On Linear Identifiability of Learned Representations

A. Reproducing Experiments and Figures

In this section, we present training and optimization details
needed to reproduce our empirical validation of Theorem 1.
We also published notebooks and check-pointed weights
for two crucial experiments that investigate the result in the
small and massive scale regimes, for Figure 1 and GPT-2
(https://github.com/google-research/
google-research/tree/master/linear_
identifiability).

A.1. Figure 1

We provide a Jupyter notebook and model checkpoints for
reproducing Figure 1. Please refer to this for hyperparameter
settings. In short, we implemented a model (Mnih & Teh,
2012) in the family of Section 2 and trained it on the Billion
Word dataset (Chelba et al., 2013). This is illustrative of
the property of Theorem 1 because the relatively modest
size of the parameter space (see notebook) and massive
dataset minimizes model convergence and data availability
restrictions, e.g., approaches the asymptotic regime.

The word embedding space is 2-D for ease of visualization.
We randomly selected a subset of words, mapped them into
their learned embeddings, and visualized them as points in
the left and middle panes. We then regress the points in
pane one onto pane two in order to learn the optimal linear
transformation between them. Note that if the two are linear
transformations of each other, regression will recover that
transformation exactly.

A.2. Simulation Study: Classification by DNNs

For this experiment, we want to ensure that the chosen
model can fit the data distribution exactly. Controlling this
removes one possible factor that could prevent linear identifi-
ability of learned representations despite the model formally
having that property. We do this by making sure that the
process that generates the dataset matches the model chosen
to learn the relationships between inputs and labels.

This is achieved through the following algorithm. We first
randomly assign initialization labels based on angular posi-
tion, then fit two neural networks fg+ and gg+ to predict the
final labels, using the discriminative model of Equation (1)
and Appendix D.1. Both fg+ and gg+ 4-hidden-layer MLPs
with two 64 unit layers and one 2-D bottle neck layer. After
training these representation functions to convergence, gen-
erated new batch of points x, and used the trained networks
to predict the ground truth labels y.

Finally, to conduct experiments, we chose fg: and gg to be
the same architecture as fg« and gg«. This ensures that the
supervised classifier we attempted to learn would using the
function approximators fy: and gg would be able to capture

the true data generating process, e.g, would not fail due to
too few hidden units, or too complex a relationship between
targets and inputs.

Remaining training details are as follows. We optimize
weights using Adam with a learning rate of 10~ for 5 *
10* iterations. To make the classification problem more
challenging, we additionally add 20 input dimensions of
random noise to the data. The Adam optimizer (Kingma &
Ba, 2014) with a learning rate of 3 - 10~ is used.

A.3. Self-Supervised Learning for Image Classification

To compute linear similarity between representations, we
train two independent models in parallel. For each model
we define both fg and gy as a 3-layer fully connected neural
network with 28 units per layer and a fixed output dimen-
sionality of 26, We define our model following Equation (1),
where S is the set of the other image patches from the cur-
rent minibatch and optimize the objective of (Hénaff et al.,
2019). We augment both sampled patches independently
with randomized brightness, saturation, hue, and contrast ad-
justments, following the recipe of (Hénaff et al., 2019). We
train on the CIFAR10 dataset (Krizhevsky et al., 2009) with
batchsize 28, using the Adam optimizer with a learning rate
of 10~* and the JAX (Bradbury et al., 2018) software pack-
age. For each model, we early stop based on a validation
loss failing to improve further.

Additional details about the experiments that generated Fig-
ure 3:

Figure 3 a.
images.

Patches are sampled randomly from training

Figure 3b. For each model, we train for at most 3 104 it-
erations, early stopping when necessary based on validation
loss.

Figure 3 ¢. For each model, we train for at most 3 104 it-
erations, early stopping when necessary based on validation
loss.

Figure 3d. Error bars show standard error computed over
5 pairs of models after 1.5 x 10* training iterations.

A4. GPT-2

We include all details through a notebook in the code release.
Pretrained GPT-2 weights as specified in the main text are
publicly available from HuggingFace (Wolf et al., 2019).
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A.5. Remark on Effect of Initialization and
Hyperparameters of Models

One question that may be of interest is whether initialization
affects whether learned representations will be within a lin-
ear transformation of each other. This depends on whether
the optimization routines (like Adam, AdaGrad, etc.) are
robust to wider initialization within a certain range. If so,
model convergence will be unaffected. However, this can-
not make up for poor initialization or poor optimization:
just as in any deep neural network, a poor initialization
and inadequate optimizer will interfere with learning the
model parameters. In the case of a linearly identifiable
model, means that the learned representations would not
live within a linear transformation of each other (up to noise
from model fitting), since the models have failed to converge
to a reasonable solution for the task at hand.

When the hyperparameters of a DNN are changed, this
changes the class of functions that the network can rep-
resent (i.e., the size and stride of convolution filters will
change which input pixels could be correlated in deeper lay-
ers). Typically, hyperparameters are carefully tuned using
cross validation based on held-out data. We did so in our
experiments also. We expect that such a tuning procedure
would yield hyperparameters that are as good as possible for
the model to be optimized, allowing sufficient optimization
so that the linear identifiability of the learned representations
is realized. If the hyperparameters are sufficiently bad and
optimization suffers, this will interfere with model fitting,
and with linear identifiability of the learned representations
also.

B. Proof that Linear Similarity is an
Equivalence Relation

We claim that ~ is an equivalence relation. It suffices to
show that it is reflexive, transitive, and symmetric.

Proof. Consider some function gg and some ', 0*, 81 C
©. Suppose 8’ ~ 0*. Then, there exists an invertible
matrix B such that gg/(x) = Bgg-(x). Since gg+(x) =
B~ !gg/(x), ~ is symmetric. Reflexivity follows from set-
ting gg« to gg- and B to the identity matrix. To show
transitivity, suppose also that 8* ~ @'. Then, there ex-
ists an invertible C such that gg«(x) = Cggi(x). Since
g0 ~ g+, B 1gg/(x) = Cgyi(x). Rearranging terms,
go (x) = BCggi (x), so that @’ ~ 07 as required.

O

C. Section 3.2 Continued: Case of Context
Representation Function g

Our derivation of identifiability of gg is similar to the deriva-
tion of fg. The primary difference is that the normalizing
constants in Equation (5) do not cancel out. First, note that
we can rewrite Equation (1) as:

po(ylx,S) = exp(fo(x,S) " &a(y)) (8)
where:
fo(x,8) = [~ Z(x,S); fo(x)] ©)
8o(y) = [Lige(y)] (10)
Z(x,8) =log Z exp(fo(x) "'go(y’)). (11)
y’'eS

Below, we will show that for the model family defined in
Section 2,

Por = Do — 8or(y) =Bge-(y), (12)

where B is an invertible (M x M)-dimensional matrix,
concluding the proof of the linear identifiability of models
in the family defined by Equation (1). We adopt the same
shorthands as in the main text.

C.1. Diversity condition

We assume that for any (6’,60*) C © for which it holds
that p’ = p*, and for any given y, there exist M + 1 tuples
{(x®, 8O }M such that pp(x™, y, S?)) > 0, and such
that the (M + 1) x (M + 1)) matrices M’ and M* are
invertible, where M’ consists of columns f’ (x(,S®), and
M* consists of columns £*(x(?), S®).

This is similar to the diversity condition of Section 3.2 but
milder, since a typical dataset will have multiple x for each

y.
C.2. Proof

With the data distribution pp(x,y, S), for a given y, there
exists a conditional distribution pp(x, S|y). Let (x, S) be
a sample from this distribution. From Equation (1) and the
statement to prove, it follows that:

P'(yx,8) =p*(yx,S) (13)

Substituting in the definition of our model from Equation
(8), we find:

exp('(x,8) g (v)) = exp(f*(x,8) 8" (), (14
which, evaluating logarithms, becomes

f'(x,8) g (y) = (x,8) & (y). (15)
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which is true for any triple (x,y, S) where pp(y|x,S) > 0.

From M’ and M* (Section C.1) and Equation (15) we form
a linear system of equations, collecting the M + 1 relation-
ships together:

M g/ (y) = Mg (y) (16)
g'(y) = Ag*(y). (17)

where A = (M*M'~1) T, an invertible (M +1) x (M +1)
matrix.

It remains to show the existence of an invertible M x M
matrix B such that

g'(y) = Bg"(y). (18)

We proceed by constructing B from A. Since A is in-
vertible, there exist j elementary matrices {E;,...,E;}
such that their action R = E;E;_; ... E; converts A toa
(non-unique) row echelon form. Without loss of generality,
we build R such that the a;; entry of A is the first pivot,
leading to the particular row echelon form:

a1 ai2 a3 a1, mx1
0 a22 ao3 a2,mx1
, (19

RA-| O 0 aszs a2,mx1
0 0 cee 0 de 1,mx1

where a; ; indicates that the corresponding entry in RA
may differ from A due to the action of R. Applying R to
Equation (16), we have

Rg'(y) = RAg"(y). (20)

We now show that removing the first row and column of
RA and R generates matrices of rank M. Let RA and R
denote the (M x M) submatrices formed by removing the
first row and column of RA and R respectively.

Equation (19) shows that RA has a pivot in each column,
and thus has rank M. To show that R is invertible, we must
show that removing the first row and column reduces the
rank of R = E;E;_; ... E; by exactly 1. Clearly, each Ej,
is invertible, and their composition is invertible. We must
show the same for the composition of Ej.

There are three cases to consider, corresponding to the three
unique types of elementary matrices. Each elementary ma-
trix acts on A by either (1) swapping rows ¢ and j, (2)
replacing row j by a multiple m of itself, or (3) adding a
multiple m of row ¢ to row j. We denote elementary matrix
types by superscripts.

In Case (1), E}, is an identity matrix with row i and row j
swapped. For Case (2), E7 is an identity matrix with the

4, 7" entry replaced by some m. For each E} and E? in
R, where 1 < k,1 < j, we know that the indices 7, 7 > 2,
because we chose the first entry of the first row of A to be
the pivot, and hence do not swap the first row, or replace the
first row by itself multiplied by a constant. This implies that
removing the first row and column of E}. and E? removes
a pivot entry 1 in the (1, 1) position, and removes zeros
elsewhere. Hence, the (M x M) submatrices E} and E?
are elementary matrices with rank M.

For Case (3), Ei has some value m € R in the j, ith entry,
and 1s along the diagonal. In this case, we may find a
non-zero entry in some Ez so that, e.g., the second row
has a pivot at position (2,2). Without loss of generality,
suppose ¢ = 1, j = 2 and let m be some nonzero constant.
Removing the first row and column of E$ removes this m
also. Nevertheless, E‘f = Iy, the rank M identity matrix.
For any other E‘,i 1 <1< M+41,5 > 2because we chose
a1,1 as the first pivot, and hence do not swap the first row,
or replace the first row by itself multiplied by a constant. In
both cases, removing the first row and first column creates
an E? that is a rank M elementary matrix.

We have shown by the above that R is a composition of rank
M matrices. We now construct the matrix B by removing
the first entries of g’ and g*, and removing the first row and
first column of R and R A in Equation (20). Then, we have

Rg'(y) = RAg*(y), (21)
g(y) =R RAg'(y). (22)

Choosing B = R~ 'RA proves the result.
O

D. Reductions to Canonical Form of Eq. (1)

In the following, we show membership in the model fam-
ily of Equation (1) using the mathematical notation of the
papers under discussion in Section 4. Note that each subsec-
tion will change notation to match the papers under discus-
sion, which varies quite widely. We employ the following
colour-coding scheme to aid in clarity:

log po(y|x, S) =fo(x) "go(y)
~log > exp(fo(x) 8o (y')).

y’'€S

where: fg(x) is generalized to a data representation func-
tion, gg(y) is generalized to a context representation func-
tion, and Y, g exp(fo(x) " go(y’)) is alconstant,

D.1. Supervised Classification

Supervised classifiers commonly employ a neural network
feature extractor followed by a linear projection of the out-
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put of this network into a space of unnormalized logits. All
the layers prior to the logits are the representation func-
tion fp, and the final projection layer is the context map
go(y = i) = w;, where w; is the i-th column of a weight
matrix W. The set S in this case contains human-chosen
labels and has no stochasticity. The loss function is the
negative log-likelihood of the data under a categorical dis-
tribution with a softmax parameterization:

S|

log pe(y = i[x; S) =fa(x) "w; — log » _ exp(fo(x) " w;)
g=l1

Supervised classification is thus an member of the family
defined in Section 2. It exhibits the simplest functional
form for the g function while allowing f to be arbitrarily
complicated.

D.2. Contrastive Predictive Coding (CPC)

Consider a sequence of points x;. We wish to learn the
parameters ¢ to maximize the k-step ahead predictive dis-
tribution p(x;4|X¢, ¢). In the image patch example, each
patch center ¢, j is indexed by ¢. Each x; is mapped to a
sequence of feature vectors z; = fy(x;) An autoregressive
model, already updated with the previous latent representa-
tions z<4_1, transforms the z; into a “context" latent rep-
resentation ¢; = gar(z<¢). Instead of predicting future
observations k steps ahead, x; 1, directly through a genera-
tive model py (x¢4|ct), Oord et al. (2018) model a density
ratio in order to preserve the mutual information between
X4k and c;.

Objective Let X = {x1,...,Xy} be a set of N random
samples containing one positive sample from p(x¢x|ct)
and N — 1 samples from the proposal distribution p(x¢1).
Oord et al. (2018) define the following link function:
I(X¢1x, Ct) = exp (thJrkact). Then, CPC optimizes

lk(XH—k, Ct)
—Ex |1 23
x |log s ex b (%,00) (23)
Ex |1og exp (zi4n ' Wiey) (24)
= — X .
Zx]' ex exp (Z;rwkct)

Substituting in the definition of [; makes Equation (24)
identical to the model family Equation (1).

D.3. Autoregressive language models (e.g. GPT-2)

LetU = {uy,...,u,} be a corpus of tokens. Autoregres-
sive language models maximize a log-likelihood L(U) =
o log P(ug|ui—g, - . ., ui—1; ©), Concretely, the condi-

tional density is modelled as

log P(u;i|wi—:i—1; ©)

= thz — logZexp(Wj;hi),
J

where h; is the m x 1 output of a function approximator
(e.g. a Transformer decoder (Liu et al., 2018)), and W, is
the 7’th row of the |U/| x m token embedding matrix.

D.4. BERT

Consider a sequence of text x = [z1,...,z7]. Some pro-
portion of the symbols in x are extracted into a vector X,
and then set in x to a special null symbol, “corrupting"” the
original sequence. This operation generates the corrupted
sequence x. The representational learning task is to predict
x conditioned on x, that is, to maximize w.r.t. 8:

[M]=

log pg(X|x) = » mylogpe(w:|x)

\*
Il
_

Il
N

my (HO(X)tTe(xt)

t=1

—log ) exp (Ho(x){ e(2')) ) )

where H is a transformer, e is a lookup table, and m; = 1
if symbol z; is masked. That is, corrupted symbols are
“reconstructed" by the model, meaning that their index is
predicted. As noted in Yang et al. (2019), BERT models
the joint conditional probability p(x|x) as factorized so that
each masked token is separately reconstructed. This means
that the log likelihood is approximate instead of exact.

D.5. QuickThought Vectors

Let f and g be functions that take a sentence as input and
encode it into an fixed length vector. Let s be a given
sentence, and S.;,; be the set of sentences appearing in the
context of s for a fixed context size. Let S.,q be the set of
candidate sentences considered for a given context sentence
Sctot € Scext. Then, S.qnq contains a valid context sentence
Sctot s well as many other non-context sentences. Scqng 1S
used for the classification objective. For any given sentence
position in the context of s (for example, the preceding
sentence), the probability that a candidate sentence S¢qnq €
Scand 18 the correct sentence for that position is given by
log p(Scand|$; Seand) Which equals

fG(S)Tge(Scand))
~log > exp(fo(s) go(stana)) -

8'€Scand
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D.6. Deep Metric Learning

The multi-class N-pair loss in Sohn (2016) is proportional
to

N
1 o (1) "o () —Fo (1) "o (1))
1ogN—Nzllog 1+§e" otys)—le oy
i= VED)

which can be simplified as

K
1 fo(2:) T fo (y;)—fo (x:) T fo (y:)
log e Ze ’ e "

Jj=1

!
=2l=
M-

&
Il
-

I
2| =
-

1
1
8 (1 > efem)Tfe(yj)—femirfe(yi))

=1 K
N fo(z:) " fol(ys)
1 ]
= — E log eK = .
NI % 2lim1 efolri) " folu;)

Setting N to 1 and evaluating the log gives

K

fol) Foly:) — 2 O exp(fale) Ho(ys).
j=1

which is Equation (1) where fg = gg.

D.7. Neural Probabilistic Language Models (NPLMs)

Figure 1 shows results from a neural probabilistic language
model as proposed in Mnih & Teh (2012). Mnih & Teh
(2012) propose using a log-bilinear model (Mnih & Hin-
ton, 2009) which, given some context h, learns a context
word vectors r,, and target word vectors q,,. Two different
embedding matrices are maintained, in other words: one to
capture the embedding of the word and the other the con-
text. The representation for the context vector, ¢, is then
computed as the linear combination of the context words
and a context weight matrix C; so that § = Z::ll CiTw,
The score for the match between the context and the next
word is computed as a dot product, e.g., s¢(w, h) = G Gu,>
and substituting into the definition of PJ(w), we see that

log Py (w) =4 "Gw — log > exp (4" Gur)
’U)/

shows that Mnih & Teh (2012) is a member of the model
family.

Interestingly, a touchstone work in the area of NPLMs,
Word2Vec (Mikolov et al., 2013), does not fall under the
model family due to an additional nonlinearity applied to
the score of Mnih & Teh (2012).

2We have absorbed the per-token baseline offset b into the ¢,
defined in Mnih & Teh (2012), forming the vector ¢, whose ¢’th

entry is (qw)i = (qw)i + bw/(q)i
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