
Solving high-dimensional parabolic PDEs using the tensor train format

A. Graphical notation for tensor trains
In this section we provide some further material on tensor
networks and their graphic notation. Let us start by noting
that a vector x ∈ Rn can be interpreted as a tensor.

x
n

In the graphic representation contractions between indices
are denoted by a line between the tensors. Below we con-
tract a tensor A ∈ Rn×m and x ∈ Rn, which results in an
element of Rm, representing the usual matrix-vector prod-
uct.

x A
n m

In Figure 9 an order 3 tensorB ∈ Rn1×n2×n3 is represented
with three lines, not connected to any other tensor. As

B
n1

n
2

n 3

Figure 9. Graphical notation of simple tensors and tensor networks

another example, we can write the compact singular value
decomposition in matrix form as A = UΣV , with U ∈
Rn,r,Σ ∈ Rr,r, V ∈ Rr,m, which we represent as a tensor
network in Figure 10.

A.1. The local basis functions

Following the inexact description of the local basis functions
we now give a precise formula. When optimizing the k-th
component tensor, the local basis functions are given by
setting 1 ≤ jk−1 ≤ rk−1, 1 ≤ ik ≤ m, and 1 ≤ jk ≤ rk
within the following formula:

bjk−1,ik,jk(x) =(
m,...,m∑
i1,...,ik−1

r1,...,rk−2∑
j1,...,jk−2

u1[i1, j1] . . . uk−1[jk−2, ik−1, jk−1]

φ(x1)[i1] . . . φ(xk−1)[ik−1]

)
φ(xk)[ik](

m,...,m∑
ik+1,...,id

rk,...,rd−1∑
jk,...,jd−1

uk+1[jk, ik+1, jk+1] . . . ud[jd−1, id]

φ(xk+1)[ik+1] . . . φ(xd)[id]

)
.

(28)

U Σ VA =
r rn mn m

Figure 10. Graphical notation of simple tensors and tensor net-
works.

Note that in the above formula, every index except jk−1, ik
and jk is contracted, leaving an order three tensor. A simple
reshape into one index then yields the local basis functions
as used in this paper.

B. Proof of Theorem 3.1
Proof of Theorem 3.1. In this proof, we denote the underly-
ing probability measure by P, and the corresponding Hilbert
space of random variables with finite second moments by
L2(P). We define the linear subspace Ũ ⊂ L2(P) by

Ũ =
{
f(X̂n) : f ∈ U

}
, (29)

noting that Ũ is finite-dimensional by the assumption on U ,
hence closed. The corresponding L2(P)-orthogonal projec-
tion onto Ũ will be denoted by ΠŨ . By the nondegeneracy
of σ, the law of X̂n has full support on Ω, and so ‖ · ‖L2(P)

is indeed a norm on Ũ . Since Ũ is finite-dimensional, the
linear operators

Ũ 3 f(X̂n) 7→ ∂f

∂xi
(X̂n) ∈ L2(P) (30)

are bounded, and consequently there exists a constant C1 >
0 such that∥∥∥∥ ∂f∂xi (X̂n)

∥∥∥∥
L2(P)

≤ C1

∥∥∥f(X̂n)
∥∥∥
L2(P)

, (31)

for all i = 1, . . . , d and f ∈ U . Furthermore, there exists a
constant C2 > 0 such that

E
[
f4(X̂n)

]1/4
:=
∥∥∥f(X̂N)

∥∥∥
L4(P)

≤ C2

∥∥∥f(X̂n)
∥∥∥
L2(P)

,

for all f ∈ U , again by the finite-dimensionality of Ũ and the
fact that on finite dimensional vector spaces, all norms are
equivalent. By standard results on orthogonal projections,
the solution to the iteration (20) is given by

V k+1
n (X̂n) = ΠŨ

[
− h(X̂n, tn, Ŷ

k
n , Ẑ

k
n)∆t+

Ẑkn · ξn+1

√
∆t− V̂n+1(X̂n+1)

]
.

We now consider the map Ψ : Ũ → Ũ defined by

f(X̂n) 7→ ΠŨ
[
− h(X̂n, tn, f(X̂n), σ>∇f(X̂n))∆t+

σ>∇f(X̂n) · ξn+1

√
∆t− V̂n+1(X̂n+1)

]
.

Solving high-dimensional parabolic PDEs using the tensor train format

For F1, F2 ∈ Ũ with Fi = fi(X̂n), fi ∈ U , we see that

‖ΨF1 −ΨF2‖L2(P)

=
∥∥ΠŨ

[
− h(X̂n, tn, f1(X̂n), σ>∇f1(X̂n))∆t

+ h(X̂n, tn, f2(X̂n), σ>∇f2(X̂n))∆t

+
√

∆t
(
σ>∇f1(X̂n)− σ>∇f2(X̂n)

)
· ξn+1

]∥∥
L2(P)

≤ C3

∥∥ΠŨ
∥∥
L2(P)→L2(P)

(
∆t‖F1 − F2‖L2(P)

+
√

∆t
∥∥∥(σ>∇f1(X̂n)− σ>∇f2(X̂n)

)
· ξn+1

∥∥∥
L2(P)

)

for some constant C3 that does not depend on ∆t, where we
have used the triangle inequality, the Lipschitz assumption
on h, the boundedness of σ, and the estimate (31). Using
the Cauchy-Schwarz inequality, boundedness of σ as well
as (31) and (32), the last term can be estimated as follows,∥∥∥(σ>∇f1(X̂n)− σ>∇f2(X̂n)

)
· ξn+1

∥∥∥
L2(P)

≤
∥∥∥∥(σ>∇f1(X̂n)− σ>∇f2(X̂n)

)2∥∥∥∥1/2
L2(P)

∥∥ξ2n+1

∥∥1/2
L2(P)

≤ C4 ‖F1 − F2‖L2(P) ,

where C4 is a constant independent of ∆t. Collecting the
previous estimates, we see that δ > 0 can be chosen such
that for all t ∈ (0, δ), the mapping Ψ is a contraction on Ũ
when equipped with the norm ‖ · ‖L2(P), that is,

‖ΨF1 −ΨF2‖ ≤ λ‖F1 − F2‖, (35)

for some λ < 1 and all F1, F2 ∈ Ũ . Finally, the statement
follows from the Banach fixed point theorem.

C. Implementation details
For the evaluation of our approximations we rely on ref-
erence values of V (x0, 0) and further define the following
two loss metrics, which are zero if and only if the PDE is
fulfilled along the samples generated by the discrete forward
SDE (7). In the spirit of (Raissi et al., 2019), we define the
PDE loss as

LPDE =
1

KN

N∑
n=1

K∑
k=1

(
(∂t + L)V (X̂(k)

n , tn)

+ h(X̂(k)
n , tn, V (X̂(k)

n , tn), (σ>∇V)(X̂(k)
n , tn))

)2
,

(36)

where X̂(k)
n are realizations of (7), the time derivative is ap-

proximated with finite differences and the space derivatives

are computed analytically (or with automatic differentia-
tion tools). We leave out the first time step n = 0 since
the regression problem within the explicit and the implicit
schemes for the tensor trains are not well-defined due to the
fact that X̂k

0 = x0 has the same value for all k. We still
obtain a good approximation since the added regularization
term brings a minimum norm solution with the correct point
value V (x0, 0). Still, this does not aim at the PDE being
entirely fulfilled at this point in time.

Further, we define the relative reference loss as

Lref =
1

K(N + 1)

N∑
n=0

K∑
k=1

∣∣∣∣∣V (X̂
(k)
n , tn)− Vref(X̂

(k)
n , tn)

Vref(X̂
(k)
n , tn)

∣∣∣∣∣ ,
(37)

whenever a reference solution for all x and t is available.

All computation times in the reported tables are measured
in seconds.

Our experiments have been performed on a desktop com-
puter containing an AMD Ryzen Threadripper 2990 WX
32x 3.00 GHz mainboard and an NVIDIA Titan RTX GPU,
where we note that only the NN optimizations were run on
this GPU, since our TT framework does not include GPU
support. It is expected that running the TT approximations
on a GPU will improve time performances in the future
(Abdelfattah et al., 2016).

All our code is available under https://github.com/
lorenzrichter/PDE-backward-solver.

C.1. Details on neural network approximation

For the neural network architecture we rely on the DenseNet,
which consists of fully-connected layers with additional skip
connections as for instance suggested in (E & Yu, 2018) and
being rooted in (Huang et al., 2017). To be precise, we
define a version of the DenseNet that includes the terminal
condition of the PDE (1) as an additive extension by

Φ%(x) = ALxL + bL + θg(x), (38)

where xL is specified recursively as

yl+1 = %(Alxl + bl), xl+1 = (xl, yl+1)> (39)

for 1 ≤ l ≤ L − 1 with Al ∈ Rrl×
∑l−1

i=0 ri , bl ∈ Rl, θ ∈ R
and x1 = x. The collection of matrices Al, vectors bl and
the coefficient θ comprises the learnable parameters, and
we introduce the vector r := (din, r1, . . . , rL−1, dout) to
represent a certain choice of a DenseNet architecture, where
in our setting din = d and dout = 1. If not otherwise stated
we fix the parameter θ to be 1. For the activation function
% : R→ R, that is to be applied componentwise, we choose
tanh.

Solving high-dimensional parabolic PDEs using the tensor train format

For the gradient descent optimization we choose the Adam
optimizer with the default parameters β1 = 0.9, β2 =
0.999, ε = 10−8 (Kingma & Ba, 2014). In most of our
experiments we chose a fixed learning rate ηN−1 for the
approximation of the first backward iteration step to approx-
imate V̂N−1 and another fixed learning rate ηn for all the
other iteration steps to approximate V̂n for 0 ≤ n ≤ N − 2
(cf. Remark 3). Similarly, we denote with GN−1 and Gn
the amount of gradient descent steps in the corresponding
optimizations.

In Tables 7 and 8 we list our hyperparameter choices for the
neural network experiments that we have conducted.

C.2. Details on tensor train approximation

For the implementation of the tensor networks we rely on
the C++ library xerus (Huber & Wolf, 2014–2017) and the
Python library numpy (Harris et al., 2020).

Within the optimization we have to specify the regularization
parameter as noted in Remark 2, which we denot here by
η > 0. We adapt this parameter in dependence of the current
residual in the regression problem (20), i.e. η = cw, where
c > 0 and w is the residual from the previous sweep of
SALSA. In every all our experiments we set cη = 1. Further,
we have to specify the condition “noChange is true” within
Algorithm 1. To this end we introduce a test set with equal
size as our training set. We measure the residual within a
single run of SALSA on the test set and the training set.
If the change of the residual on either of this sets is below
δ = 0.0001 we set noChange = true. For the fixed-point
iteration we have a two-fold stopping condition. We stop
the iteration if either the Frobenius norm of the coefficients
has a smaller relative difference than γ1 < 0.0001 or if the
values V̂ k+1

n and V̂ kn and their gradients, evaluated at the
points of the test set, have a relative difference smaller than
γ2 < 0.00001. Note that the second condition is essentially
a discrete H1 norm, which is necessary since by adding the
final condition into the ansatz space the orthonormal basis
property is violated.

Finally, we comment on the area [a, b] where the 1-
dimensional polynomials are orthonormalized w.r.t. the
H2(a, b) norm, c.f. Remark 2. We obtain these polynomi-
als by performing a Gram-Schmidt process starting with
one-dimensional monomials. Thus, we have to specify the
integration area [a, b] for the different tests. In Section 4.1
we set a = −6 and b = 6. In Section 4.2 we set a = −3
and b = 3 for the case C diagonal and for the interacting
case, where C is non-diagonal, we set a = −8 and b = 2.
In Section 4.3 we choose a = −0.2 and b = 6.

HJB, d = 10, NNimpl
Figure 5

K = 2000,∆t = 0.01
r = (100, 110, 110, 50, 50, 1)
Gn = 8000, GN−1 = 40000
ηn = 0.0001, ηN−1 = 0.0001

HJB, d = 100, NNimpl
Table 1, Figures 6, 7
K = 2000,∆t = 0.01

r = (100, 130, 130, 70, 70, 1)
Gn = 5000, GN−1 = 40000
ηn = 0.0001, ηN−1 = 0.0003

HJB, d = 100, NNexpl
Table 1, Figures 6, 7
K = 2000,∆t = 0.01

r = (100, 110, 110, 50, 50, 1)
Gn = 500, GN−1 = 7000

ηn = 0.00005, ηN−1 = 0.0003

HJB double well
d = 50, NNimpl, Table 3
K = 2000,∆t = 0.01
r = (50, 30, 30, 1)

Gn = 2000, GN−1 = 25000
ηn = 0.0002, ηN−1 = 0.0005

HJB interacting double well
d = 20, NNimpl, Table 4
K = 2000,∆t = 0.01

r = (50, 20, 20, 20, 20, 1)
Gn = 3000, GN−1 = 30000
ηn = 0.0007, ηN−1 = 0.001

CIR, d = 100, NNimpl
Table 5

K = 1000,∆t = 0.01
r = (100, 110, 110, 50, 50, 1)
Gn = 2000 for 0 ≤ n ≤ 15

Gn = 300 for 16 ≤ n ≤ N − 2
GN−1 = 10000

ηn = 0.00005, ηN−1 = 0.0001

Table 7. Neural network hyperparameters for the experiments in
paper.

D. Further numerical examples
In this section we elaborate on some of the numerical exam-
ples from the paper and provide two additional problems.

Solving high-dimensional parabolic PDEs using the tensor train format

PDE with unbounded solution
d = 10, NNimpl, Table 9
K = 1000,∆t = 0.001
r = (10, 30, 30, 1)

Gn = 100, GN−1 = 10000
ηn = 0.0001, ηN−1 = 0.0001

Allen-Cahn
d = 100, NNimpl, Table 10
K = 8000,∆t = 0.01
r = (10, 30, 30, 1)

Gn = 10000 for 0 ≤ n ≤ 5
Gn = 6000 for 6 ≤ n ≤ N − 2

GN−1 = 15000
ηn = 0.0002, ηN−1 = 0.001

Table 8. Neural network hyperparameters for the additional experi-
ments.

D.1. Hamilton-Jacobi-Bellman equation

Let us consider the HJB equation from Sections 4.1 and 4.2,
which we can write as

(∂t + L)V (x, t)− 1

2
|(σ>∇V)(x, t)|2 = 0, (40a)

V (x, T) = g(x), (40b)

in a generic form with the differential operator L being
defined in (2). We can introduce the exponential transfor-
mation ψ := e−V and with the chain rule find that the
transformed function fulfills the linear PDE

(∂t + L)ψ(x, t) = 0, (41a)

ψ(x, T) = e−g(x). (41b)

This is known as Hopf-Cole transformation, see also (Flem-
ing & Soner, 2006; Hartmann et al., 2017). It is known that
via the Feynman-Kac theorem (Karatzas & Shreve, 1998)
the solution to this PDE has the stochastic representation

ψ(x, t) = E
[
e−g(XT)

∣∣∣Xt = x
]
, (42)

such that we readily get

V (x, t) = − logE
[
e−g(XT)

∣∣∣Xt = x
]
, (43)

which we can use as a reference solution by approximating
the expectation value via Monte Carlo simulation, however
keeping in mind that in high dimensions corresponding
estimators might have high variances (Hartmann & Richter,
2021).

Let us stress again that our algorithms only aim to provide
a solution of the PDE along the trajectories of the forward

process (4). Still, there is hope that our approximations
generalize to regions “close” to where samples are available.
To illustrate this, consider for instance the d-dimensional
forward process

Xs = x0 + σWs, (44)

as for instance in Section 4.1, where now σ > 0 is one-
dimensional for notational convenience. We know that
Xt ∼ N (x0, σ

2t Idd×d) and therefore note that for the
expected distance to the origin it holds

E [|Xt − x0|] <
√
E [|Xt − x0|2] = σ

√
dt. (45)

This motivates evaluating the approximations along the
curve

Xt = x0 + σ
√
t1, (46)

where 1 = (1, . . . , 1)>. Figure 11 shows that in this case
we indeed have good agreement of the approximation with
the reference solution when using TTs and that for NNs
the deep neural network that we have specified in Table 7
generalizes worse than a shallower network with only two
hidden layers consisting of 30 neurons each.

0.0 0.2 0.4 0.6 0.8 1.0
t

3.5

4.0

4.5

5.0

5.5
V evaluated at curve

deep NN
shallow NN
TT
reference

0.0 0.2 0.4 0.6 0.8 1.0
t

10−5

10−4

10−3

10−2

10−1
relative error evaluated at curve

Figure 11. Approximations of the HJB equation in d = 100 evalu-
ated along a representative curve.

D.2. PDE with unbounded solution

As an additional problem, we choose an example from (Huré
et al., 2020) which offers an analytical reference solution.
For the PDE as defined in (1) we consider the coefficients

b(x, t) = 0, σ(x, t) =
Idd×d√

d
, g(x) = cos

(
d∑
i=1

ixi

)
,

(47)

h(x, t, y, z) = k(x) +
y

2
√
d

d∑
i=1

zi +
y2

2
, (48)

Solving high-dimensional parabolic PDEs using the tensor train format

where, with an appropriately chosen k, a solution can shown
to be

V (x, t) =
T − t
d

d∑
i=1

(sin(xi)1xi<0 + xi1xi≥0)

+ cos

(
d∑
i=1

ixi

)
.

(49)

In Table 9 we compare the results for d = 10,K =
1000, T = 1,∆t = 0.001, x0 = (0.5, . . . , 0.5)>. For the
TT case it was sufficient to set the ranks to 1 and the poly-
nomial degree to 6. We see that the results are improved
significantly if we increase the sample size K from 1000 to
20000. Note that even when increasing the sample size by a
factor 20, the computational time is still lower than the NN
implementation. It should be highlighted that adding the
function g to the neural network (as explained in Appendix
C) is essential for its convergence in higher dimensions and
thereby mitigates the observed difficulties in (Huré et al.,
2020)).

TTimpl TT∗impl NNimpl

V̂0(x0) −0.1887 −0.2136 −0.2137
relative error 1.22e−1 6.11e−3 5.50e−3

ref loss 2.47e−1 7.57e−2 3.05e−1

abs. ref loss 2.52e−2 9.29e−3 1.69e−2

PDE loss 2.42 0.60 1.38
computation time 360 1778 4520

Table 9. Approximation results for the PDE with an unbounded
analytic solution. For TT∗

impl we choose K = 20000, for the others
we choose K = 1000.

D.3. Allen-Cahn like equation

Finally, let us consider the following Allen-Cahn like PDE
with a cubic nonlinearity in d = 100:

(∂t + ∆)V (x, t) + V (x, t)− V 3(x, t) = 0, (50a)
V (x, T) = g(x), (50b)

where we choose g(x) =
(
2 + 2

5 |x|
2
)−1

, T = 3
10 and

are interested in an evaluation at x0 = (0, . . . , 0)>. This
problem has been considered in (E et al., 2017), where
a reference solution of V (x0, 0) = 0.052802 calculated
by means of the branching diffusion method is provided.
We consider a sample size of K = 1000 and a stepsize
∆t = 0.01 and provide our approximation results in Table
10. Note that for this example it is again sufficient to use a
TT-rank of 1 and a polynomial degree of 0.

TTimpl TTexpl NNimpl NN∗impl

V̂0(x0) 0.052800 0.05256 0.04678 0.05176
relative error 4.75e−5 4.65e−3 1.14e−1 1.97e−2

PDE loss 2.40e−4 2.57e−4 9.08e−1 6.92e−1

comp. time 24 10 23010 95278

Table 10. Approximations for Allen-Cahn PDE, where NN∗
impl uses

K = 8000 and the others K = 1000 samples.

E. Some background on BSDEs and their
numerical discretizations

BSDEs have been studied extensively in the last three
decades and we refer to (Pardoux, 1998; Pham, 2009; Go-
bet, 2016; Zhang, 2017) for good introductions to the topic.
Let us note that given some assumptions on the coefficients
b, σ, h and g one can prove existence and uniqueness of a
solution to the BSDE system as defined in (4) and (6), see
for instance Theorem 4.3.1 in (Zhang, 2017).

We note that the standard BSDE system can be generalized
to

dXs = (b(Xs, s) + v(Xs, s)) ds+ σ(Xs, s)dWs, (51a)
X0 = x, (51b)

dYs = (−h(Xs, s, Ys, Zs) + v(Xs, s) · Zs)ds+ Zs · dWs,
(51c)

YT = g(XT), (51d)

where v : Rd×[0, T] → Rd is any suitable control vector
field that can be understood as pushing the forward trajecto-
ries into desired regions of the state space, noting that the
relations

Ys = V (Xs, s), Zs = (σ>∇V)(Xs, s), (52)

with V : Rd×[0, T]→ R being the solution to the parabolic
PDE (1), hold true independent of the choice of v (Hartmann
et al., 2019). Our algorithms readily transfer to this change
in sampling the forward process by adapting the backward
process and the corresponding loss functionals (10) and (11)
accordingly.

In order to understand the different numerical discretization
schemes in Section 2.1, let us note that we can write the
backward process (5) in its integrated form for the times
tn < tn+1 as

Ytn+1
= Ytn−

∫ tn+1

tn

h(Xs, s, Ys, Zs)ds+

∫ tn+1

tn

Zs·dWs.

(53)
In a discrete version we have to replace the integrals with
suitable discretizations, where for the deterministic integral
we can decide which endpoint to consider, leading to either

Solving high-dimensional parabolic PDEs using the tensor train format

of the following two discretization schemes

Ŷn+1 = Ŷn − hn∆t+ Ẑn · ξn+1

√
∆t, (54a)

Ŷn+1 = Ŷn − hn+1∆t+ Ẑn · ξn+1

√
∆t, (54b)

as defined in (8), where we recall the shorthands

hn = h(X̂n, tn, Ŷn, Ẑn), (55a)

hn+1 = h(X̂n+1, tn+1, Ŷn+1, Ẑn+1). (55b)

The L2-projection scheme (10) can be motivated as follows.
Consider the explicit discrete backward scheme as in (54b)

Ŷn+1 = Ŷn−h(X̂n+1, tn+1, Ŷn+1, Ẑn+1)∆t+Ẑn·ξn+1

√
∆t.

(56)
Taking conditional expectations w.r.t. to the σ-algebra gener-
ated by the discrete Brownian motion at time step n, denoted
by Fn, yields

Ŷn = E
[
Ŷn+1 + h(X̂n+1, tn+1, Ŷn+1, Ẑn+1)∆t

∣∣∣Fn] .
(57)

We can now recall that a conditional expectation can be
characterized as a best approximation in L2, namely

E[B|Fn] = arg min
Y ∈L2

Fn−measurable

E
[
|Y −B|2

]
, (58)

for any random variable B ∈ L2, which brings

Ŷn = arg min
Y ∈L2

Fn−measurable

E
[(
Y − hn+1∆t− Ŷn+1

)2]
. (59)

This then yields the explicit scheme depicted in (10). We
refer once more to (Gobet et al., 2005) for extensive numer-
ical analysis, essentially showing that the proposed scheme
is of order 1

2 in the time step ∆t.

