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FIG. 1. Tracking the three largest eigenvalues of the Hessian. As in figure 4 of the main text, we

use a neural network whose hidden layer has 100 units, T = 5000 and A = 70. Upper panel shows

F(t) − F(t − 1) to display the instabilities more clearly. Bottom panel shows the three largest

eigenvalues of the Hessian of the loss function computed using the Lanczos algorithm as described

in [1] (we have used an implementation in Google-JAX [2]). Vertical green and red dashed lines

mark the times at which Hessian λmax(t)−λmax(t− 1) ∼ 0.1 corresponding to the start and finish

of the instabilities. Averaging Hessian λmax at these times we get the horizontal dashed line in the

bottom panel, the threshold above which instabilities occur. We have included a new dashed line

approximately following the second largest eigenvalue (orange line). Subsequent bifurcations seem

to occur when smaller eigenvalues cross the same threshold.

I. SECOND AND THIRD LARGEST EIGENVALUES OF THE HESSIAN TRIG-

GER SUBSEQUENT BIFURCATIONS.

We replot here two panels of Fig. 4 of the main text, see Fig. 1. It shows the behavior

of the system as it descends in the dynamical loss function landscape. We use the spiral

dataset for a case with a rather high period of T = 5000 minimization steps and amplitude

of A = 70, chosen for ease of visualization. In Fig. 1 we include the three largest eigenvalues

of the Hessian instead of only one. Indeed, second and third bifurcations seem to correspond

to the second and third largest eigenvalues crossing the same threshold. Since all eigenvalues

are also affected by the bifurcations, we have included new dashed lines to guide the eye.
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FIG. 2. Bifurcations correspond to eigenvalues of the Hessian crossing a threshold when using

Myrtle5 to classify a subset of CIFAR10. For simplicity we use a subset of CIFAR10 with 3000

samples of the first three classes. Bifurcations are clearly present in the Accuracy and they occur

when the largest eigenvalue of the Hessian crosses a threshold marked with a dashed line.

II. HESSIAN EIGENVALUES ALSO TRIGGER BIFURCATIONS USING MYR-

TLE5 AND CIFAR10

In the main text we have studied in detail the dynamics of learning with dynamical

loss functions using the spiral dataset because the size of the model and the dataset made

it computationally much cheaper, however, bifurcations are a general effect that is also

present when using other models and datasets. To show this, we include here an example

using Myrtle5 to classify CIFAR10 with a dynamical loss function as the one described

in the main text. To make the training dataset more tractable we use a subset of 3000

samples of the first 3 classes of CIFAR10. Fig. 2 shows that the dynamics follow the same

phenomenology described in detail with the spiral dataset in the main text. The accuracy

presents bifurcations analogous to Fig. 4 in the main text, and they occur when the largest

eigenvalues of the Hessian cross a threshold.

III. STOPPING THE OSCILLATIONS AT THE END OF TRAINING

Fig. 1 of the main text shows two phase diagrams for the dynamical loss function applied

to Myrtle5 and CIFAR10. This neural network was adapted from [3]. We used 64 channels,

Nesterov optimizer with momentum = 0.9, minibatch size 512, a linear learning rate schedule

starting at 0, reaching 0.02 in the epoch 300 and decreasing to 0.002 in the final epoch (700).
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FIG. 3. Validation accuracy during the training of Myrtle5 on CIFAR10, as shown in the phase

diagrams of Fig. 1 of the main text. The lines that rise very fast followed by a moderate over-fitting

correspond to learning without oscillations. The other group of lines correspond to learning in the

region A ∼ 50 and T ∼ 100. We stopped the oscillations after epoch 600. We have included a black

dotted line to guide the eye, the final accuracy of the simulations with the oscillations is higher

than any point belonging to the simulations without oscillations.

Fig. 1 of the main text showed that using the standard cross entropy loss function without

the oscillations (Γi = 1, A = 1 line in both panels) the system was able to fit all the training

data (training accuracy ∼ 1) and achieved a ∼ 0.73 validation accuracy. However, the

validation accuracy improved up to 6% thanks to the oscillations for A ∼ 50 and T ∼ 100.

For all A and T the oscillations stopped at epoch 600 (we changed A = 1 at that point

for all the simulations). Even when the learning rate is decreasing in the second part of

each simulation, the oscillations did not reduce appreciably in size at the end of training.

In the last 100 epochs of training, the learning rate is already close to 0.002, but making

A = 1 (removing the oscillations) helped the system to stabilize and increase the validation

accuracy. We have included here Fig. 4 where we plot two groups of simulations. One group

corresponds to learning without oscillations and the other one corresponds to the point in

the (T,A) region where validation accuracy improved the most. Learning with oscillations

is slower in this case but it reaches a higher validation accuracy. We have included a black
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FIG. 4. Test accuracy of a Wide Residual Network. Left: The accuracy as a function of oscillation

amplitude over a one-dimensional slice with T = 200 averaged over 50 seeds. The shaded region

shows one standard deviation of the average test accuracy after training. Right: A two dimensional

phase plot showing test accuracy as a function of both period and amplitude.

dotted line to guide the eye. We leave a systematic study for future work, but at least in

this case, stopping the oscillations in the last part of learning had a positive effect, helping

the model to achieve a higher validation accuracy.

IV. WIDE RESIDUAL NETWORKS

In addition to the Myrtle5 architecture, we also ran a number of experiments on Wide

Residual Networks [4]. We used a standard 28-10 residual network with batch normalization

and ReLU activation functions. We trained for 200 epochs using a batch size of 1024 running

on a 2x2 TPUv2 with a batch size of 128 per chip. We used cosine learning rate decay

with an initial learning rate of 0.1 along with the momentum optimizer. Finally we used

augmented the data using random flips and crops. This model gets slightly lower accuracy

than the version in the literature (95.5% vs 95.8%) due to the larger batch size employed

here. For this architecture we do not observe a statistically significant improvement to the

test performance by using an oscillatory loss.
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