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Abstract
We propose an algorithm for stochastic and
adversarial multiarmed bandits with switching
costs, where the algorithm pays a price λ every
time it switches the arm being played. Our al-
gorithm is based on adaptation of the Tsallis-
INF algorithm of Zimmert & Seldin (2021)
and requires no prior knowledge of the regime
or time horizon. In the oblivious adversarial
setting it achieves the minimax optimal regret
bound of O

(
(λK)1/3T 2/3 +

√
KT

)
, where T

is the time horizon and K is the number of
arms. In the stochastically constrained adversar-
ial regime, which includes the stochastic regime
as a special case, it achieves a regret bound of
O
((

(λK)2/3T 1/3 + lnT
)∑

i6=i∗ ∆−1
i

)
, where

∆i are the suboptimality gaps and i∗ is a unique
optimal arm. In the special case of λ = 0 (no
switching costs), this bound is also minimax op-
timal within constants. We also explore variants
of the problem, where switching cost is allowed
to change over time. We provide experimental
evaluation showing competitiveness of our algo-
rithm with the relevant baselines in the stochastic,
stochastically constrained adversarial, and adver-
sarial regimes with fixed switching cost.

1. Introduction
Multiarmed bandits are the reference framework for the
study of a wide range of sequential decision-making prob-
lems, including recommendation, dynamic content opti-
mization, digital auctions, clinical trials, and more. In this
framework the algorithm repeatedly picks actions, a.k.a.
arms, and, after each selection, observes the loss or reward
of the corresponding action. In many application domains,
algorithms have to pay a penalty λ > 0 each time they play
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an arm different from the one played in the previous round.
Such switching cost may occur in the form of a transac-
tion cost in financial trading, or a reconfiguration cost in
industrial environments.

So far, the problem of bandits with switching costs has been
studied using algorithms whose optimality depends on the
nature of the source of losses (or, equivalently, rewards) for
the K arms. In the oblivious adversarial case, when losses
are generated by an arbitrary deterministic source, Dekel
et al. (2012) used a simple variant of the Exp3 algorithm to
prove an upper bound of O

(
(K lnK)1/3T 2/3

)
for λ = 1

(i.e., unit switching cost) — see also (Blum & Mansour,
2007) for an earlier, slightly weaker result. A result by Dekel
et al. (2013) implies a lower bound of Ω

(
(λK)1/3T 2/3 +√

KT
)

for all λ ≥ 0. Note the phase transition: if λ > 0,
then the regret asymptotically grows as T 2/3, as opposed to√
T when there is no switching cost.

In the stochastic case, where losses of each arm are gen-
erated by an i.i.d. process, Gao et al. (2019) and Esfandi-
ari et al. (2021) used arm elimination algorithms to prove
that O(lnT ) switches are sufficient to achieve the optimal
distribution-dependent regret of O

(
(lnT )

∑
i : ∆i>0 ∆−1

i

)
,

where ∆i is the suboptimality gap of arm i. Hence, in the
stochastic case the introduction of switching costs does not
lead to a qualitative change of the minimax regret rate.

In practical applications, it is desirable to have algorithms
that require no prior knowledge about the nature of the
loss generation process and maintain robustness in the ad-
versarial regime simultaneously with the ability to achieve
lower regret in the stochastic case. A number of such al-
gorithms have been developed for the standard multiarmed
bandits (Bubeck & Slivkins, 2012; Seldin & Slivkins, 2014;
Auer & Chiang, 2016; Seldin & Lugosi, 2017; Wei & Luo,
2018; Zimmert & Seldin, 2019; 2021; Masoudian & Seldin,
2021) and the ideas have been extended to several other
domains, including combinatorial bandits (Zimmert et al.,
2019), decoupled exploration and exploitation (Rouyer &
Seldin, 2020), and episodic MDPs (Jin & Luo, 2020). We
aim at designing algorithms with similar properties for ban-
dits with switching costs.
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Main contributions

Our starting point is the Tsallis-INF algorithm of Zimmert &
Seldin (2021), which was shown to achieve minimax regret
rates in both stochastic and adversarial regimes for stan-
dard bandits. We introduce a modification of this algorithm,
which we call Tsallis-Switch, to take care of the switching
costs. In the adversarial regime, the regret bound of Tsallis-
Switch matches (within constants) the minimax optimal
regret bound Θ

(
(λK)1/3T 2/3 +

√
KT

)
for any value of

λ ≥ 0. In the stochastically constrained adversarial regime,
which includes the stochastic regime as a special case, we
prove a bound O

((
(λK)2/3T 1/3 + lnT

)∑
i 6=i∗ ∆−1

i

)
,

where i∗ is a unique optimal arm. Note that, in the spe-
cial case of λ = 0 (no switching costs), we recover (up to
constant factors) the minimax optimal bounds of Tsallis-INF
for both regimes. Similarly to Tsallis-INF, our algorithm is
fully oblivious to both the regime and the time horizon T .

Tsallis-Switch, which runs Tsallis-INF as a subroutine, uses
the standard tool to control the frequency of arm switch-
ing: game rounds are grouped into consecutive blocks
B1, B2, . . ., and Tsallis-Switch runs Tsallis-INF over the
blocks, preventing it from switching arms within each block.
The number of switches is thus bounded by the number of
blocks. Since T is unknown, we use block sizes of increas-
ing length. As a new arm is drawn only at the beginning
of each block, the effective range of the losses experienced
by Tsallis-INF grows with time. Therefore, we modify the
analysis of Tsallis-INF to accommodate losses of varying
range. This extension may potentially be of independent
interest.

2. Problem Setting and Notations
We consider a repeated game with K arms and a switching
cost λ ≥ 0. At each round t = 1, 2, . . . of the game,
the environment picks a loss vector `t ∈ [0, 1]K , and the
algorithm chooses an arm Jt ∈ [K] to play. The learner then
incurs the loss `t,Jt , which is observed. If Jt 6= Jt−1, then
the learner also suffers an extra penalty of λ. The penalty λ
is known to the learner. We use the same setting as Dekel
et al. (2013), and assume that J0 = 0, which means that
there is always a switch at the first round.

We consider two regimes for the losses. In the oblivious
adversarial regime, the loss vectors `t are arbitrarily gener-
ated by the environment and do not depend on the actions
taken by the learner. We also work in the stochastically
constrained adversarial regime. This setting, introduced by
Wei & Luo (2018), generalizes the widely studied stochastic
regime by allowing losses to be drawn from distributions
with fixed gaps. It means that at for all i, E [`t,i] can fluctu-
ate with t, but E [`t,i − `t,j ] = ∆i,j remains constant over
time for all pairs i, j,. The suboptimality gaps are then

defined as ∆i = ∆i,1 −min
j

∆j,1.

We define the pseudo-regret with switching costs as follows,

RS(T, λ) = E

[
T∑
t=1

`t,Jt

]
−min

i
E

[
T∑
t=1

`t,i

]

+ λ

T∑
t=1

P(Jt−1 6= Jt)

= RT + λST . (1)

We recognize that RT = RS(T, 0) is the classical defini-
tion of the pseudo regret (without switching costs), while
ST counts the expected number of switches. Furthermore,
we recall that in the stochastically constrained adversarial
regime, the pseudo-regret can be rewritten in terms of the
sub-optimality gaps, as:

RT =

T∑
t=1

K∑
i=1

E [pt,i] ∆i, (2)

where pt,i is the probability of playing action i at round t.

3. Using Blocks to Control Switching
Frequency

In order to control ST , we limit the number of action
switches that the algorithm makes by dividing the game
rounds into blocks and forcing the algorithm to play the
same action for all the rounds within a block. Given a
sequence of blocks (Bn)n≥1 of lengths |Bn|, and a time
horizon T , we define N as the smallest integer, such that∑N
n=1 |Bn| ≥ T , and we truncate the last block, such that

the cumulative length of the first N blocks sum up to T .

As ST ≤ N , we bound N and the pseudo-regret RT
(without the switching costs) over the N blocks. Let
cn,i =

∑
s∈Bn `s,i be the cumulative loss of action i in

block n. Since `t,i ∈ [0, 1], we have cn,i ∈
[
0, |Bn|

]
. We

use In to refer to the action played by the algorithm in block
n. Then, for all t ∈ Bn, we have Jt = In and

RT = E

[
N∑
n=1

cn,In

]
−min

j
E

[
N∑
n=1

cn,j

]
.

4. The Algorithm
Our Tsallis-Switch algorithm (see Algorithm 1) calls Tsallis-
INF at the beginning of each block to obtain an action, plays
the proposed action in each round within the block, and
then feeds back to Tsallis-INF the total loss suffered by the
action over the block. As blocks have varying lengths, we
adapt the Tsallis-INF algorithm and its analysis to losses of
varying range.
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Algorithm 1 Tsallis-Switch
Input: Learning rates η1 ≥ η2 ≥ · · · > 0.
Block lengths |B1|, |B2|, . . . .
Initialize: C̃0 = 0K
for n = 1, 2, . . . do

pn = arg min
p∈∆K−1

{〈
p, C̃n−1

〉
−

K∑
i=1

4
√
pi − 2pi

ηn

}
.

Sample In ∼ pn and play it for all rounds t ∈ Bn.
Observe and suffer cn,In =

∑
t∈Bn `t,In .

∀i ∈ [K] : c̃n,i =

{
cn,i
pn,i

, if In = i,

0, otherwise.
∀ i ∈ [K] : C̃n(i) = C̃n−1(i) + c̃n,i.

end for

5. Main Results
We start by considering the case where the switching cost
λ is a fixed parameter given to the algorithm. Since λ is
known in advance, it can be used to tune the block lengths.

Theorem 1. Let λ ≥ 0 be the switching cost. Define blocks
with lengths |Bn| = max {dane, 1}, where an = 3λ

2

√
n
K .

The preudo-regret of Tsallis-Switch with learning rate

ηn = 2
an+1

√
2
n executed over the blocks in any adversarial

environment satisfies:

R(T, λ) ≤ 5.25(λK)1/3T 2/3 + 6.4
√
KT

+ 3
√

2K + 5.25λ+ 6.25.

Furthermore, in any stochastically constrained adversarial
regime with a unique best arm i∗, the pseudo-regret addi-
tionally satisfies:

R(T, λ) ≤
(

66(λK)2/3T 1/3 + 32 lnT
)∑
i6=i∗

1

∆i

+
(

160λ2/3T 1/3K1/6 + 160λ+ 49λ2 + 32
)∑
i 6=i∗

1

∆i

+
544λ√
K

+ λ+ 66.

A proof is provided in Section 6. For λ = 0 (no switching
costs) both regret bounds match within constants the cor-
responding bounds of Tsallis-INF for multiarmed bandits
with no switching costs. Furthermore, in the adversarial
regime the algorithm achieves the optimal regret rate for
all values of λ. In the stochastically constrained adversar-
ial regime, for λ > 0 the regret grows as T 1/3 rather than
logarithmically in T . This is also the case for the stochas-
tic regime, which is a special case. While the algorithm
does not achieve the logarithmic regret rate in the stochas-
tic regime, as do the algorithms of Gao et al. (2019) and
Esfandiari et al. (2021), it still exploits the simplicity of

the regime and reduces the regret rate from T 2/3 to T 1/3.
Additionally, in contrast to the work of Gao et al. (2019)
and Esfandiari et al. (2021), the stochastic regret guarantee
holds simultaneously with the adversarial regret guarantee,
and the algorithm requires no knowledge of the time hori-
zon. We also note that we are unaware of specialized lower
bounds for the more general stochastically constrained ad-
versarial regime with switching costs, and it is unknown
whether the corresponding regret guarantee is minimax op-
timal. Theorem 1 is based on the following generalized
analysis of the Tsallis-INF algorithm that accommodates
losses of varying range. The result may be of independent
interest.

Theorem 2. Consider a multi-armed bandit problem where
the loss vector at round t belongs to [0, bt]

K and bt is re-
vealed to the algorithm before round t. Then the pseudo-
regret of Tsallis-Switch in any adversarial environment for
any positive and non-decreasing sequence of learning rates
(ηt)t≥1 satisfies

RT ≤
√
K

(
T∑
t=1

ηt
2
b2t +

4

ηT

)
+ 1. (3)

Furthermore, in the stochastically constrained adversarial
regime with a unique best arm i∗, the pseudo regret also
satisfies

RT ≤
T∑
t=1

∑
i 6=i∗

(
7
2ηtb

2
t + 2c

(
η−1
t − η−1

t−1

))2
4∆ibt

+

T0∑
t=1

ηtb
2
t+2,

(4)

where c =

{
2, if ∀t : 5ηt

4 b2t ≥ 2
(
η−1
t − η−1

t−1

)
,

4, otherwise.

In particular, if bt = B for all rounds t, we have the follow-
ing more interpretable result.

Corollary 3. Consider a multi-armed bandit problem with
loss vectors belonging to [0, B]K . Then the pseudo-regret of
Tsallis-INF with ηt = 2

B
√
t

satisfies RT ≤ 4B
√
KT + 1 in

any adversarial regime. Furthermore, in the stochastically
constrained adversarial regime with a unique best arm i∗,
the pseudo regret additionally satisfies

RT ≤21B(lnT + 1)
∑
i 6=i∗

1

∆i
+ 8
√
B + 2.

5.1. Varying Switching Cost

Now we consider a setting, where the switching cost may
change after each switch. The learner is given the n-th
switching cost λn right after the n − 1-th switch is taken,
and we allow the length of the block |Bn| to depend on
it. In this setting, the cumulative expected switching cost
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becomes

S
(
T, (λn)n≥1

)
=

N∑
n=1

λnP(In 6= In−1),

where, as before, N is the smallest number of blocks to
cover T rounds. We construct blocks, such that the terms
RT and S

(
T, (λn)n≥1

)
remain balanced.

Theorem 4. Let (λn)n≥1 be a sequence of non-negative
switching costs. The pseudo-regret with switching costs
of Tsallis-Switch executed with block lengths |Bn| =

max

{⌈√
λn

√∑n
s=1 λs+

√
K√
s√

K

⌉
, 1

}
and ηn = 2

√
2K

3an
, where

an =
(∑n

s=1 λs +
√
K/s

)
, satisfies:

R(T, λ) ≤
N∑
n=1

7λn + 12
√
KN + 2, (5)

where N is the smallest integer such that
∑N
n=1 |Bn| ≥ T .

Furthermore, in the stochastically constrained adversarial
regime with a unique best arm i∗, the pseudo regret addi-
tionally satisfies

R
(
T, (λn)n≥1

)
≤

N∑
n=1

∑
i 6=i∗

(
11λn + λn+1 + 10

√
2√
n

)2

4∆i|Bn|

+

N0∑
n=1

(
2
√

2λn√
K

)
+ 4
√

2N0 + λ1 + 2,

where N0 is the smallest n ≤ N such that for all n ≥ N0,
ηn|Bn| ≤ 1

4 . If such an integer does not exist, then N0 =
N .

A proof is provided in Appendix D. Note that for λn = λ,
the bound (5) for the adversarial setting is of the same order
as the corresponding bound in Theorem 1.

If λn is not monotone, then controlling the first term in the
regret bound for the stochastically constrained adversarial
regime is challenging, because the block length |Bn| in the
denominator does not depend on λn+1 in the numerator.
Below, we provide a specialization of the regret bound as-
suming that the switching costs increase as λn = nα for
some α > 0.
Corollary 5. Assume that for n ≥ 1, λn = nα for some
α > 0. Then the regret bound for the stochastically con-
strained adversarial regime with a unique best arm i∗ in
Theorem 4 satisfies

R
(
T, (λn)n≥1

)
≤ O

∑
i 6=i∗

K
2α+2
2α+3T

2α+1
2α+3 +K

2α
2α+3T

4α
2α+3

∆i

 .

A proof is provided in Appendix D. At the limit α→ 0, the
bound scales as O

(
K2/3T 1/3

∑
i6=i∗

1
∆i

)
, which matches

the pseudo-regret bound in the stochastically constrained
adversarial regime in Theorem 1 with λ = 1. Note also that
the bound remains sublinear in T , as long as α < 3

2 . In
other words, with a switching cost as high as λn = n3/2−ε,
for any ε > 0, Tsallis-Switch still has sublinear regret.

6. Proofs
We start by introducing some preliminary definitions and re-
sults. Recall that the pseudo-regret can be decomposed
into a sum of stability and penalty terms (Lattimore &
Svepesvári, 2020; Zimmert & Seldin, 2021). Let Φn be
defined as:

Φn(C) = max
p∈∆K−1

{
〈p, C〉+

∑
i

4
√
pi − 2pi

ηn

}
.

Note that the distribution pn used by Tsallis-Switch to draw
action In for block Bn satisfies pn = ∇Φn(−C̃n−1). We
can write:

E

[
N∑
n=1

cn,In

]
−min

j
E

[
N∑
n=1

cn,j

]

= E

[
N∑
n=1

cn,In + Φn(−C̃n)− Φn(−C̃n−1)

]
︸ ︷︷ ︸

stability

+ E

[
N∑
n=1

Φn(−C̃n−1)− Φn(−C̃n)− cn,i∗N

]
︸ ︷︷ ︸

penalty

,

(6)

where i∗N is any arm with smallest cumulative loss over the
N blocks (i.e., a best arm in hindsight).

We start by introducing bounds on the stability and the
penalty parts of the regret. The results generalize the cor-
responding results of Zimmert & Seldin (2021) to handle
losses that take values in varying ranges and may be larger
than 1. The proofs are provided in Appendix B. Note the
multiplicative factor b2n in the stability term.

Lemma 6. For any sequence of positive learning rates
(ηn)n≥1 and any sequence of bounds (bn)n≥1 on the losses
at round n, the stability term of the regret bound of Tsallis-
Switch satisfies:

E

[
N∑
n=1

cn,In + Φn(−C̃n)− Φn(−C̃n−1)

]

≤
N∑
n=1

ηn
2
b2n

K∑
i=1

√
E [pn,i].
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Furthermore, if ηnbn ≤ 1
4 , then for any fixed j:

E
[
cn,In + Φn(−C̃n)− Φn(−C̃n−1)

]
≤ ηn

2
b2n
∑
i 6=j

(√
E [pn,i] + 2.5E [pn,i]

)
.

In particular, if there exists N0 such that for all n ≥ N0,
ηnbn ≤ 1

4 , then:

E

[
N∑
n=1

cn,In + Φn(−C̃n)− Φn(−C̃n−1)

]

≤
N∑
n=1

ηn
2
b2n
∑
i 6=j

(√
E [pn,i] + 2.5E [pn,i]

)
+

N0∑
n=1

ηn
2
b2n.

The penalty term is not affected by the change of the range
of the losses.

Lemma 7. For any non-increasing positive learning rate
sequence (ηn)n≥1, the penalty term of the regret bound of
Tsallis-Switch satisfies:

E

[
N∑
n=1

Φn(−C̃n−1)− Φn(−C̃n)− cn,i∗N

]
≤ 4
√
K

ηN
+ 1.

Furthermore, if we define η0, such that η−1
0 = 0, then

E

[
N∑
n=1

Φn(−C̃n−1)− Φn(−C̃n)− cn,i∗N

]

≤ 4

N∑
n=1

(η−1
n − η−1

n−1)
∑
i 6=i∗N

(√
E [pn,i]−

1

2
E [pn,i]

)
+ 1.

We also present a bound for the cumulative switching cost,
which is the key to obtain refined guarantees in the stochas-
tically constrained adversarial regime.

Lemma 8. Consider a sequence of switching costs (λn)n≥1.
Then for any fixed j, the cumulative switching cost satisfies

S
(
T, (λn)n≥1

)
≤ λ1 +

N∑
n=1

(λn + λn+1)
∑
i 6=j

P(In = i).

Proof of Lemma 8. By convention, there is always a switch
at round 1. For subsequent rounds, when there is a switch
at round n at least one of In−1 or In is not equal to j. Thus,
we have:

P(In−1 6= In) ≤
∑
i 6=j

P(In−1 = i) + P(In = i),

and the cumulative switching cost satisfies

S
(
T, (λn)n≥1

)
= λ1 +

N∑
n=2

λnP(In−1 6= In)

≤ λ1 +

N∑
n=2

λn

∑
i6=j

P(In−1 = i) + P(In = i)


≤ λ1 +

N∑
n=1

∑
i 6=j

(λn + λn+1)P(In = i),

which concludes the proof.

Armed with these results, we can move on to the proof of
Theorem 1.

Proof of Theorem 1. In order to apply our results to blocks,
we first calculate an upper bound on the number of
blocks N . The length of the n-th block is defined as
|Bn| = max

{⌈
3λ
√
n

2
√
K

⌉
, 1
}

. The sequence (Bn)n≥1 sat-

isfies |Bn| ≥ b(n) for b(n) = 3λ
√
n

2
√
K

and is non-decreasing.

Let N∗ = K1/3(T/λ)2/3 and observe that:

bN∗c+1∑
n=1

|Bn| ≥
bN∗c+1∑
n=1

3λ
√
n

2
√
K
≥
∫ bN∗c+1

0

3λ
√
n

2
√
K

≥
∫ N∗

0

3λ
√
n

2
√
K

=
λ√
K

(N∗)3/2 ≥ T.

Thus, we can upper bound N by K1/3(T/λ)2/3 + 1.

Proof of the adversarial bound. We start by focusing on
the bound in the adversarial regime. To do so, we need to
control the stability and penalty terms in (6), and also the
number of switches. As we already said, the number of
switches is bounded by the number of blocks, ST ≤ N ≤
K1/3(T/λ)2/3 + 1, and thus the cumulative switching cost
satisfies λST ≤ λN ≤ K1/3T 2/3λ1/3 + λ.

Next, we bound the quantity ηn|Bn|2 for all n ≤ N :

ηn
2
|Bn|2 ≤

√
2√
n

(
3λ
√
n

2
√
K

+ 1

)
≤ 3λ√

2K
+

√
2√
n
. (7)

Note that even though the last block BN may be truncated,
we can upper bound its length by the non-truncated length
of that block.

Then, we bound the inverse of the learning rate at round N ,

1

ηN
≤
√
N

2
√

2

(
3λ
√
N

2
√
K

+ 1

)
≤ 3
√

2

8

λN√
K

+

√
2

4

√
N.

In order to bound the pseudo-regret over the N blocks, we
apply inequality (3) from Theorem 2. We then add the
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cumulative switching cost and use the upper bound on N
derived earlier,

R(T, λ) ≤ 3
√

2λN + 3
√

2KN + λN + 1

= (3
√

2 + 1)λN + 3
√

2KN + 1

≤ 5.25λ1/3K1/3T 2/3 + 3
√

2
K2/3T 1/3

λ1/3

+ 3
√

2K + 5.25λ+ 6.25.

For small λ the term K2/3(T/λ)1/3 dominates the expres-

sion. However, when λ ≤ 2
3

√
K
T , then for all n ≤ T we

have 3λ
√
n

2
√
K
≤
√

n
T ≤ 1, which means that |Bn| = 1. In

this case the algorithm is not using blocks and we have
λST ≤ λT ≤ 2

3

√
KT . As we also have an ≤ 1, we get

√
2√
n
≤ ηn ≤ 2

√
2√
n

. In this case we use Lemmas 6 and 7 to
bound the stability and the penalty terms and obtain that
stability and penalty are both bounded by 2

√
2KN . Thus,

overall, for λ ≤ 2
3

√
K
T we have R(T, λ) ≤ 6.4

√
KT , and

for λ ≥ 2
3

√
K
T we have K2/3(T/λ)1/3 ≤ 1.15

√
KT .

Piecing together all parts of the bound finishes the proof.

Proof of the stochastically constrained adversarial
bound. We now derive refined guarantees in the stochasti-
cally constrained adversarial regime with a unique best arm
i∗. We start by deriving bounds for the stability and penalty
terms in (6).

Let N0 be a constant, such that for n ≥ N0 we have
ηn|Bn| ≤ 1

4 . We note that ηn|Bn| ≤ 2
√

2√
n

, so picking
N0 = 128 works. For the stability term we use the second
part of Lemma 6 with j = i∗. Using (7) to bound ηn

2 |Bn|
2

we obtain that the stability term is upper bounded by

N∑
n=1

(
3
√

2λ

2
√
K

+

√
2√
n

)∑
i6=i∗

(√
E [pn,i] + 2.5E [pn,i]

)

+

N0∑
n=1

(
3
√

2

2

λ√
K

+

√
2√
n

)
.

For the penalty term, we first bound the difference between
the inverse of two consecutive learning rates.

η−1
n − η−1

n−1

=

(
3λ
√
n

2
√
K

+ 1

) √
n

2
√

2
−
(

3λ
√
n− 1

2
√
K

+ 1

) √
n− 1

2
√

2

=
3
√

2λ

8
√
K

+

√
n−
√
n− 1

2
√

2

≤ 3
√

2λ

8
√
K

+

√
2

4
√
n
.

Now we use the second part of Lemma 7 to bound the
penalty term as follows

N∑
n=1

(
3
√

2λ

2
√
K

+

√
2√
n

)∑
i6=i∗

(√
E [pn,i]−

1

2
E [pn,i]

)
+ 1.

Summing the two bounds, and using that for all n, i,
E [pn,i] ≤

√
E [pn,i], we have:

RT ≤
N∑
n=1

(6
√

2λ√
K

+
4
√

2√
n

)∑
i 6=i∗

√
E [pn,i]


+

3
√

2λ

2
√
K
N0 + 2

√
2N0 + 1.

Now we use the self-bounding technique (Zimmert & Seldin,
2021), which states that if L and U are such that L ≤ R ≤
U , then R ≤ 2U − L. For the lower bound L, we use the
following identity for the regret

RT =

N∑
n=1

|Bn|
∑
i6=i∗

∆iE [pn,i] ,

where BN is truncated, so that |B1| + · · · + |BN | = T .
Using the previous expression for the upper bound U , we
get:

RT ≤
N∑
n=1

(
12
√

2λ√
K

+
8
√

2√
n

)∑
i 6=i∗

√
E [pn,i]

−
N∑
n=1

|Bn|
∑
i 6=i∗

∆iE [pn,i] +
544λ√
K

+ 66.

We bound the cumulative switching cost using Lemma 8:

λST ≤ λ+
N∑
n=1

∑
i 6=i∗

2λE [pn,i] .

We add those two bounds together to obtain a bound on the
regret with switching costs. Note (again) that E [pn,i] ≤√

E [pn,i] for all n and i, and that
√

2√
K
≤ 1. Thus, we can

upper bound the pseudo-regret with switching costs as:

R(T, λ)

≤
N∑
n=1

∑
i 6=i∗

((
14λ+

8
√

2√
n

)√
E [pn,i]−∆i|Bn|E [pn,i]

)

+
544λ√
K

+ λ+ 66.

Now we note that each term in the inner sum is an expression
of the form a

√
x− bx, which for x ∈ [0,∞] is maximized

at x = a2

4b . Put attention that the cumulative switching cost
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is part of the optimization problem. So, for any i and any
n < N , we have:(

14λ+
8
√

2√
n

)√
E [pn,i]−∆i|Bn|E [pn,i]

≤

(
14λ+ 8

√
2√
n

)2

4∆i|Bn|

≤ (14λ)2

4∆i

(
3λ
√
n

2
√
K

) + 2
14λ

(
8
√

2√
n

)
4∆i

+

(
8
√

2√
n

)2

4∆i
(8)

≤ 33λ
√
K

∆i
√
n

+
80λ

∆i
√
n

+
32

∆in
, (9)

where in the first term of (8) we have lower bounded |Bn|
by bn and in the last two terms by 1. As the last block may
be truncated, for n = N we bound |BN | in the first term in
(9) by 1, leading to(

14λ+
8
√

2√
N

)√
E [pN,i]−∆i|BN |E [pN,i]

≤ 49λ2

∆i
+

80λ

∆i
√
n

+
32

∆in
,

All that remains is to sum over n. For the first term in (9)
we have:

49λ2

∆i
+

N−1∑
n=1

33λ
√
K

∆i
√
n
≤ 66

λ
√
K(N − 1)

∆i
+

49λ2

∆i

≤ 66
λ2/3T 1/3K2/3

∆i
+

49λ2

∆i
.

Similarly, the second term in (9) gives:

N∑
n=1

80λ

∆i
√
n
≤ 160

λ
√
N

∆i
≤ 160

λ2/3T 1/3K1/6 + λ

∆i
.

For the last term in (9), we use the fact that N ≤ T and we
have:

N∑
n=1

32

∆in
≤ 32 lnT

∆i
+

32

∆i
.

Putting everything together finishes the proof.

7. Experiments
We compare the performance of Tsallis-Switch to different
baselines, both in the stochastic and in the stochastically
constrained adversarial regime. We compare Tsallis-Switch
with block lengths chosen as in Theorem 1 against Tsallis-
INF without blocks, and against the BaSE algorithm of Gao
et al. (2019), which achieves a regret of O

(∑
i6=i∗

log T
∆i

)

with O (log T ) switches in the stochastic regime. We use
T to tune the parameters of BaSE, and we consider both
arithmetic and geometric blocks —see (Gao et al., 2019) for
details.

We also include in our baselines the EXP3 algorithm with a
time-varying learning rate, and the block version of EXP3,
where the blocks have length λ2/3 T 1/3

K1/3 . Both block length
and learning rate are chosen according to the analysis of
EXP3 in the adversarial regime.

In the experiments, we fix the number of arms K = 8, and
set the expected loss of a suboptimal arm to 0.5. We generate
binary losses using two sets of parameters: an “easy” setting,
where the gaps ∆ = 0.2 are large and the switching costs
λ = 0.025 are small. A “hard” setting, where the gaps
∆ = 0.05 are small and the switching costs λ = 1 are large.
For each experiment, we plot the pseudo-regret, the number
of switches, and the pseudo-regret with switching cost. This
allows us to observe the trade-off between the pseudo-regret
and the number of switches.

In the first experiment (Figure 2) we use stochastic i.i.d.
data with the easy setting (∆ = 0.2 and λ = 0.025). As
the gaps are large, even the methods that do not use blocks
are not making many switches, and the best performance
is achieved by Tsallis-INF without blocks. In Figure 3 we
use the hard setting (∆ = 0.05 and λ = 1). In this case, we
see a trade-off between achieving a small pseudo-regret and
limiting the cumulative switching cost. The small value of
∆ forces a larger number of switches, and because the cost
of switching is now large, the cumulative switching cost
dominates the pseudo-regret with switching cost.

In Figure 4, we test a stochastic setting with small gaps and
zero switching cost. In this case, we observe that Tsallis-Inf
and Tsallis-Switch outperform both EXP3 and the BaSE
algorithms. Note that here Tsallis-Switch and Tsallis-Inf
have very similar performances, though not identical due to
a slight difference in the tuning of learning rates.

We present a wider range of experiments in Appendix E.
We show that our algorithm outperforms the BaSE algo-
rithm in the stochastically constrained adversarial regime.
Being an elimination-based algorithm, BaSE also fails in
the adversarial regime.

8. Discussion
We introduced Tsallis-Switch, the first algorithm for multi-
armed bandits with switching costs that provides adversar-
ial pseudo-regret guarantees simultaneously with improved
pseudo-regret guarantees in the stochastic regime, as well
as the more general stochastically constrained adversarial
regime. The adversarial regret bound matches the minimax
lower bound within constants, and guarantees T 2/3 scaling
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Figure 1. Legend for all plots.

Figure 2. Stochastic losses, ∆ = 0.2 and λ = 0.025 (easy setting).

Figure 3. Stochastic losses, ∆ = 0.05 and λ = 1 (hard setting).

of the regret in time. The stochastic and stochastically con-
strained adversarial bounds reduce the dependence of the
regret on time down to T 1/3. Our experiments demonstrate
that Tsallis-Switch is competitive with the relevant bench-
marks over a range of settings: in the stochastic setting, it is

Figure 4. Stochastic losses and no switching cost, λ = 0 and
∆ = 0.05. As the switching costs are 0, the pseudo-regret and the
pseudo-regret with switching costs are equal.

competitive with state-of-the-art algorithms for stochastic
bandits with switching costs, and outperforms state-of-the-
art adversarial algorithms. In the adversarial setting, it is
competitive with state-of-the-art adversarial algorithms and
significantly outperforms the stochastic ones.

Our work opens multiple directions for future research. For
example, it is known that in the stochastic setting with
switching costs it is possible to achieve logarithmic regret
scaling, but it is unknown whether it is achievable simul-
taneously with the adversarial regret guarantee. It is also
unknown whether logarithmic regret scaling is achievable
for the more general stochastically constrained adversarial
regime with switching costs (even with no simultaneous
requirement of an adversarial regret guarantee). Elimina-
tion of the assumption on uniqueness of the best arm in
the stochastically constrained adversarial regime is another
challenging direction to work on. Unfortunately, for now
it is unknown how to eliminate this assumption even in
the analysis of the Tsallis-INF algorithm for multiarmed
bandits without switching costs. But while in the setting
without switching costs the assumption has been empirically
shown to be an artifact of the analysis having no negative
impact on the regret (Zimmert & Seldin, 2021), in the set-
ting with switching costs treating multiple best arms is more
challenging, because switching between best arms is costly.
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