1 around the origin. Furthermore, seeing that 2(R− 1)N · ε̂2/N < exp(−2β · T ) (by the definition of ε̂ in
Equation (21)), we obtain:

R∑

r=1

N∑

n=1

‖swn
r (0)− w̃n

r (0)‖2 ≤ 2(R− 1)N · ε̂ 2
N < exp(−2β · T ) .

Thus, Lemma 6 implies the following holds at least until t ≥ T or (
∑R
r=1

∑N
n=1 ‖w̃n

r (t)‖2)1/2 ≥ D̃:

R∑

r=1

N∑

n=1

‖swn
r (t)− w̃n

r (t)‖2 ≤
R∑

r=1

N∑

n=1

‖swn
r (0)− w̃n

r (0)‖2 · exp (2β · t)

≤ 2(R− 1)N · ε̂ 2
N · exp (2β · t) .

(38)

Suppose that (
∑R
r=1

∑N
n=1 ‖w̃n

r (t)‖2)1/2 < D̃ for all t ∈ [0, T ]. In this case, Equation (38) holds for all t ∈ [0, T ]. Seeing
that 2(R− 1)N · ε̂2/N · exp (2β · T ) < 1, Equation (38) gives (

∑R
r=1

∑N
n=1 ‖swn

r (t)‖2)1/2 < D̃+ 1. Then, Equation (38),
the fact thatW1(t) = ⊗Nn=1w̃

n
1 (t) =

∑R
r=1⊗Nn=1w̃

n
r (t), and Lemma 4 yield:

∥∥We(t)−W1(t)
∥∥ ≤
√

2RN(D̃ + 1)N−1 · exp (β · T ) · ε̂ 1
N , t ∈ [0, T ] .

Recalling that ε̂ ≤ 2−
N
2 R−NN−N (D̃ + 1)N−N

2 · exp(−NβT ) · εN , we conclude:
∥∥We(t)−W1(t)

∥∥ ≤ ε , (39)
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for all t ∈ [0, T ].

It remains to treat the case where (
∑R
r=1

∑N
n=1 ‖w̃n

r (t)‖2)1/2 ≥ D̃ for some t ∈ [0, T ]. Let t′ ∈ [0, T ] be the initial such
time (well defined due to continuity of (

∑R
r=1

∑N
n=1 ‖w̃n

r (t)‖2)1/2 with respect to t). The desired result readily follows by
showing that: (i) Equation (39) holds for t ∈ [0, t′]; and (ii) ‖We(t

′)‖ ≥ D.

We start by proving that ‖W1(t′)‖ ≥ max{D, ρ}+ 1 and t′ > 0. Recalling w̃1
r(t), . . . , w̃

N
r (t) are identically zero for all

r ∈ {2, . . . , R}, we have that:
N∑

n=1

‖w̃n
1 (t′)‖2 =

R∑

r=1

N∑

n=1

‖w̃n
r (t′)‖2 ≥ D̃2 .

Since ‖w̃1
1(0)‖ = · · · = ‖w̃N

1 (0)‖, Lemma 1 implies ‖w̃1
1(t′)‖ = · · · = ‖w̃N

1 (t′)‖. Thus, for any n ∈ [N ]:

N‖w̃n
1 (t′)‖2 =

N∑

n′=1

‖w̃n′

1 (t′)‖2 ≥ D̃2 ,

which leads to ‖w̃n
1 (t′)‖ ≥ D̃N−1/2. In turn this yields ‖W1(t′)‖ =

∥∥⊗Nn=1w̃
n
1 (t′)

∥∥ =
∏N
n=1 ‖w̃n

1 (t′)‖ ≥ D̃NN−
N
2 .

Plugging in D̃ :=
√
N(max{D, ρ}+ 1)

1
N , we conclude:

‖W1(t′)‖ ≥ max{D, ρ}+ 1 . (40)

Note that this necessarily means t′ > 0 asW1(0) ∈ S, i.e. ‖W1(0)‖ = ρ < max{D, ρ}+ 1.

Now, we focus on the time interval [0, t′), over which Equation (38) holds and (
∑R
r=1

∑N
n=1 ‖w̃n

r (t)‖2)1/2 < D̃. From
the same reasoning as in the case where (

∑R
r=1

∑N
n=1 ‖w̃n

r (t)‖2)1/2 < D̃ for all t ∈ [0, T ], we obtain that Equation (39)
holds for all t ∈ [0, t′). Continuity with respect to time then implies ‖We(t

′) −W1(t′)‖ ≤ ε < 1. Lastly, together with
Equation (40) this leads to ‖We(t

′)‖ ≥ ‖W1(t′)‖ − 1 ≥ D.

Overall, we have shown that ‖We(t)−W1(t)‖ ≤ ε at least until time T or time t′ at which ‖We(t
′)‖ ≥ D, establishing

the desired result.

C.6 Proof of Corollary 2

For ε > 0, there exists a time T ′ > 0 at which all balanced rank one trajectories emanating from S are within distance ε/2
fromW∗. Moreover, these trajectories are confined to a ball of radius D around the origin, for some D > 0. According
to Theorem 2, if initialization scale α is sufficiently small, ‖We(t) −W1(t)‖ ≤ min{ε/2, 1/2} at least until t ≥ T ′ or
‖We(t)‖ ≥ D + 1, where We(t) is the time-shifted trajectory of We(t), and W1(t) is a balanced rank one trajectory
emanating from S. We claim that the latter cannot hold, i.e. ‖We(t)‖ < D + 1 for all t ∈ [0, T ′]. To see it is so,
assume by way of contradiction otherwise, and let t′ ∈ [0, T ′] be the initial time at which ‖We(t

′)‖ ≥ D + 1. Since
‖We(t

′)−W1(t′)‖ < 1, we have that ‖W1(t′)‖ > D, in contradiction toW1(t) being confined to a ball of radius D around
the origin. Thus, ‖We(T

′)−W1(T ′)‖ ≤ ε/2. The proof concludes by the triangle inequality:
∥∥We(T

′)−W∗
∥∥ ≤

∥∥We(T
′)−W1(T ′)

∥∥+ ‖W1(T ′)−W∗‖ ≤ ε .


