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Appendix: “Stochastic Sign Descent Methods: New
Algorithms and Better Theory”
A. Additional Experiments
In this section we present several more experiments on the Rosenbrock function for further insights.

Figure 5 shows the robustness of SPB assumption in the convergence rate (10) with constant step size. We exploited four
levels of noise in each column to demonstrate the correlation between success probabilities and convergence rate. In the first
experiment (first column) SPB assumption is violated strongly and the corresponding rate shows divergence. In the second
column, probabilities still violating SPB assumption are close to the threshold and the rate shows oscillations. Next columns
express the improvement in rates when success probabilities are pushed to be close to 1.

Figure 6 experiments with the same setup but variable learning rate. In Figure 7, we investigated the size of the neighborhood
with respect to step size.

Figure 5. Performance of signSGD with constant step size (γ = 0.25) under four different noise levels (mini-batch size 1, 2, 5, 8) using
Rosenbrock function. Each column represent a separate experiment with function values, evolution of minimum success probabilities and
the histogram of success probabilities throughout the iteration process. Dashed blue line in the first row is the minimum value. Dashed
red lines in second and third rows are thresholds 1/2 of success probabilities. The shaded area in first and second rows shows standard
deviation obtained from ten repetitions.
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Figure 6. Performance of signSGD with variable step size (γ0 = 0.25) under four different noise levels (mini-batch size 1, 2, 5, 7) using
Rosenbrock function. As in the experiments of Figure 5 with constant step size, these plots show the relationship between success
probabilities and the convergence rate (9). In low success probability regime (first and second columns) we observe oscillations, while in
high success probability regime (third and forth columns) oscillations are mitigated substantially.
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Figure 7. In this part of experiments we investigated convergence rate (10) to a neighborhood of the solution. We fixed gradient noise
level by setting mini-batch size 2 and altered the constant step size. For the first column we set bigger step size γ = 0.25 to detect the
divergence (as we slightly violated SPB assumption). Then for the second and third columns we set γ = 0.1 and γ = 0.05 to expose
the convergence to a neighborhood of the minimizer. For the forth column we set even smaller step size γ = 0.01 to observe a slower
convergence.

Figure 8. Unit balls in l1,2 norm (7) with different noise levels.
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B. More details on ρ-norm and l1,2 norm
In this section we give more details on the concept of a norm-like function, which we call ρ-norm. First, we recall the
definition from the main part of the paper.

Definition 4 (ρ-norm). Let ρ := {ρi(x)}di=1 be the collection of probability functions from the SPB assumption. We define
the ρ-norm of gradient g(x) via

‖g(x)‖ρ :=
∑d
i=1(2ρi(x)− 1)|gi(x)|.

Note that ρ-norm is not a norm as it may not satisfy the triangle inequality. However, under SPB assumption, it is positive
definite as it is a weighted l1 norm with positive (and variable) weights 2ρi(x)− 1 > 0. That is, ‖g‖ρ ≥ 0, and ‖g‖ρ = 0 if
and only if g = 0. Under the assumptions of Lemma 1, ρ-norm can be lower bounded by a mixture of the l1 and squared l2

norms:

‖g‖ρ =
d∑
i=1

(2ρi − 1)|gi| ≥
d∑
i=1

g2i
|gi|+

√
3σi

:= ‖g‖l1,2 .

Note that l1,2-norm is again not a norm. However, it is positive definite, continuous and order preserving, i.e., for any gk, g,
g̃ ∈ Rd we have:

1. ‖g‖l1,2 ≥ 0 and ‖g‖l1,2 = 0 if and only if g = 0,

2. gk → g (in l2 sense) implies ‖gk‖l1,2 → ‖g‖l1,2 ,

3. 0 ≤ gi ≤ g̃i for any 1 ≤ i ≤ d implies ‖g‖l1,2 ≤ ‖g̃‖l1,2 .

From these three properties it follows that ‖gk‖l1,2 → 0 implies gk → 0. These properties are important as we will measure
convergence rate in terms of the l1,2 norm in the case of unimodal and symmetric noise assumption.

C. Proofs
C.1. Sufficient conditions for SPB: Proof of Lemma 1

Here we state the well-known Gauss’s inequality on unimodal distributions2.

Theorem 5 (Gauss’s inequality). Let X be a unimodal random variable with mode m, and let σ2
m be the expected value of

(X −m)2. Then for any positive value of r,

Prob(|X −m| > r) ≤

{
4
9

(
σm

r

)2
, if r ≥ 2√

3
σm

1− 1√
3
r
σm
, otherwise

Applying this inequality on unimodal and symmetric distributions, direct algebraic manipulations give the following bound:

Prob(|X − µ| ≤ r) ≥

{
1− 4

9

(
σ
r

)2
, if σr ≤

√
3

2
1√
3
r
σ , otherwise

≥ r/σ

r/σ +
√

3
,

where m = µ and σ2
m = σ2 are the mean and variance of unimodal, symmetric random variable X , and r ≥ 0. Now,

using the assumption that each ĝi(x) has unimodal and symmetric distribution, we apply this bound for X = ĝi(x), µ =

2see https://en.wikipedia.org/wiki/Gauss%27s_inequality

https://en.wikipedia.org/wiki/Gauss%27s_inequality
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gi(x), σ2 = σ2
i (x) and get a bound for success probabilities

Prob(sign ĝi = sign gi) =

{
Prob(ĝi ≥ 0), if gi > 0

Prob(ĝi ≤ 0), if gi < 0

=

{
1
2 + Prob(0 ≤ ĝi ≤ gi), if gi > 0
1
2 + Prob(gi ≤ ĝi ≤ 0), if gi < 0

=

{
1
2 + 1

2Prob(0 ≤ ĝi ≤ 2gi), if gi > 0
1
2 + 1

2Prob(2gi ≤ ĝi ≤ 0), if gi < 0

=
1

2
+

1

2
Prob(|ĝi − gi| ≤ |gi|)

≥ 1

2
+

1

2

|gi|/σi
|gi|/σi +

√
3

=
1

2
+

1

2

|gi|
|gi|+

√
3σi

Improvement on Lemma 1 and l1,2 norm: The bound after Gauss inequality can be improved including a second order
term

Prob(|X − µ| ≤ r) ≥

{
1− 4

9

(
σ
r

)2
, if σr ≤

√
3

2
1√
3
r
σ , otherwise

≥ 1− 1

1 + r/
√

3σ + (r/
√

3σ)2
.

Indeed, letting z := r/
√

3σ ≥ 2/3, we get 1 − 4
9

1
3z2 ≥ 1 − 1

1+z+z2 as it reduces to 23z2 − 4z − 4 ≥ 0. Otherwise, if
0 ≤ z ≤ 2/3, then z ≥ 1− 1

1+z+z2 as it reduces to 1 ≥ 1− z3. The improvement is tighter as

r/σ

r/σ +
√

3
= 1− 1

1 + r/
√

3σ
≤ 1− 1

1 + r/
√

3σ + (r/
√

3σ)2
.

Hence, continuing the proof of Lemma 1, we get

Prob(sign ĝi = sign gi) ≥ 1− 1

2

1

1 + |gi|/
√

3σi + (|gi|/
√

3σi)2

and we could have defined l1,2-norm in a bit more complicated form as

‖g‖l1,2 :=

d∑
i=1

(
1− 1

1 + |gi|/
√

3σi + (|gi|/
√

3σi)2

)
|gi|.

C.2. Sufficient conditions for SPB: Proof of Lemma 2

Let ĝ(τ) be the gradient estimator with mini-batch size τ . It is known that the variance for ĝ(τ) is dropped by at least a factor
of τ , i.e.

E[(ĝ
(τ)
i − gi)2] ≤ σ2

i

τ
.

Hence, estimating the failure probabilities of sign ĝ(τ) when gi 6= 0, we have

Prob(sign ĝ
(τ)
i 6= sign gi) = Prob(|ĝ(τ)

i − gi| = |ĝ(τ)
i |+ |gi|)

≤ Prob(|ĝ(τ)
i − gi| ≥ |gi|)

= Prob((ĝ
(τ)
i − gi)2 ≥ g2

i )

≤ E[(ĝ
(τ)
i − gi)2]

g2
i

=
σ2
i

τg2
i

,
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which imples

ρi = Prob(sign ĝi = sign gi) ≥ 1− σ2
i

τg2
i

≥ 1− ci
τ
.

C.3. Sufficient conditions for SPB: Proof of Lemma 3

The proof of this lemma is the most technical one. We will split the derivation into three lemmas providing some intuition
on the way. The first two lemmas establish success probability bounds in terms of mini-batch size. Essentially, we present
two methods: one works well in the case of small randomness, while the other one in the case of non-small randomness. In
the third lemma, we combine those two bounds to get the condition on mini-batch size ensuring SPB assumption.

Lemma 5. Let X1, X2, . . . , Xτ be i.i.d. random variables with non-zero mean µ := EX1 6= 0, finite variance σ2 :=
E|X1 − µ|2 <∞. Then for any mini-batch size τ ≥ 1

Prob

(
sign

[
1

τ

τ∑
i=1

Xi

]
= signµ

)
≥ 1− σ2

τµ2
. (13)

Proof. Without loss of generality, we assume µ > 0. Then, after some adjustments, the proof follows from the Chebyshev’s
inequality:

Prob

(
sign

[
1

τ

τ∑
i=1

Xi

]
= signµ

)
= Prob

(
1

τ

τ∑
i=1

Xi > 0

)

≥ Prob

(∣∣∣∣∣1τ
τ∑
i=1

Xi − µ

∣∣∣∣∣ < µ

)

= 1− Prob

(∣∣∣∣∣1τ
τ∑
i=1

Xi − µ

∣∣∣∣∣ ≥ µ
)

≥ 1− 1

µ2
Var

[
1

τ

τ∑
i=1

Xi

]

= 1− σ2

τµ2
,

where in the last step we used independence of random variables X1, X2, . . . , Xτ .

Obviously, bound (13) is not optimal for big variance as it becomes a trivial inequality. In the case of non-small randomness
a better bound is achievable additionally assuming the finiteness of 3th central moment.

Lemma 6. Let X1, X2, . . . , Xτ be i.i.d. random variables with non-zero mean µ := EX1 6= 0, positive variance
σ2 := E|X1 − µ|2 > 0 and finite 3th central moment ν3 := E|X1 − µ|3 <∞. Then for any mini-batch size τ ≥ 1

Prob

(
sign

[
1

τ

τ∑
i=1

Xi

]
= signµ

)
≥ 1

2

(
1 + erf

(
|µ|
√
τ√

2σ

)
− ν3

σ3
√
τ

)
, (14)

where error function erf is defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt, x ∈ R.

Proof. Again, without loss of generality, we may assume that µ > 0. Informally, the proof goes as follows. As we have an
average of i.i.d. random variables, we approximate it (in the sense of distribution) by normal distribution using the Central
Limit Theorem (CLT). Then we compute success probabilities for normal distribution with the error function erf . Finally,
we take into account the approximation error in CLT, from which the third term with negative sign appears. More formally,
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we apply Berry–Esseen inequality3 on the rate of approximation in CLT (Shevtsova, 2011):∣∣∣∣∣Prob

(
1

σ
√
τ

τ∑
i=1

(Xi − µ) > t

)
− Prob (N > t)

∣∣∣∣∣ ≤ 1

2

ν3

σ3
√
τ
, t ∈ R,

where N ∼ N (0, 1) has the standard normal distribution. Setting t = −µ
√
τ/σ, we get∣∣∣∣∣Prob

(
1

τ

τ∑
i=1

Xi > 0

)
− Prob

(
N > −µ

√
τ

σ

)∣∣∣∣∣ ≤ 1

2

ν3

σ3
√
τ
. (15)

It remains to compute the second probability using the cumulative distribution function of normal distribuition and express
it in terms of the error function:

Prob

(
sign

[
1

τ

τ∑
i=1

Xi

]
= signµ

)
= Prob

(
1

τ

τ∑
i=1

Xi > 0

)
(15)

≥ Prob

(
N > −µ

√
τ

σ

)
− 1

2

ν3

σ3
√
τ

=
1√
2π

∫ ∞
−µ
√
τ/σ

e−t
2/2 dt− 1

2

ν3

σ3
√
τ

=
1

2

(
1 +

√
2

π

∫ µ
√
τ/σ

0

e−t
2/2 dt− ν3

σ3
√
τ

)

=
1

2

(
1 + erf

(
µ
√
τ√

2σ

)
− ν3

σ3
√
τ

)
.

Clearly, bound (14) is better than (13) when randomness is high. On the other hand, bound (14) is not optimal for small
randomness (σ ≈ 0). Indeed, one can show that in a small randomness regime, while both variance σ2 and third moment ν3

are small, the ration ν/σ might blow up to infinity producing trivial inequality. For instance, taking Xi ∼ Bernoulli(p) and
letting p→ 1 gives ν/σ = O

(
(1− p)−1/6

)
. This behaviour stems from the fact that we are using CLT: less randomness

implies slower rate of approximation in CLT.

As a result of these two bounds on success probabilities, we conclude a condition on mini-batch size for the SPB assumption
to hold.

Lemma 7. Let X1, X2, . . . , Xτ be i.i.d. random variables with non-zero mean µ 6= 0 and finite variance σ2 <∞. Then

Prob

(
sign

[
1

τ

τ∑
i=1

Xi

]
= signµ

)
>

1

2
, if τ > 2 min

(
σ2

µ2
,
ν3

|µ|σ2

)
, (16)

where ν3 is (possibly infinite) 3th central moment.

Proof. First, if σ = 0 then the lemma holds trivially. If ν =∞, then it follows immediately from Lemma 5. Assume both σ
and ν are positive and finite.

In case of τ > 2σ2/µ2 we apply Lemma 5 again. Consider the case τ ≤ 2σ2/µ2, which implies µ
√
τ√

2σ
≤ 1. It is easy to

check that erf(x) is concave on [0, 1] (in fact on [0,∞)), therefore erf(x) ≥ erf(1)x for any x ∈ [0, 1]. Setting x = µ
√
τ√

2σ
we get

erf

(
µ
√
τ√

2σ

)
≥ erf(1)√

2

µ
√
τ

σ
,

3see https://en.wikipedia.org/wiki/Berry-Esseen_theorem

https://en.wikipedia.org/wiki/Berry-Esseen_theorem
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which together with (14) gives

Prob

(
sign

[
1

τ

τ∑
i=1

Xi

]
= signµ

)
≥ 1

2

(
1 +

erf(1)√
2

µ
√
τ

σ
− ν3

σ3
√
τ

)
.

Hence, SPB assumption holds if

τ >

√
2

erf(1)

ν3

µσ2
.

It remains to show that erf(1) > 1/
√

2. Convexity of ex on x ∈ [−1, 0] implies ex ≥ 1 + (1 − 1/e)x for any x ∈ [−1, 0].
Therefore

erf(1) =
2√
π

∫ 1

0

e−t
2

dt

≥ 2√
π

∫ 1

0

(
1− (1− 1/e)t2

)
dt

=
2√
π

(
2

3
+

1

3e

)
>

2√
4

(
2

3
+

1

3 · 3

)
=

7

9
>

1√
2
.

Lemma (3) follows from Lemma (7) applying it to i.i.d. data ĝ1
i (x), ĝ2

i (x), . . . , ĝMi (x).

C.4. Sufficient conditions for SPB: Proof of Lemma 4

This observation is followed by the fact that for continuous random variables, the Gaussian distribution has the maximum
differential entropy for a given variance4. Formally, let pG(x) be the probability density function (PDF) of a Gaussian random
variable with variance σ2 and p(x) be the PDF of some random variable with the same variance. Then H(p) ≤ H(pG),
where

H(p) = −
∫
R
p(x) log p(x) dx

is the differential entropy of probability distribution p(x) or alternatively differential entropy of random variable with PDF
p(x). Differential entropy for normal distribution can be expressed analytically by H(pG) = 1

2 log(2πeσ2). Therefore

H(p) ≤ 1

2
log(2πeσ2)

for any distribution p(x) with variance σ2. Now, under the bounded variance assumption E
[
|ĝ − g|2

]
≤ C (where g is

the expected value of ĝ) we have the entropy of random variable ĝ bounded by 1
2 log(2πeC). However, under the SPB

assumption Prob (sign ĝ = sign g) > 1/2 the entropy is unbounded. In order to prove this, it is enough to notice that
under SPB assumption random variable ĝ could be any Gaussian random variable with mean g 6= 0. In other words, SPB
assumption holds for any Gaussian random variable with non-zero mean. Hence the entropy could be arbitrarily large as
there is no restriction on the variance.

C.5. Convergence Analysis for M = 1: Proof of Theorem 1

Basically, the analysis follows the standard steps used to analyze SGD for non-convex objectives, except the part (18)–(21)
where inner product E[〈gk, sign ĝk〉] needs to be estimated. This is exactly the place when stochastic gradient estimator
sign ĝk interacts with the true gradient gk. In case of standard SGD, we use estimator ĝk and the mentioned inner product
yields ‖gk‖2, which is then used to measure the progress of the method. In our case, we show that

E[〈gk, sign ĝk〉] = ‖gk‖ρ,

with the ρ-norm defined in Definition 1.
4see https://en.wikipedia.org/wiki/Differential_entropy or https://en.wikipedia.org/wiki/

Normal_distribution#Maximum_entropy

https://en.wikipedia.org/wiki/Differential_entropy
https://en.wikipedia.org/wiki/Normal_distribution#Maximum_entropy
https://en.wikipedia.org/wiki/Normal_distribution#Maximum_entropy
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Now we present the proof in more details. First, from L-smoothness assumption we have

f(xk+1) = f(xk − γk sign ĝk)

≤ f(xk)− 〈gk, γk sign ĝk〉+

d∑
i=1

Li
2

(γk sign ĝk,i)
2

= f(xk)− γk〈gk, sign ĝk〉+
dL̄

2
γ2
k,

where gk = g(xk), ĝk = ĝ(xk), ĝk,i is the i-th component of ĝk and L̄ is the average value of Li’s. Taking conditional
expectation given current iteration xk gives

E[f(xk+1)|xk] ≤ f(xk)− γkE[〈gk, sign ĝk〉] +
dL̄

2
γ2
k. (17)

Using the definition of success probabilities ρi we get

E[〈gk, sign ĝk〉] = 〈gk,E[sign ĝk]〉 (18)

=

d∑
i=1

gk,i · E[sign ĝk,i] =
∑

1≤i≤d
gk,i 6=0

gk,i · E[sign ĝk,i] (19)

=
∑

1≤i≤d
gk,i 6=0

gk,i (ρi(xk) sign gk,i + (1− ρi(xk))(− sign gk,i)) (20)

=
∑

1≤i≤d
gk,i 6=0

(2ρi(xk)− 1)|gk,i| =
d∑
i=1

(2ρi(xk)− 1)|gk,i| = ‖gk‖ρ. (21)

Plugging this into (17) and taking full expectation, we get

E‖gk‖ρ ≤
E[f(xk)]− E[f(xk+1)]

γk
+
dL̄

2
γk. (22)

Therefore
K−1∑
k=0

γkE‖gk‖ρ ≤ (f(x0)− f∗) +
dL̄

2

K−1∑
k=0

γ2
k. (23)

Now, in case of decreasing step sizes γk = γ0/
√
k + 1

min
0≤k<K

E‖gk‖ρ ≤
K−1∑
k=0

γ0√
k + 1

E‖gk‖ρ
/K−1∑

k=0

γ0√
k + 1

≤ 1√
K

[
f(x0)− f∗

γ0
+
dL̄

2
γ0

K−1∑
k=0

1

k + 1

]

≤ 1√
K

[
f(x0)− f∗

γ0
+ γ0dL̄+

γ0dL̄

2
logK

]
=

1√
K

[
f(x0)− f∗

γ0
+ γ0dL̄

]
+
γ0dL̄

2

logK√
K

.

where we have used the following standard inequalities

K∑
k=1

1√
k
≥
√
K,

K∑
k=1

1

k
≤ 2 + logK. (24)
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In the case of constant step size γk = γ

1

K

K−1∑
k=0

E‖gk‖ρ ≤
1

γK

[
(f(x0)− f∗) +

dL̄

2
γ2K

]
=
f(x0)− f∗

γK
+
dL̄

2
γ.

Thus, we complete the proof of Theorem 1. Next, we consider setups of Lemma 1 and Lemma 2 to simplify convergence
rates (9) and (10) of signSGD without the generic ρ-norm. Combining Lemma 1 and Theorem 1, we get
Corollary 1. Assume that for any point x ∈ Rd, we have access to an independent and unbiased estimator ĝ(x) of the true
gradient g(x) = ∇f(x). If for each coordinate ĝi has a unimodal and symmetric distribution with variance σ2

i = σ2
i (x),

1 ≤ i ≤ d, then single node signSGD (Algorithm 1) with Option 1 and with step sizes γk = γ0/
√
k + 1 converges as follows

min
0≤k<K

E

[
d∑
i=1

|gi(xk)|2

|gi(xk)|+
√

3σi(xk)

]
≤ f(x0)− f∗

γ0

√
K

+
3γ0dL̄

2

logK√
K

. (25)

If γk ≡ γ > 0, we get 1/K convergence to a neighbourhood:

1

K

K−1∑
k=0

E

[
d∑
i=1

|gi(xk)|2

|gi(xk)|+
√

3σi(xk)

]
≤ f(x0)− f∗

γK
+
γdL̄

2
. (26)

As we discussed in Section 3.3 of the main part, in this case gradient appears through a mixture of l1 and squared l2 norms
(7). Similar mixed norm convergence rates for signSGD was established by Bernstein et al. (2019) (see Theorem 1) and by
Chen et al. (2020) (see Theorem 5). Furthermore, combining Lemma 2 and Theorem 1, we get
Corollary 2. Assume that for any point x ∈ Rd, we have access to an independent and unbiased estimator ĝ(x) of the true
gradient g(x) = ∇f(x) and coordinate-wise variances σ2

i (x) ≤ ci g2
i (x) are bounded for some constants ci. If mini-batch

size τ > 2 max1≤i≤d ci then single node signSGD (Algorithm 1) with Option 1 and with step sizes γk = γ0/
√
k + 1

converges as follows

min
0≤k<K

E

[
d∑
i=1

wi|gi(xk)|

]
≤ f(x0)− f∗

γ0

√
K

+
3γ0dL̄

2

logK√
K

, (27)

where wi = 1− 2ci
τ are positive weights. If γk ≡ γ > 0, we get 1/K convergence to a neighbourhood:

1

K

K−1∑
k=0

E

[
d∑
i=1

wi|gi(xk)|

]
≤ f(x0)− f∗

γK
+
γdL̄

2
. (28)

Notice that in this case gradient appears through weighted l1 norm (8).

C.6. Convergence Analysis for M = 1: Proof of Theorem 2

Clearly, the iterations {xk}k≥0 of Algorithm 1 with Option 2 do not increase the function value in any iteration, i.e.
E[f(xk+1)|xk] ≤ f(xk). Continuing the proof of Theorem 1 from (22), we get

1

K

K−1∑
k=0

E‖gk‖ρ ≤
1

K

K−1∑
k=0

E[f(xk)]− E[f(xk+1)]

γk
+
dL̄

2
γk

=
1

K

K−1∑
k=0

E[f(xk)]− E[f(xk+1)]

γ0

√
k + 1 +

dL̄

2K

K−1∑
k=0

γ0√
k + 1

≤ 1√
K

K−1∑
k=0

E[f(xk)]− E[f(xk+1)]

γ0
+
γ0dL̄√
K

=
f(x0)− E[f(xK)]

γ0

√
K

+
γ0dL̄√
K

≤ 1√
K

[
f(x0)− f∗

γ0
+ γ0dL̄

]
,
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where we have used the following inequality
K∑
k=1

1√
k
≤ 2
√
K.

The proof for constant step size is the same as in Theorem 1.

C.7. Convergence Analysis in Parallel Setting: Proof of Theorem 3

First, denote by I(p; a, b) the regularized incomplete beta function, which is defined as follows

I(p; a, b) =
B(p; a, b)

B(a, b)
=

∫ p
0
ta−1(1− t)b−1 dt∫ 1

0
ta−1(1− t)b−1 dt

, a, b > 0, p ∈ [0, 1]. (29)

The proof of Theorem 3 goes with the same steps as in Theorem 1, except the derivation (18)–(21) is replaced by

E[〈gk, sign ĝ
(M)
k 〉] = 〈gk,E[sign ĝ

(M)
k ]〉

=

d∑
i=1

gk,i · E[sign ĝ
(M)
k,i ]

=
∑

1≤i≤d
gk,i 6=0

|gk,i| · E
[
sign

(
ĝ

(M)
k,i · gk,i

)]

=
∑

1≤i≤d
gk,i 6=0

|gk,i| (2I(ρi(xk); l, l)− 1) = ‖gk‖ρM ,

where we have used the following lemma.
Lemma 8. Assume that for some point x ∈ Rd and some coordinate i ∈ {1, 2, . . . , d}, master node receivesM independent
stochastic signs sign ĝmi (x), m = 1, . . . ,M of true gradient gi(x) 6= 0. Let ĝ(M)(x) be the sum of stochastic signs
aggregated from nodes:

ĝ(M) =

M∑
m=1

sign ĝm.

Then
E
[
sign

(
ĝ

(M)
i · gi

)]
= 2I(ρi; l, l)− 1, (30)

where l = [(M+1)/2] and ρi > 1/2 is the success probablity for coordinate i.

Proof. Denote by Smi the Bernoulli trial of node m corresponding to ith coordinate, where “success” is the sign match
between stochastic gradient and gradient:

Smi :=

{
1, if sign ĝmi = sign gi

0, otherwise
∼ Bernoulli(ρi). (31)

Since nodes have their own independent stochastic gradients and the objective function (or dataset) is shared, then master
node receives i.i.d. trials Smi , which sum up to a binomial random variable Si:

Si :=

M∑
m=1

Smi ∼ Binomial(M,ρi). (32)

First, let us consider the case when there are odd number of nodes, i.e. M = 2l − 1, l ≥ 1. In this case, taking into account
(31) and (32), we have

Prob
(

sign ĝ
(M)
i = 0

)
= 0,

ρ
(M)
i := Prob

(
sign ĝ

(M)
i = sign gi

)
= Prob(Si ≥ l),

1− ρ(M)
i = Prob

(
sign ĝ

(M)
i = − sign gi

)
.
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It is well known that cumulative distribution function of binomial random variable can be expressed with regularized
incomplete beta function:

Prob(Si ≥ l) = I(ρi; l,M − l + 1) = I(ρi; l, l). (33)

Therefore,

E
[
sign

(
ĝ

(M)
i · gi

)]
= ρ

(M)
i · 1 + (1− ρ(M)

i ) · (−1)

= 2ρ
(M)
i − 1

= 2Prob(Si ≥ l)− 1

= 2I(ρi; l, l)− 1.

In the case of even number of nodes, i.e. M = 2l, l ≥ 1, there is a probability to fail the vote Prob
(

sign ĝ
(M)
i = 0

)
> 0.

However using (33) and properties of beta function5 gives

E
[
sign

(
ĝ

(2l)
i · gi

)]
= Prob(Si ≥ l + 1) · 1 + Prob(Si ≤ l − 1) · (−1)

= I(ρi; l + 1, l) + I(ρi; l, l + 1)− 1

= 2I(ρi; l, l)− 1

= E
[
sign

(
ĝ

(2l−1)
i · gi

)]
.

This also shows that in expectation there is no difference between having 2l − 1 and 2l nodes.

C.8. Convergence Analysis in Parallel Setting: Speedup with respect to M

Here we present the proof of exponential noise reduction in parallel setting in terms of number of nodes. We first state the
well-known Hoeffding’s inequality:
Theorem 6 (Hoeffding’s inequality for general bounded random variables; see (Vershynin, 2018), Theorem 2.2.6). Let
X1, X2, . . . , XM be independent random variables. Assume that Xm ∈ [Am, Bm] for every m. Then, for any t > 0, we
have

Prob

(
M∑
m=1

(Xm − EXm) ≥ t

)
≤ exp

(
− 2t2∑M

m=1(Bm −Am)2

)
.

Define random variables Xm
i , m = 1, 2, . . . ,M showing the missmatch between stochastic gradient sign and full gradient

sign from node m and coordinate i:

Xm
i :=

{
−1, if sign ĝmi = sign gi

1, otherwise
(34)

Clearly EXm
i = 1− 2ρi and Hoeffding’s inequality gives

Prob

(
M∑
m=1

Xm
i −M(1− 2ρi) ≥ t

)
≤ exp

(
− t2

2M

)
, t > 0.

Choosing t = M(2ρi − 1) > 0 (because of SPB assumption) yields

Prob

(
M∑
m=1

Xm
i ≥ 0

)
≤ exp

(
−1

2
(2ρi − 1)2M

)
.

Using Lemma 30, we get

2I(ρi, l; l)− 1 = E
[
sign

(
ĝ

(M)
i · gi

)]
= 1− Prob

(
M∑
m=1

Xm
i ≥ 0

)
≥ 1− exp

(
−(2ρi − 1)2l

)
,

5see https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function

https://en.wikipedia.org/wiki/Beta_function#Incomplete_beta_function
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which provides the following estimate for ρM -norm:(
1− exp

(
−(2ρ(x)− 1)2l

))
‖g(x)‖1 ≤ ‖g(x)‖ρM ≤ ‖g(x)‖1,

where ρ(x) = min1≤i≤d ρi(x) > 1/2.

C.9. Distributed Training with Partitioned Data: Proof of Theorem 4

We follow the analysis of Cutkosky & Mehta (2020), who derived similar convergence rate for normalized SGD in single
node setting. The novelty in our proof technique is i) extending the analysis in distributed setting and ii) establishing a
connection between normalized SGD and sign-based methods via the new notion of stochastic sign.

Lemma 9 (see Lemma 2 in (Cutkosky & Mehta, 2020)). For any non-zero vectors a and b

−〈a, b〉
‖a‖

≤ −1

3
‖b‖+

8

3
‖a− b‖.

Proof. Denote c = a− b and consider two cases. If ‖c‖ ≤ 1
2‖b‖, then

−〈a, b〉
‖a‖

= −‖b‖
2 + 〈c, b〉
‖a‖

≤ −‖b‖
2 − ‖c‖‖b‖
‖b+ c‖

≤ − ‖b‖2

2‖b+ c‖
≤ −1

3
‖b‖ ≤ −1

3
‖b‖+

8

3
‖a− b‖.

Alternatively, if ‖c‖ > 1
2‖b‖, then

−〈a, b〉
‖a‖

≤ ‖b‖ ≤ −1

3
‖b‖+

4

3
‖b‖ ≤ −1

3
‖b‖+

8

3
‖c‖.

We start from the smoothness of functions fn

f(xk+1) =
1

M

M∑
n=1

fn

(
xk −

γ

M
sk

)
≤ 1

M

M∑
n=1

[
fn(xk)− γ

M
〈∇fn(xk), sk〉+

Lnγ
2

2M2
‖sk‖2

]

= f(xk)− γ

M
〈∇f(xk), sk〉+

L̃γ2

2

∥∥∥∥∥ 1

M

M∑
n=1

snk

∥∥∥∥∥
2

≤ f(xk)− γ

M
〈∇f(xk), sk〉+

L̃γ2

2

1

M

M∑
n=1

‖snk‖
2

= f(xk)− γ

M

M∑
n=1

〈∇f(xk), snk 〉+
dL̃γ2

2
.

Denote gnk = ∇fn(xk), gk = ∇f(xk). Taking expectation conditioned on previous iterate xk and current stochastic
gradient ĝnk , we get

E [f(xk+1)|xk, ĝnk ] ≤ f(xk)− γ

M

M∑
n=1

〈gk,mn
k 〉

‖mn
k‖

+
dL̃γ2

2

Lemma 9
≤ f(xk)− γ

3
‖gk‖+

8γ

3M

M∑
n=1

‖mn
k − gk‖+

dL̃γ2

2
.

(35)
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Next, we find recurrence relation for the error terms ε̂nk := mn
k − gk. Denote εnk := ĝnk − gk, and notice that

ε̂nk+1 = βmn
k + (1− β)ĝnk+1 − gk+1

= β(mn
k − gk+1) + (1− β)(ĝnk+1 − gk+1)

= β(mn
k − gk) + β(gk − gk+1) + (1− β)εnk+1

= βε̂nk + β(gk − gk+1) + (1− β)εnk+1.

Unrolling this recursion and noting that ε̂n0 = εn0 (due to initial moment mn
−1 = ĝn0 ), we get

ε̂nk+1 = βk+1εn0 + β

k∑
t=0

βt(gk−t − gk+1−t) + (1− β)

k∑
t=0

βtεnk+1−t

From Assumption 2, we have

E [〈εnk , εnk′〉]

{
≤ σ2

n if k = k′,

= 0 if k 6= k′.
(36)

Using Ln-smoothness of functions fn again, we have

‖gk − gk+1‖ ≤
1

M

M∑
n=1

‖gnk − gnk+1‖ ≤
1

M

M∑
n=1

Ln‖xk − xk+1‖ =
L̃γ

M
‖sk‖ ≤ L̃γ

√
d. (37)

Therefore

E‖ε̂nk+1‖ ≤ βk+1‖εn0‖+

k∑
t=0

βt+1‖gk−t − gk+1−t‖+ (1− β)E

∥∥∥∥∥
k∑
t=0

βtεnk+1−t

∥∥∥∥∥
(37)

≤ βk+1σn +
L̃γ
√
d

1− β
+ (1− β)

√√√√E

∥∥∥∥∥
k∑
t=0

βtεnk+1−t

∥∥∥∥∥
2

(36)

≤ βk+1σn +
L̃γ
√
d

1− β
+ (1− β)

√√√√ k∑
t=0

β2tσ2
n

≤ βk+1σn +
L̃γ
√
d

1− β
+ σn

√
1− β

Averaging this bound over the nodes yields

1

M

M∑
n=1

E‖ε̂nk‖ ≤ βkσ̃ +
L̃γ
√
d

1− β
+ σ̃

√
1− β.

Then averaging over the iterates gives

1

KM

K−1∑
k=0

M∑
n=1

E‖ε̂nk‖ ≤
σ̃

(1− β)K
+
L̃γ
√
d

1− β
+ σ̃

√
1− β.

Taking full expectation in (35), we have

1

K

K−1∑
k=0

E‖gk‖ ≤
3

γK

K−1∑
k=0

E [f(xk)− f(xk+1)] +
8

MK

M∑
n=1

K−1∑
k=0

E‖ε̂nk‖+
3

2
L̃dγ

≤ 3(f(x0)− f∗)
γK

+
8σ̃

(1− β)K
+

8L̃γ
√
d

1− β
+ 8σ̃

√
1− β +

3

2
L̃dγ.
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Now it remains to choose parameters γ and β properly. Setting β = 1− 1√
K

and γ = 1
K3/4

, we get

1

K

K−1∑
k=0

E‖gk‖ ≤
3δf
γK

+
8σ̃

(1− β)K
+

8L̃γ
√
d

1− β
+ 8σ̃

√
1− β + 3L̃dγ

≤ 16

K1/4

[
δf + σ̃ + L̃

√
d+

L̃d√
K

]
.

D. Recovering Theorem 1 in (Bernstein et al., 2019) from Theorem 1
To recover Theorem 1 in (Bernstein et al., 2019), first note that choosing a particular step size γ in (10) yields

1

K

K−1∑
k=0

E‖gk‖ρ ≤
√

2dL̄(f(x0)− f∗)
K

, with γ =

√
2(f(x0)− f∗)

dL̄K
. (38)

Then, due to Lemma 1, under unbiasedness and unimodal symmetric noise assumption, we can lower bound general ρ-norm
by mixed l1,2 norm. Finally we further lower bound our l1,2 norm to obtain the mixed norm used in Theorem 1 of (Bernstein
et al., 2019): let Hk = {1 ≤ i ≤ d : σi <

√
3/2|gk,i|}

5

√
dL̄(f(x0)− f∗)

K
≥ 5√

2

1

K

K−1∑
k=0

E‖gk‖ρ

≥ 5√
2

1

K

K−1∑
k=0

E‖gk‖l1,2 =
5√
2

1

K

K−1∑
k=0

[
d∑
i=1

g2
i

|gi|+
√

3σi

]

≥ 5√
2

1

K

K−1∑
k=0

E

2

5

∑
i∈Hk

|gk,i|+
√

3

5

∑
i/∈Hk

g2
k,i

σi


≥ 1

K

K−1∑
k=0

E

∑
i∈Hk

|gk,i|+
∑
i/∈Hk

g2
k,i

σi

 .


