
Latent Execution-Guided Reasoning

Appendix
A. Design Choice of the Latent Space Executor
Besides Query2box (Ren et al., 2020), which is introduced in Sec. 4.1, we also design a new latent space executor based
on RotatE (Sun et al., 2019b). RotatE is also a translation-based knowledge graph embedding method. It models a triple
(h, r, t) as a relation traversal in the Complex space. The goal is t = h ◦ r, where h, r, t ∈ Cd, |ri| = 1. Since the rotation
operation is naturally compositional, we further extend RotatE to handle multi-hop KG reasoning.

Given the latent execution results of a partial query tree gt = [bt
1, . . . ,b

t
n] at step t, where bt

i represents the embedding
of branch bti of the query tree. And we use a RotatE embedding to represent bti: b

t
i ∈ Cd. We also provide two logical

operators:
P : Cd × Cd → Cd and I : Cd × · · · × Cd → Cd

to perform relation projection and intersection in the embedding space respectively. The RotatE-based latent executor
models the conditional distribution p(gt+1|gt, at) as follows. For all valid reasoning actions at ∈ A:

(1) at = ({bti}, r): extension of one branch bti with a relation edge r, this represents one relation projection from the set of
entities in bti using r, e.g., step 1 and 2 in Figure 2. The executor updates the i-th component of the query embedding gt

accordingly: gt+1[i] = P(bt
i , r) = bt

i ◦ r;

(2) at = (B,−1): conjunction of multiple branches B ⊆ {bti}ni=1, |B| > 1, this action takes the intersection of the set of
entities in each b ∈ B, e.g., step 3 in Figure 2. We use the intersection operator I, remove all embeddings bt

i with bti ∈ B
from gt, and append bt

int = I(B) = Dω(B) to the end of gt, where Dω is a neural network with DeepSet architecture
(Zaheer et al., 2017);

(3) at = (∅,−1): termination, e.g., step 4 in Figure 2.

B. Pretraining Details of Latent Space Executor
Given a KG, we follow the practices of Query2box (Ren et al., 2020) and synthesize query trees of different structures. As
shown in Figure 5, given a query structure, we need to instantiate it for a query tree, where essentially we need to ground the
blue nodes (topic entities) and all the edges in the query structure. For instantiation, we adopt a top-down strategy, where we
first sample a random node on the KG and treat this node as the green node and iteratively ground the edges by sampling the
neighboring edges of the green node. The process is iteratively executed until we have instantiated all the blue nodes. Then
we traverse the KG using the query tree for answers, and add this new [query, answer] pair to our pretraining dataset.

Hongyu Ren, Stanford University 3

3i2i3p2p1p

Figure 5. The query structures on which we instantiate
grounded queries and pretrain the knowledge embed-
ding module.

Given a batch of [query g, answer v] pairs, we may first embed the
query tree using the latent space executor, then we may optimize a
loss to minimize the distance between the query embedding g and the
answer embedding v while maximize the distance between the query
embedding g and k negative samples {v′j}:

L = − log σ (γ − dist(v;g))−
k∑
j=1

1

k
log σ

(
dist(v′j;g)− γ

)
. (8)

The distance function varies for different executors, which will be
detailed in Appendix D.

C. Design Choice of the Query Synthesis Module
Here we discuss the details of the architecture design of the Dθ(·), Sθ(·, ·), Rθ(·, ·) networks in the query synthesis module.
Since Dθ takes a set of branches B ∈ [∅, {b1}, . . . , {b1,b2}, . . . , {b1, . . . ,bn}] as input, we adopt an order-invariant
DeepSets architecture (Zaheer et al., 2017), where we first use a 2-layer MLP to obtain the initial representation for each
branch in the set and then use max-pooling, before we use another 2-layer MLP to obtain the final representation for the
set of branches. For ∅, we manually set Dθ(∅) = 0. For Sθ, it aims to score a set of branches conditioned on the input
question, so we directly concatenate the set representation obtained by Dθ with the Bert embedding q of the question. After

Latent Execution-Guided Reasoning

we score all branches in the powerset using Dθ and Sθ, we normalize it with Softmax. For Rθ, it has the same input with
Sθ, hence we adopt the same architecture, and only differ in the design of the last layer, where instead of selecting branches,
Rθ outputs a distribution over all the relations.

D. Distance Function
Given the final query tree with a single branch g, we define the distance between g and an entity embedding v on KG.

If the latent space executor is based on Query2box, then we use the box distance as in Query2box (Ren et al., 2020). Here g
is a box with center and offset, and v is a single point in the embedding space.

distbox(v;g) = distoutside(v;g) + α · distinside(v;g),

distoutside(v;g) = ‖Max(v − gmax,0) + Max(gmin − v,0)‖1,
distinside(v;g) = ‖Cen(g)−Min(gmax,Max(gmin,v))‖1.

where gmax = Cen(g) + Off(g) ∈ Rd, gmin = Cen(g)− Off(g) ∈ Rd and 0 < α < 1 is a fixed scalar and we used 0.02
in our experiments.

If the latent space executor is based on RotatE, then we define distance as L1 distance between the query embedding and the
entity embedding: distrotate(v;g) = ‖v − g‖1.

E. Complexity Analysis
Given a KG G, with |V| number of entities and the maximum degree ∆(G), and a k-hop question, we list below the worst
case asymptotic complexity of traversing G following the structured query as well as embedding the structured query. For
traversal, the complexity is min(O(∆(G)k),O(k|V|2)) since they need to track and model all the intermediate entities;
while the complexity of embedding-based methods is O(k + |V|), linear with respect to the number of hops and the number
of entities on G.

F. Pretraining Details of Pruners
F.1. Branch Pruner

In order to pretrain the branch pruner fφ, we need to sample positive branch sets and negative branch sets, where positive
branch sets represent a set of branches that have shared answers, while negative branch sets represent a set of branches that
do not have shared answers. Specifically, we look at several query templates/structures, including 2i and 3i as shown in
Fig. 5. We instantiate 2i and 3i queries on KG, and the instantiated queries will be viewed as positives since they all have
shared answers. We then randomly sample branches from KG, and view these randomly sampled branches as negatives.
Note again that this pretraining process does not involve natural language questions.

F.2. Relation Pruner

For pretraining the relation pruner pφ, we need to sample [query, relation] pairs from KG. The trick is to first sample a pair
of [query, answer] and then take the union of all the relations associated with the answer in order to obtain [query, relation]
pairs. In detail, we instantiate all 5 query templates/structures {1p, 2p, 3p, 2i, 3i} for pretraining relation pruners. We have
also tried to only use queries of structure {1p, 2p, 3p}, the performance are comparable.

G. Experimental Details
For all the baselines and our method, we use the same pretrained case-insensitive 768 dimensional Bert embedding (without
finetuning) (Devlin et al., 2019) to obtain the question representation for fair comparison.

H. Example Candidate Queries
We also list some candidate queries our model finds for question from the WebQuestionSP dataset (Yih et al., 2015).
As shown in Figure 6, our method mostly finds the correct candidate queries for the questions, (the concrete percentage

Latent Execution-Guided Reasoning

can be found in Table 9). Although the ground truth query may not always achieve the highest score (the closest to
the answers) measured by mean reciprocal rank (MRR). Some other non-ground truth queries also make sense. For
example, the candidates we find for question “what is nina dobrev nationality” contain a relation path [“place of birth”,
“location.contained by”], which may still provide meaningful supervision signal for the synthesizer.

Hongyu Ren, Stanford University 1

Question Ground Truth Candidates (query, mrr)

who does joakim noah

play for

[topic, ['pro_athlete.teams', 'sports_team_roster.team']] 1. [topic, ['sports.sports_team_roster.player',

'sports.sports_team.roster']] 0.5

2. [topic, ['sports.sports_team_roster.player',

'sports.sports_team_roster.team']] 0.5

3. [topic, ['sports.pro_athlete.teams',

'sports.sports_team_roster.team']] 0.5

what is nina dobrev

nationality

[topic, ['people.person.nationality']] 1. [topic, ['people.person.languages',

'language.language_family.geographic_distribution']] 0.509

2. [topic, ['people.person.place_of_birth',

'location.contained_by']] 0.5

3. [topic, ['people.person.nationality']] 0.455

what movies does taylor

lautner play in

[topic, ['film.actor.film', 'film.performance.film']] 1. [topic, ['film.performance.actor', 'film.film.starring']] 1.0

2. [topic, ['film.actor.film', 'film.performance.film']] 1.0

3. [topic, ['film.actor.film', 'film.film.starring']] 1.0

what type of guitar does

kirk hammett play

[[topic1, ['music.group_member.instruments_played']],

[topic2, ['music.instrument.family']]]

1. [[topic1, ['music.group_member.instruments_played']],

[topic2, ['music.instrument.family']]] 1.0

2. [[topic1, ['music.group_member.instruments_played']],

[topic2, ['music.composition.composer’]]] 1.0

3. [[topic1, ['music.group_member.instruments_played']],

[topic2, ['music.group_membership.role']]] 1.0

Figure 6. Example questions from WebQuestion datasets with the ground truth query and the candidate queries our model finds.

I. Results of Different Latent Space Executors
Here we show the H@1max and H@10 results of LEGO with different latent space executors (RotatE and Q2B). Note the
H@1 max measures whether the top ranking entiyt is the answer and H@10 measures percentage of the (filtered) rank
of all answers is among top 10 (typically used in KG completion). Our method LEGO with both executors achieve better
performance than baselines, which suggests that LEGO is robust to the specific embedding models. PullNet has lower H@10
than H@1 max because it ranks answers on a subset of KG entities it retrieves and the recall of the answers is low.

Table 10. Different embeddings (H@1max / H@10).
CWQ WQSP (50%) WQSP (30%)

Pullnet 26.8 / 33.9 47.4 / 39.1 34.6 / 23.2
EmbedKGQA - 42.5 / 60.6 31.4 / 41.4
LEGO (RotatE) 29.4 / 49.4 48.5 / 67.3 38.0 / 48.2
LEGO (Q2B) 28.9 / 48.5 48.3 / 66.3 39.2 / 50.8

Table 11. Relation Pruner of LEGO on CWQ using RotatE and Box as latent space executor.
k = 5 k = 50 MRR MR |R|

RotatE 0.61 0.93 0.4 14.3 1836
Q2B 0.62 0.93 0.41 14.0 1836

Table 12. Branch Pruner of LEGO on CWQ using RotatE and Box as latent space executor.
S = 0.1 S = 0.4 S = 0.8 AUC #Positive #Negative

RotatE 0.98 0.95 0.91 0.96 17596 12320
Q2B 0.99 0.97 0.95 0.98 17596 12320

