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Abstract
We address the problem of convex optimization
with preference (dueling) feedback. Like the tra-
ditional optimization objective, the goal is to find
the optimal point with the least possible query
complexity, however, without the luxury of even
a zeroth order feedback. Instead, the learner can
only observe a single noisy bit which is win-loss
feedback for a pair of queried points based on
their function values. The problem is certainly of
great practical relevance as in many real-world
scenarios, such as recommender systems or learn-
ing from customer preferences, where the system
feedback is often restricted to just one binary-bit
preference information. We consider the problem
of online convex optimization (OCO) solely by
actively querying {0, 1} noisy-comparison feed-
back of decision point pairs, with the objective of
finding a near-optimal point (function minimizer)
with the least possible number of queries. For
the non-stationary OCO setup, where the under-
lying convex function may change over time, we
prove an impossibility result towards achieving
the above objective. We next focus only on the sta-
tionary OCO problem, and our main contribution
lies in designing a normalized gradient descent
based algorithm towards finding a ε-best optimal
point. Towards this, our algorithm is shown to
yield a convergence rate of Õ(dβ/εν2) (ν being
the noise parameter) when the underlying func-
tion is β-smooth. Further we show an improved
convergence rate of just Õ(dβ/αν2 log 1

ε ) when the
function is additionally also α-strongly convex.

1. Introduction
Online convex optimization is a very well studied field of
research where the goal is to optimize a convex function
through sequentially accessing the function information at
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actively queried points (Flaxman et al., 2005; Ghadimi &
Lan, 2013; Bubeck et al., 2017). Due to its great practical
relevance in diverse real world scenarios, over the years
the problem has been attempted for several problem setups,
e.g. optimization with gradient or hessian information (first
and second order optimization) (Zinkevich, 2003; Hazan
et al., 2007; Hazan & Kale, 2014), function value oracle
(zeroth order feedback) (Flaxman et al., 2005; Hazan & Li,
2016; Saha & Tewari, 2011; Yang & Mohri, 2016; Bubeck
et al., 2017), multi-point feedback (Ghadimi & Lan, 2013;
Shamir, 2017; Agarwal et al., 2010), projection free algo-
rithms (Chen et al., 2018; Sahu et al., 2018) etc., for both
adversarial (Abernethy et al., 2008; Dekel et al., 2015; Bach
& Perchet, 2016; Bubeck et al., 2015) and stochastic (Agar-
wal et al., 2011; Wang et al., 2017) settings (Bubeck, 2014;
Hazan, 2019; Shalev-Shwartz et al., 2011).

Almost all the existing online optimization literature as-
sumes a first order (gradient information) or at least zeroth
order (function value at the queried point) oracle access
towards solving the convex optimization problem. However,
in reality, many practical applications of online optimization
only allow a {0, 1}-comparison feedback indicating a noisy
preference of two (or more) queried points depending on
their function values (instead of revealing any information
of the gradients at the queried points or even the function
values at those points) Such examples are prevalent in many
real-world systems that need to collect user preferences in-
stead of their absolute ratings, like recommender systems,
online merchandises, search engine optimization, crowd-
sourcing, drug testing, tournament ranking, social surveys,
etc.

This is precisely the reason why there was a massive surge
of interest in the bandit community to learn from preference
feedback—famously studied as the dueling bandit problem
(Komiyama et al., 2015; Ailon et al., 2014; Busa-Fekete &
Hüllermeier, 2014; Wu & Liu, 2016). It explicitly models
this relative preference information structure, often in the
setting of finite action spaces. The goal is to identify the
most rewarding activities in hindsight according to a specific
score function. Precisely, the learner repeatedly selects
a pair of items to be compared to each other in a “duel,”
and consequently observe a binary stochastic preference
feedback of the winning item in this duel. Over the last
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two decades, the bandit literature attempted to study various
problems with dueling feedback, but mostly in the stochastic
setting with finite arm (decision) spaces. This is since almost
all the existing dueling bandit techniques rely on estimating
the K ×K preference-matrix and hence the regret scales as
O(K). But this, of course, becomes impractical for large (or
infinite) action spaces of size K; here lies another primary
motivation of our work.

On the other hand, from the point of view of optimization
literature, the main reason for the lack of techniques in the
comparison based optimization framework is that almost
all traditional optimization algorithms require the knowl-
edge (magnitude and direction) of function gradients at the
queried points (or at least a noisy estimate of that). How-
ever, the gradient-magnitude information is impossible to
obtain from a binary 0− 1 preference feedback, and thus,
the problem is arguably harder than the conventional ban-
dit feedback based optimization framework. Overall, the
challenge to work with {0, 1}-preference feedback lies in
the inherent disconnect between the feedback observed by
the learner and her payoff at any given round; while this dis-
parity already exists in standard dueling bandits even with
finite decision space, the setting gets even more challenging
for the infinite decision spaces, and additionally with noisy
comparison oracles.

Problem Formulation (informal). We address the prob-
lem of online convex optimization solely from compari-
son based oracles. Precisely, given an underlying convex
function f : D 7→ [0, 1] 1 over a convex decision space
D ⊆ Rd, the goal is to find a near-optimal (probably ap-
proximately correct) point x ∈ D such that x satisfies
Pr(f(x) − f(x∗) < ε) ≥ 1 − δ, for any prespecified
ε, δ ∈ (0, 1), by actively querying binary (noisy) compari-
son feedbacks of the form 1(f(xt) > f(yt)) on a sequence
of decision point pairs (aka duels) {(xt,yt)}Tt=1. By noisy
comparison oracle we appeal to a general setup, where at
each round t the true sign feedback 1(f(xt) > f(yt)) could
be altered with probability (1/2− ν), ν ∈ [0, 0.5] being an
unknown noise parameter. Given a fixed ε, δ ∈ (0, 1), the
learner’s goal is to find such a near-optimal point x with
least possible pairwise-query complexity (T ).

The only work that closely attempted a similar problem
as described above is (Jamieson et al., 2012). They pro-
posed a coordinate descent based technique to learn from
comparison feedback with a provably optimal convergence
rate (upto polylogarithmic factors). However, their analy-
sis is only limited to strongly-convex functions, which is
a restricted assumption on the function class and precisely,
this is why a simple line-search based coordinate descent

1Note, one can always scale the range of f inside [0, 1] as long
as f respects a bounded range.

algorithm works in their case, which is known to fail with-
out strong-convexity. We assume a more general class of
only smooth-convex functions, which does not need to be
strongly convex, and thus the coordinate descent algorithms
do not work in our setup. We instead propose a normalized-
gradient descent based algorithm, which is arguably simpler
both in terms of implementation and analysis; besides, our
convergence rate for strongly convex and smooth functions
is order-wise better as their sample complexity incurs extra
polylogarithm factors in d, ε, ν, which we could get rid of.

Our contributions. The main contributions of this paper
can be summarized as follows:

• We formulate the problem of online convex optimiza-
tion from comparison-based oracles (Sec. 2).

• We first analyze the hardness of the setup under differ-
ent notion of non-stationarity of the underlying func-
tion sequence (f1, f2, . . .) (Thm. 1, Sec. 3).

• Towards designing optimization algorithm, we inferred
a descent direction (direction of the gradient at the
queried points, aka normalized gradients) estimation
is enough for our objective. Moreover, when the un-
derlying function is β-smoothly convex, we propose a
method to estimate normalized gradient estimates from
(noisy) comparison oracles (see Thm. 3 and Lem. 9).

• We propose a normalized gradient descent based algo-
rithm for online smooth-convex optimization (Alg. 1)
with noisy-comparison oracles. The convergence rate
of our algorithm is shown to be Õ(dβ/εν2)2 as derived
in Thm. 5 which matches the convergence rates of
non-accelarated optimization routines for value based
(zeroth order) feedback oracels, which is arguably a
easier problem setup that ours (Rem. 2).

• Further when the function is additionally also α-
strongly convex, we show an improved convergence
rate of just Õ(dβ/αν2 log 1

ε ) as derived in Thm. 7,
which is provably optimal in terms of d ν and ε (Rem.
3). Overall, we are the first to apply normalized gradi-
ent descent based techniques for optimization with pref-
erence feedback, consequently our proof techniques
are new and involves novelty.

Related work. As motivated above, there has been very
little work on convex optimization with preference feedback.
(Yue & Joachims, 2009) first address the regret optimization
problem for fixed functions f (arm rewards) with preference
feedback. However, one of the major differences is that
their optimization objective is defined in terms of the ‘pref-
erences’ (which are directly observable and hence easier to

2Õ(·) hides logarithmic dependencies.
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optimize) as opposed to defining it w.r.t. f as we considered.
Further, their techniques are majorly restricted to the class
of ‘nice’ smooth and differentiable preference functions that
allows gradient estimation. This is why their proposed tech-
nique could appeal back to the classical gradient descent
based optimization algorithms (which are widely studied
for the problem of online convex optimization with zeroth
and first order oracle (Flaxman et al., 2005; Hazan & Li,
2016; Saha & Tewari, 2011; Yang & Mohri, 2016; Bubeck
et al., 2017)), yielding a regret guarantee of O(

√
dLT 3/4)

with standard analysis (L being the lipschitz parameter of
their preference map). Clearly, their algorithm (in fact, any
gradient descent based technique) fails in our case, as using
only a 1-bit comparison / sign feedback, it is impossible
to estimate gradient magnitudes, where lies the main bot-
tleneck of our setup. Consequently, we choose to design
normalized gradient descent based optimization algorithms
instead.

The only follow up of (Yue & Joachims, 2009) is (Kumagai,
2017), who considers an almost identical problem setup to
that of the former and relied on the same gradient descent
based ideas to show an improved O(

√
T ) regret guarantee,

but at the cost of even stricter assumptions on the preference
models: Precisely it requires the underlying function f to
be twice continuously differentiable, L-Lipschitz, strongly
convex and smooth and a thrice differentiable, rotation-
symmetric preference map. Their setting is hence far from
our current optimization objective and does not apply to our
1-bit noisy comparison feedback model, which is not even
singly differentiable.

As described above, the work most related to our setup is by
(Jamieson et al., 2012) which, however, only applies to the
specific class of α-strongly β-smooth convex functions. On
the other hand, our algorithm applies to a more general class
of β-smooth convex functions, simpler to implement, re-
quires newer insights for the performance analysis, and also
respects better convergence rates (see Rem. 3 for details).

2. Preliminaries and Problem Statement
Notation. Let [n] = {1, 2, . . . n}, for any n ∈ N. Given
a set S, for any two items x, y ∈ S, we denote by x � y
the event x is preferred over y. For any r > 0, let Bd(r)
and Sd(r) denote the ball and the surface of the sphere of
radius r in d dimensions respectively. Id denotes the d× d
identity matrix. For any vector x ∈ Rd, ‖x‖2 denotes the
`2 norm of vector x. 1(ϕ) is generically used to denote
an indicator variable that takes the value 1 if the predicate
ϕ is true, and 0 otherwise. sign(x) = +1 if x ≥ 0 or −1
otherwise, ∀x ∈ R. Unif(S) denotes a uniform distribution
over any set S.

Problem Setup. We solve the online convex optimization

problem with 0-1 preference feedback. In the most gen-
eral setup, the environment chooses a sequence of convex
functions f1, f2, . . . (unknown to the learner), such that
ft : Rd 7→ R for all t. At any iteration, the goal of the
learner is to pick a pair of points (xt,yt) upon which it gets
to see a binary 0− 1 bit noisy comparison feedback ot s.t.:

Pr(ot = 1(ft(yt) > ft(xt))) = 1/2 + ν,

where ν ∈ (0, 1/2] is the (unknown) noise-parameter.

Based on the variability in the function sequence f1, f2, . . .,
one can categorize the problem into the following cases:

1. Stationary: In this case the functions are assumed to
be fixed across time, i.e. ft = f for some unknown
but fixed function f : Rd 7→ R.

2. Stochastic: In this case the functions are drawn from
some (unknown) stochastic distribution P from a given
(known) class of convex functions F ⊆ {f : Rd 7→
R}, i.e. at any time time t ∈ [T ], ft ∼ P .

3. Adversarial: The most general setup for any arbitrary
sequence of convex functions {ft}Tt=1. Note this case
can be seen as a special case of Stochastic setup where
F = {ft}Tt=1, and Pr(ft = fi) = 0 for all i 6= t.

Objective. We consider the standard (ε, δ)-probably ap-
proximately correct function optimization objective: Given
any fixed choice of ε, δ ∈ (0, 1), the objective of the learner
is to find a decision point x ∈ Rd with minimum possible
pairwise-query complexity {(xt,yt)Tt=1} such that the final
point x must satisfy:

Pr(f̄(x)− f̄(x∗) < ε) ≥ 1− δ,

where f̄(x) :=
∑T
t=1

Eft∼P [ft(x)]
T , ∀x ∈ Rd denotes the

average function value, and x∗ := arg minz∈Rd f̄(z) de-
notes the minimizer of f̄ .

3. Non-stationarity leads to Impossibility
We first analyze the fundamental performance limit of the
problem for non-stationary sequence of functions, precisely
the Stochastic and Adversarial setp. The main result of this
section (Thm. 1) shows the optimization problem is in fact
impossible to solve in both cases. This is precisely because
a comparison based oracle does not take into account the
scale of the function values, neither the learner has a way
to estimate this from the comparison feedback. Thus in the
non-stationary setup it is always possible problem instances
to make a decision point appear to be the best in terms of
the observed preferences, where as in reality it is not even
an ε-optimal point compared to x∗. The proof of Thm. 1
gives a formal argument.
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Theorem 1. For the setup of Stochastic and Adversarial
it is always possible to construct problem instances where
the optimization problem becomes infeasible (impossible to
identify the true minimizer x∗).

Proof. Instance I: Consider a simple problem instance
I for Stochastic setup with decision set D = {x1,x2},
function class F = {f1, f2}, and assume P is such that:

ft =

{
f1, with probability 0.99

f2, otherwise
,

where f1 and f2 is respectively defined as:

f1(x) =

{
0.01, if x = x1

0, otherwise
, f2(x) ={

0, if x = x1

1, otherwise
.

Then note that at any round t, Prft∼P(x2 � x1) =
Pr(ft = f1) · Pr(x2 � x1 | ft = f1) + Pr(ft =
f2) · Pr(x2 � x1 | ft = f2) = 0.99 · 1 + 0.01 · 0 = 0.99.
Thus on expectation, x2 wins over x1 almost always (99
times out of 100 duels).

However, on the other hand, in terms of the function val-
ues x1 is the optimal point (minimizer of f̄ , see Objec-
tive in Sec. 2). This can be easily inferred just by not-
ing Eft∼P [ft(x1)] = Pr(ft = f1) · ft(x1) + Pr(ft =
f2) · ft(x1) = 0.99 · 0.01 + 0.01 · 0 = 0.0099 < 0.01 =
0.01 · 1 = Eft∼P [ft(x2)]. So for the instance I, we have
x∗ = 1.

Instance I ′: Now let us consider a slightly tweaked
version of instance I, say I ′ which has the exactly
same D = {x1,x2} and a slightly different function
class F = {f1, f ′2}, where f ′2 is defined as: f ′2(x) ={

0, if x = x1

0.1, otherwise
.

Now note, even for I ′ at any round t, we still see
Prft∼P(x2 � x1) = Pr(ft = f1) · Pr(x2 � x1 |
ft = f1) + Pr(ft = f ′2) · Pr(x2 � x1 | ft = f ′2) =
0.99 · 1 + 0.01 · 0 = 0.99.

The interesting thing however is for this case, in terms of the
function values x2 is indeed the optimal point (i.e. x∗ = x2).
This follows by noting Eft∼P [ft(x1)] = Pr(ft = f1) ·
ft(x1) + Pr(ft = f ′2) · ft(x1) = 0.99 · 0.01 + 0.01 · 0 =
0.0099 > 0.001 = 0.01 · 0.1 = Eft∼P [ft(x2)]. So for the
instance I ′, we have x∗ = 2.

Now consider any ε < min(0.01 − 0.0099, 0.0099 −
0.001) = 0.0001. The only ε-optimal arm for I is x1,
whereas for I ′ is x2. But in both case learner observes the
exactly same preference feedback, i.e. Pr(x2 � x1) =

0.99. No it really has no ways to distinguish I from I ′
and consequently identify the ε-best optimal point of the
true underlying instance. Note the dispute arises since the
binary comparison based preference feedback reveals no
information of the magnitude of the underlying function
values, and any learning algorithm would observe x2 beats
x1 almost always (with 0.99 probability), irrespective of if
the true optimal arm is x1 (i.e. true instance is I) or x2 (i.e.
the true instance is I ′).

Remark 1. Above example also proves the impossibility
result for the Adversarial setup as the Stochastic setup is
just a simple and special case of the former.

4. Estimating Descent Direction (Normalized
Gradient) using Comparison Oracle

As motivated in Sec. 1, one of our main contribution lies in
the analysis to obtain an unbiased estimate of normalized-
gradient at any desired point x ∈ Rd from 1-bit comparison
feedback. Thm. 3 shows the main result of this section,
but before that we find it useful to introduce the following
key lemma that shows how one can obtain an unbiased
estimate of the direction of any vector g ∈ Rd, i.e., its
normalized version g

‖g‖ , using only a 1-bit comparison (sign

function) oracle. Following is a general result whose scope
lies beyond our specific problem setup.

Lemma 2. For a given vector g ∈ Rd and a random unit
vector u drawn uniformly from Sd(1), we have

E[sign(g · u)u] =
c√
d

g

‖g‖
,

for some universal constant c ∈ [ 1
20 , 1].

Proof sketch. Without loss of generality we can assume
‖g‖ = 1, since normalizing g does not affect the left-hand
side. First, let us show that E[sign(g · u)u] = γg for some
γ ∈ R. Consider the reflection matrix along g given by
P = 2gg> − I , and examine the random vector u′ = Pu.

Observe that sign(g ·u′) = sign

(
2 ‖g‖2 g>u−g>u

)
=

sign(g · u). Since u′ is also a random vector on the unit
sphere, we have

E[sign(g · u)u] = 1
2E[sign(g · u)u] + 1

2E[sign(g · u′)u′]
= 1

2E[sign(g · u)u] + 1
2E[sign(g · u)(2gg> − I)u]

= E[(g · u) sign(g · u)]g.

Thus, E[sign(g · u)u] = γg for γ = E[|g · u|].

It remains to bound γ, which by rotation invariance equals
E[|u1|]. For an upper bound, observe that by symmetry
E[u21] = 1

dE[
∑d
i=1 u

2
i ] = 1

d and thus E[|u1|] ≤
√
E[u21] =
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1√
d
. We turn to prove a lower bound on γ. If u were a Gaus-

sian random vector with i.i.d. entries ui ∼ N (0, 1/d), then
from standard properties of the (truncated) Gaussian distri-
bution we would have gotten that E[|u1|] =

√
2/πd. For u

uniformly distributed on the unit sphere, ui is distributed as
v1/ ‖v‖ where v is Gaussian with i.i.d. entries N (0, 1/d).
We then can write

Pr

(
|u1| ≥

ε√
d

)
= Pr

(
|v1|
‖v‖

≥ ε√
d

)

≥ 1− Pr

(
|v1| <

1√
d

)
− Pr

(
‖v‖ > 1

ε

)
.

Since
√
dv1 is a standard Normal, we have

Pr

(
|v1| <

1√
d

)
= Pr

(
− 1 <

√
dv1 < 1

)
= 2Φ(1)− 1 ≤ 0.7,

and since E[‖v‖2] = 1 an application of Markov’s in-

equality gives Pr

(
‖v‖ > 1

ε

)
= Pr

(
‖v‖2 > 1

ε2

)
≤

ε2E[‖v‖2] = ε2. For ε = 1
4 this implies that Pr

(
|u1| ≥

1/4
√
d

)
≥ 1

5 , whence γ = E[|u1|] ≥ 1/20
√
d. �

Using above result we obtain the main result of this section.
The complete proof is moved to Appendix. A.

Theorem 3. If f is β-smooth, for any u ∼ Unif(Sd(1)),
δ ∈ (0, 1) and vector b ∈ Sd(1):

Eu[sign(f(x + δu)− f(x− δu))u>b]

≤ c√
d

∇f(x)

‖∇f(x)‖
+ 2λ,

for some universal constant c ∈ [ 1
20 , 1], and λ =

3βδ
‖∇f(x)‖

√
d log ‖∇f(x)‖√

dβδ
.

Proof sketch. The proof mainly lies on the following
lemma that shows how to the comparison feedback of two
close points–x + γu and x − γu–can be used to recover
directional information of the gradient of f at point x.

Lemma 4. If f is β-smooth, for any u ∼ Unif(Sd(1)),
and γ ∈ (0, 1), then with probability at least 1 − λ where

λ = 3βγ
‖∇f(x)‖

√
d log ‖∇f(x)‖√

dβγ
we have

sign(f(x + γu)− f(x− γu))u = sign(∇f(x) · u)u.

Consequently, for any vector b ∈ Sd(1) we have∣∣∣Eu[sign(f(x+γu)−f(x−γu))u>b]−Eu[sign(∇f(x)·

u)u>b]
∣∣∣ ≤ 2λ.

We give a brief outline of the above proof, the complete
analysis could be found in Appendix A. From smooth-
ness we have |f(x + γu)− f(x− γu)− 2γu ·∇f(x)| ≤
βγ2. Therefore, if βγ2 ≤ γ |u ·∇f(x)|, we will have
that sign(f(x + γu) − f(x − γu)) = sign(u · ∇f(x)).
Let us analyse Pru(βγ ≥ |u ·∇f(x)|). We know
for v ∼ N (0d, Id), u := v/‖v‖ is uniformly dis-
tributed on the unit sphere. Then we show its possible

to write: Pu

(
|u ·∇f(x)| ≤ βγ

)
≤ Pv

(
|v ·∇f(x)| ≤

2βγ
√
d log(1/γ′)

)
+ γ′.

Again since v ·∇f(x) ∼ N (0, ‖∇f(x)‖2), for any γ > 0

that Pr

(
|v · ∇f(x)| ≤ γ

)
≤ 2γ

‖∇f(x)‖
√
2π
≤ γ
‖∇f(x)‖ .

Combining the inequalities, we have that sign(f(x+γu)−
f(x− γu)) = sign(u ·∇f(x)) except with probability at
most

inf
γ′>0

{
γ′ +

2βγ
√
d log(1/γ′)

‖∇f(x)‖

}

≤ 3βγ

‖∇f(x)‖

√
d log

‖∇f(x)‖√
dβγ

= λ

As for the claim about the expectation, note that for any
vector b ∈ Sd(1),

∣∣∣Eu[sign(f(x+γu)−f(x−γu))u>b]−

Eu[sign(∇f(x) · u)u>b]
∣∣∣ ≤ 2λ, since with probability

1−λ the two expectations are identical, and otherwise, they
differ by at most 2. This concludes the proof of Lem. 4.

The result of Thm. 3 now simply follows by combining the
guarantees of Lem. 2 and 4. �

5. Noiseless case: Analysis for Sign-Feedback
with Normalized-Gradient Descent

In this section, we analyse the case of ‘no-noise’, i.e.
ν = 1/2 (see the comparison feedback model in Sec. 2), i.e.
upon querying any duel (x,y) the learner gets access to its
true sign feedback 1(f(x) > f(y)). We start by presenting
our main algorithm (Alg. 1) for β-smooth convex optimiza-
tion which is based on the technique of normalized gradient
descent which appeals back to our results derived in Sec. 4.
We next analyse its rate of convergence which respects a
PAC sample complexity bound of O

(
dβ‖x1−x∗‖2

ε

)
(Thm.
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5), x1 being the initial point considered by the algorithm.
Following this, we also address the setup for combined α-
strongly convex, β-smooth functions and show that for this
case one can achieve an improved convergence rate with by
simply using a blackbox routine for beta-smooth optimiza-
tion (say our Alg. 1) iteratively. Precisely, our resulting
algorithm (Alg. 2) is shown to yield a convergence rate
of O

(
dβ
α log α

ε

)
(Thm. 7), and this respects the optimal

convergence rates in terms of ε and d (Rem. 3).

5.1. f is β-smooth convex

Algorithmic ideas. We start by recalling that, from a single
0-1 bit comparison feedback, one can not hope to recover
the gradient estimates. This is since a comparison oracle
does not reveal any information on the scale (magnitude) of
the function values (see Sec. 3 for a motivating example).
So the traditional gradient descent based techniques are
bound to fail in our case in the first place. However, in Sec.
4 we show, if not the entire gradient, we can almost recover
the direction of the gradient (aka normalized gradient) at
any desired point (see Thm. 3). Thus we appeal to the
technique of Normalized Gradient Descent to solve the
current problem.

Starting from an initial point x1, the algorithm sequentially
goes on finding a nearly unbiased normalized gradient es-
timate ht := sign(f(x′t) − f(y′t))ut,

3 ut ∼ Unif(Sd(1))
being any random unit norm d-dimensional vector, and take
η-sized steps along the negative direction of the estimated
normalized gradients. Also note, at each time t, we keep
track of the ‘so-far-minimum’ point x̃t (current best). Essen-
tially at all t, x̃t traces arg mintτ=1 f(xτ ). This is unavoid-
able since without the knowledge of the gradient magnitude
the algorithm does not have a way to gauge whether xt is
very close or too far form the optimal point x∗.
Theorem 5 (Noiseless-Optimization: β-smooth function
(Alg. 1)). Consider f to be β smooth. Suppose Alg. 1 is run
with η =

√
ε

20
√
dβ

, γ = (ε/β)3/2

240
√
2d(D+ηT )2

√
log 480

√
βd(D+ηT )/

√
2ε

and Tε = O
(
dβD
ε

)
, whereD ≥ ‖x1−x∗‖2 (is an assumed

known upper bound). Then Alg. 1 returns E[f(x̃T+1)] −
f(x∗) ≤ ε with sample complexity 2Tε.

Remark 2. The convergence rate in Thm. 5 is same as
that achieved by non-accelerated optimization algorithms
for smooth convex optimization with zeroth-order feed-
back which reveals the true function value at queried the
points (e.g., Nesterov & Spokoiny, 2017). This is arguably
a richer feedback model compared to our 1-bit comparison
oracle, as one can always obtain the comparison feedback
from zeroth order oracle but not the other way. So a com-
parison based optimization is always as hard as that of the

3We take cues form the result of Thm. 3 or more precisely Lem.
4 to come up with the functional form of ht.

Algorithm 1 β-NGD(x1, η, γ, Tε)
1: Input: Initial point: x1 ∈ Rd such that D := ‖x1 −

x∗‖2 (assume known), Learning rate η, Perturbation
parameter γ, Query budget Tε
(Recall the desired error tolerance is ε > 0)

2: Initialize Current minimum x̃1 ∈ Rd
3: for t = 1, 2, 3, . . . , Tε do
4: Sample ut ∼ Unif(Sd(1))
5: x′t := xt + γut
6: y′t := xt − γut
7: Play the duel (x′t,y

′
t), and receive binary preference

feedback ot = 1(f(x′t) < f(y′t)). Set o′t = 2ot − 1.

8: Update xt+1 ← xt − ηht, where ht = o′tut
9: Query the pair (xt+1, x̃t).

10: Update x̃t+1 ←

{
xt+1 if o′t = −1

x̃t otherwise (o′t = +1)

11: end for
12: Return x̃T+1

zeroth order optimization problem, as we can always solve
the later problem, given a black-box for the first.

Proof sketch (Thm. 5). Consider the following cases:

Case 1. (f(x0)− f(x∗) ≤ ε): In this case, the initial point
x1 is already good enough (close enough to x∗).

Case 2. (f(x0) − f(x∗) > ε): In this case we appeal to
Lem. 6 which ensures finding a point xt for t ∈ [Tε] such
that E[f(xt+1)]− f(x∗) ≤ ε.

The bound of Thm. 5 now follows noting that by defini-
tion x̃t+1 = min(x1, . . . ,xt) so as long as ∃t ∈ [Tε] with
E[f(xt+1)]−f(x∗) ≤ ε, we have E[f(x̃T+1)]−f(x∗) ≤ ε.

Finally the sample complexity bound follows straightfor-
wardly since Alg. 1 takes Tε as input and for each t ∈ [Tε]
it makes 2 pairwise comparisons, respectively (x′t,y

′
t) and

(xt+1, x̃t), making the total query complexity 2Tε.

The rest of the proof we briefly sketch the proof of the
following main lemma:
Lemma 6. Consider f is β smooth. In Alg. 1, if the initial
point x1 is such that f(x1)−f(x∗) > ε, and given any ε >
0 the parameters Tε, γ and η is as defined in Thm. 5. Then
there exists at least one t such that E[f(xt+1)]−f(x∗) ≤ ε,
i.e. mint∈[T ] E[f(xt+1)]− f(x∗) ≤ ε.

Consider any t = 1, 2, . . . T , such that f(xτ ) > f(x∗) +

ε, ∀τ ∈ [t], and we denote by nt = ∇f(xt)
‖∇f(xt)‖ . Let yt :=

x∗ +
√

2ε
β nt. Then using β-smoothness of f , f(yt) ≤

f(x∗) +∇f(x∗)(yt − x∗) + β
2 ‖yt − x∗‖2 = f(x∗) + ε.
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Thus we conclude f(yt) < f(xt). From Lem. 14 we get

n>t (yt−xt) ≤ 0 =⇒ n>t

(
x∗+

√
2ε
β nt−xt

)
≤ 0 =⇒

−n>t (xt − x∗) ≤ −
√

2ε
β .

Observation 1. Note for any t ∈ [T ], f(xt) > f(x∗) + ε

implies ‖xt − x∗‖ >
√

2ε
β (since from β-smoothness of f

we know that f(xt)− f(x∗) ≤ β
2 ‖xt − x∗‖2.

Observation 2. Since f(yt) < f(xt), from properties
of convex function (see Lem. 14) in Appendix B we get

n>t (yt − xt) ≤ 0 =⇒ n>t

(
x∗ +

√
2ε
β nt − xt

)
≤ 0

We denote by Ht the history {xτ ,uτ}t−1τ=1 ∪ xt till time
t. Then note that by the update rule of xt+1 (and since
‖ht‖ = 1):

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2ηh>t (xt − x∗) + η2

Now starting from the above equation along with a series
of inference steps stemming from Observations 1,2, Thm.
3, some properties of the convex functions, and appropri-
ate choices of γ and η, it can be shown that above im-
plies: EHt [Eut [‖xt+1−x∗‖2 | Ht]] ≤ EHt [‖xt−x∗‖2]−
(
√
2−1)ε

400dβ . Now summing over t = 1, . . . T and further ap-
plying laws of iterated expectation, this finally boils down
to: EHT [‖xT+1 − x∗‖2] ≤ ‖x1 − x∗‖2 − (

√
2−1)εT
400dβ .

Thus, we see that, if indeed f(xτ )− f(x∗) > ε continues
to hold for all τ = 1, 2, . . . T , then E[‖xT+1 − x∗‖2] ≤ 0,
for T ≥ 400dβ

(
√
2−1)ε (‖x1 − x∗‖2), which basically implies

xT+1 = x∗ (i.e. f(xT+1) = f(x∗)). Otherwise there must
have been a time t ∈ [T ] such that f(xt)− f(x∗) < ε. This
concludes the proof with Tε = T .

This concludes the proof of Lem. 6, as well as the proof
of Thm. 5 which was already proved earlier (assuming the
result of Lem. 6 holds good). �

5.2. f is α-strongly convex and β-smooth

We next show a better convergence rate for α-strongly con-
vex and β-smooth function. For this case, we note that
one can simply reuse any optimal optimization algorithm
for β-smooth convex functions (we use our Alg. 1) as a
blackbox to design an optimal algorithm for α-strongly
convex, β-smooth functions. Our proposed method (α, β)-
NGD (Alg. 2) adapts a phase-wise iterative optimization
approach, where inside each phase we use the Alg. 1 as
a blackbox to locate a εk-optimal point in that phase with
exponentially decaying εk (with ε1 = 1) and warm start the
(k + 1)-th phase from the optimizer returned by β-NGD

in the k-th phase. The method works precisely due to the
nice properly of strong-convex functions where nearness
in function values implies nearness from the optimal x∗ in
`2-norm (see Lem. 8 and proof of Thm. 7). The algorithm
is described in Alg. 2.

Algorithm 2 (α, β)-NGD(ε)
1: Input: Error tolerance ε > 0
2: Initialize Initial point: x1 ∈ Rd such that D := ‖x0 −

x∗‖2 (assume known).
Phase counts kε := dlog2

(
α
ε

)
e, t← 800dβ

(
√
2−1)α

η1 ←
√
ε1

20
√
dβ
, ε1 = 400dβD

(
√
2−1)t1

= 1, t1 = t‖x1 − x∗‖2

γ1 ← (ε1/β)
3/2

240
√
2d(D+η1t1)2

√
log 480

√
βd(D+η1t1)/

√
2ε1

.

3: Update x2 ← β-NGD
(
x1, η1, γ1, t1

)
4: for k = 2, 3, . . . , kε do
5: ηk ←

√
εk

20
√
dβ
, εk = 400dβ

(
√
2−1)tk

, tk = 2t

γk ← (εk/β)
3/2

240
√
2d(1+ηktk)2

√
log 480

√
βd(1+ηktk)/

√
2εk

.

6: Update xk+1 ← β-NGD
(
xk, ηk, γk, tk

)
7: end for
8: Return x̃ = xkε+1

Theorem 7 (Noiseless-Optimization: α-strongly convex
and β-smooth case (Alg. 2)). Consider f to be α-strongly
convex and β-smooth. Then Alg. 2 returns E[f(x̃)] −
f(x∗) ≤ ε with sample complexity (number of pairwise

comparisons) O
(
dβ
α (log2

(
α
ε

)
+ ‖x1 − x∗‖2)

)
.

Remark 3. The line search algorithm proposed by
(Jamieson et al., 2012) also achieves the same convergence
rate for strongly convex functions, modulo some additional
multiplicative polylogarithmic terms (in d, ε, ν) in the sam-
ple complexity bounds, which we could get rid of. Their
lower bound justifies the tightness of the analysis of Thm. 7
in terms of the problem parameters d, ν and ε. However, it is
important to note that our algorithm is much simpler both in
implementation and analysis. Besides, our proposed meth-
ods are certainly more general that applies to the class of
non-strongly convex functions as well (see Thm. 5), where
(Jamieson et al., 2012) fails.

Proof sketch (Thm. 7). We start by recalling an important
property of strongly convex function (proof in Appendix B):
Lemma 8. If f : R 7→ R is an α-strongly convex function,
with x∗ being the minimizer of f . Then for any x ∈ R,
α
2 ‖x

∗ − x‖2 ≤ f(x)− f(x∗).

Also let Hk := {xk′ , (xt′ ,yt′ , ot′)t′∈tk′}
k
k′=1 ∪ {xk+1}

denotes the complete history till the end of phase k for all
k ∈ [kε].

By Thm. 5, for any fixed T > 0, when β-
NGD (Alg. 1) is run with η =

( √
ε

20
√
dβ

)
, γ =
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(ε/β)3/2

240
√
2d(D+ηT )2

√
log 480

√
βd(D+ηT )/

√
2ε

and ε = 400dβD

(
√
2−1)T ,

whereD := ‖x1−x∗‖2. Then Alg. 1 returns E[f(x̃T+1)]−
f(x∗) ≤ ε = 400dβ‖x1−x∗‖2

(
√
2−1)T with sample complexity 2T .

However, in this case since f is also α-strongly convex,
using Lem. 8 we get:

E[α/2‖x̃T+1 − x∗‖2] ≤ 400dβ‖x1 − x∗‖2

(
√

2− 1)T
(1)

i.e E[‖x̃T+1 − x∗‖2] ≤ 800dβ‖x1−x∗‖2

(
√
2−1)αT . Now initially for

k = 1, clearly applying the above result for T = t‖x1 −
x∗‖2, we get E[‖x2 − x∗‖2] ≤ 800dβ‖x1−x∗‖2

(
√
2−1)αT = 1

Thus, for any k = 2, . . . kε, given the initial point xk, if
we run β-NGD with T = 2t = 1600dβ

(
√
2−1)α , we get from

(1): EHk [‖x̃k+1 − x∗‖2 | Hk−1] ≤ 800dβ‖xk−x∗‖2

(
√
2−1)αT =

‖xk−x∗‖2
2 . This implies given the history till phase k − 1,

using (1) and our choice of tk,

EHk [f(xk+1)− f(x∗) | Hk−1]

≤ EHk [
1

4α
‖xk − x∗‖2 | Hk−1]

≤ 1

4α
(
1

2
)k−1‖x1 − x∗‖2 ≤ 1

α2k+1
.

Thus, to ensure at k = kε, E[f(xkε+1) − f(x∗)] ≤ ε,
this demands (1/2)kε+1α ≤ ε, or equivalently α

2ε ≤ 2kε+1,
which justifies the choice of kε = log2

(
α
ε

)
. By Thm. 5,

recall running the subroutine β-NGD(xk−1, ηk, γk, tk) ac-
tually requires a query complexity of 2tk, and hence the
total query complexity of Alg. 2 becomes 4tkε + t1 =

O
(

800dβ

(
√
2−1)α (log2

(
α
ε

)
+ ‖x1 − x∗‖2)

)
. �

6. General Case: Noisy-Sign-Feedback
Recall from Sec. 2 that in the most general setup, we
consider a noisy comparison feedback such that Pr(ot =
1(ft(yt) > ft(xt))) = 1/2 + ν, for some ν ∈ (0, 0.5].
Our proposed algorithms in the earlier section require the
knowledge of true sign feedback ot = 1(f(xt) > f(yt))
for every pairwise query (xt,yt), but in reality the compari-
son oracle could be noisy and return incorrect signs where
they fail. We resolve the problem by a ‘resampling-trick’
described below.

6.1. sign-recovery: De-noising the Oracle

Main idea of sign-recovery (Alg. 3). We note that,
given any pair (x,y), by re-querying it for O( 1

ν2 log 1
ν2δ )

times, one can obtain the true the sign feedback 1(f(x) >
f(y)) with high probability.

Lemma 9. For any dueling pair (x,y) and confidence pa-
rameter δ ∈ (0, 1], with probability at least (1− δ/2), the

output o of sign-recovery(x,y, δ) (Alg. 3) returns
the true indicator value of 1(f(x) > f(y)) with at most
t = O

(
1
ν2 log 1

ν2δ

)
pairwise queries. More precisely:

Pr
(
o = 1(f(x)− f(y)) and t = O

( 1

ν2
log

1

ν2δ

))
> 1− δ

2
,

where the probability is taken on randomness of the ob-
served comparison sequence {oτ}τ∈[t].
Remark 4. Note the algorithm does not require the knowl-
edge of the noise parameter ν.

Algorithm 3 sign-recovery(x,y, δ)

1: Input: Dueling pair: (x,y). Desired confidence δ ∈
[0, 1]. Initialize w ← 0

2: for t = 1,2, . . . do
3: Play (x,y).
4: Receive ot ← noisy-preference

(
1(f(x) < f(y))

)
5: Update w ← w + ot, pt(x,y)← w

t .

6: conft :=
√

log(8t2/δ)
2t

7: lt(x,y) := pt(x,y)− conft
8: lt(y,x) := 1− pt(x,y)− conft
9: if either lt(x,y) > 1/2 or lt(y,x) > 1/2: Break.

10: end for

11: Compute o←

{
1 if lt(x,y) > 1/2

0 otherwise
12: Return o

Proof sketch Let Alg. 3 stops at round τ . The proof uses
Hoeffding’s inequality which ensures at all iteration t ∈ [τ ],
with probability at least (1 − δ), it satisfies |pt(x,y) −
Pr({s = 1})| ≤ conft. (See Lem. 16 and 17 in Appendix
C.) Note this equivalently implies |pt(y,x) − Pr({s =
0})| ≤ conft, where pt(y,x) = 1 − pt(x,y) and since
Pr({s = 0}) = 1 − Pr({s = 1}). We now consider the
following cases:

Case 1. 1(f(x) < f(y)) = 1 : So in this case, at any
t ∈ [τ ], Pr(ot = 1) = Pr(s = 1) = 1/2 + ν. Then
lt(x,y) ≥ pt(x,y)− conft ≥ Pr(ot = 1)− 2conft =
1/2 + ν − 2conft. So we get lt(x,y) > 1/2 whenever
2conft < ν, or t > 2

ν2 log 8t2

δ . Note that later is satisfied
for any t ≥ 8

ν2 log 64
ν2δ . This can be easily verified setting

a = 2/ν2 and b = 8/δ in Lem. 18.

Then assuming the confidence bounds of Lem. 17 holds
good at all t, we can safely conclude that the algorithm
satisfies the stopping criterion (see Line #9 in Alg. 3) for
τ = O

(
1
ν2 log 1

ν2δ

)
This implies the correctness and sample

complexity of sign-recovery.

Case 2. 1(f(x) < f(y)) = 0 : In this case Pr(ot = 0) =
1/2 + ν. Then lt(y,x) ≥ pt(y,x) − conft ≥ Pr(ot =
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0)− 2conft = 1/2 + ν − 2conft. The rest follows same
as Case 1. (complete proof in Appendix C). �.

6.2. Algorithms and Analysis

β-smooth convex functions. We can essentially re-use
Alg. 1 again, except since we don’t have access to the
true comparison 1(f(x′t) > f(y′t)), but only a noisy 1-
bit feedback of the former, we need to estimate the true
sign with high probability. For this, we appeal to our
sign-recovery subroutine to obtain the true ot, as re-
quired in the Line #7 and #9 of Alg. 1. For completeness,
the pseudocode of Robust-β-NGD (Alg. 4) is given in Ap-
pendix C.

Theorem 10 (Noisy-Optimization: Smooth Convex func-
tions). Consider f to be β smooth. Suppose β-NGD
(Alg. 4) is run with η =

(√
ε(2p−1)2
20
√
dβ

)
, γ =

(ε/β)3/2

240
√
2d(D+ηT )2

√
log 480

√
βd(D+ηT )/

√
2ε

and Tε = O
(
dβD
ε

)
,

where D := ‖x1 − x∗‖2. Then, for any given δ ∈ (0, 1),
with high probability at least (1− δ) (over the randomness
of noisy comparison feedback ot) it returns E[f(x̃T+1)]−
f(x∗) ≤ ε with sample complexity O

(
dβD
εν2 log dβD

εν2δ

)
(ex-

pectation is taken over randomness of the algorithm).

Proof sketch. The proof precisely follows from the proof of
Thm. 5, as Lem. 9 ensures at every round ot gets assigned
to the true 1(f(xt) < f(yt)) with ‘sufficiently’ high prob-
ability. This ensures the correctness of the algorithm. The
sample complexity simply follows by taking into account
the additional Õ

(
1
ν2 log 1

ν2

)
pairwise-queries incurred in

sign-recovery subroutine (per dueling-pair) to recover
the correct comparison feedback at each round. �

α-strongly convex and β-smooth functions. In this case
again, we can reuse our Alg. 2, originally proposed for the
noiseless setup. To accommodate the noisy comparison-
feedback oracle, in this case it requires to use the robust
version of the underlying blackbox algorithm, i.e. Robust-
β-NGD in Line #3 and #6 of Alg. 2. For completeness,
the full algorithm (Alg. 5) is given in Appendix C.

Theorem 11 (Noisy-Optimization: Strongly Convex and
Smooth case). Let f is α-strongly convex and β-smooth.
Then given any δ ∈ (0, 1), with probability at least (1− δ)
(over randomness of noisy comparison feedback ot), Alg.
5 with using Robust-β-NGD (Alg. 4) as the underlying
blackbox), returns E[f(x̃)] − f(x∗) ≤ ε in sample com-

plexity O
(
dβ
ν2α (log2

(
α
ε

)
+ D)

)
log dβD log(α/ε)

ν2δ (expecta-
tion is taken over randomness of the algorithm), where
D := ‖x1 − x∗‖2.

7. Conclusion and Perspective
We address the problem of online convex optimization with
comparison feedback and design normalized gradient de-

scent based algorithms that yield fast convergence guaran-
tees for smooth convex and strongly convex+smooth func-
tions. Moving forward, there are many open questions to
address, including unifying the class of preference maps
(that maps a duel-score to preference feedback), analyze the
regret minimization objective, understanding information-
theoretic performance limits, or even generalizing the frame-
work to general subsetwise preference-based learning prob-
lem. The setup of optimization from preference feedback
being relatively new and almost unexplored, the scopes of
potential future directions are vast.
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