
Appendix

In Section A we give the proofs of all the Propositions and the Theorem. In Section B we give other theoretical results
to validate statements made in the paper. Section C presents the algorithm from Maclaurin et al. (2015). In Section D
we illustrate with codes that Momentum ResNets are a drop-in replacement for ResNets. Section E gives details for the
experiments in the paper. We derive the formula for backpropagation in Momentum ResNets in Section F. Finally, we
present additional figures in Section G.

A. Proofs
Notations

• C∞0 ([0, 1],Rd) is the set of infinitely differentiable functions from [0, 1] to Rd with value 0 in 0.

• If f : U × V →W is a function, we denote by ∂uf , when it exists, the partial derivative of f with respect to u ∈ U .

• For a matrix A ∈ Rd×d, we denote by (λ− z)a the Jordan block of size a ∈ N associated to the eigenvalue z ∈ C .

A.0. Instability of fixed points – Proof of Proposition 1

Proof. Since (x∗, v∗) is a fixed point of the RevNet iteration, we have

ϕ(x∗) = 0

ψ(v∗) = 0

Then, a first order expansion, writing x = x∗ + ε and v = v∗ + δ gives at order one

Ψ(v, x) = (v∗ + δ +Aε, x∗ + ε+B(δ +Aε)) (9)

We therefore obtain at order one

Ψ(v, x) = Ψ(v∗, x∗) + J(A,B)

(
δ
ε

)
which shows that J(A,B) is indeed the Jacobian of Ψ at (v∗, x∗). We now turn to a study of the spectrum of J(A,B). We
let λ ∈ C an eigenvalue of J(A,B), and vectors u ∈ Cd, w ∈ Cd such that (u,w) is the corresponding eigenvector, and
study the eigenvalue equation

J(A,B)

(
u
w

)
= λ

(
u
w

)
which gives the two equations

u+Aw = λu (10)

w +Bu+BAw = λw (11)

We start by showing that λ 6= 1 by contradiction. Indeed, if λ = 1, then (10) gives Aw = 0, which implies w = 0 since A is
invertible. Then, (11) gives Bu = 0, which also implies u = 0. This contradicts the fact that (u, v) is an eigenvector (which
is non-zero by definition).

Then, the first equation (10) gives Aw = (λ− 1)u, and multiplying (11) by A on the left gives

λABu = (λ− 1)2u (12)
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We also cannot have λ = 0, since it would imply u = 0. Then, dividing (12) by λ shows that (λ−1)2
λ is an eigenvalue of AB.

Next, we let µ 6= 0 the eigenvalue of AB such that µ = (λ−1)2
λ . The equation can be rewritten as the second order equation

λ2 − (2 + µ)λ+ 1 = 0

This equation has two solutions λ1(µ), λ2(µ), and since the constant term is 1, we have λ1(µ)λ2(µ) = 1. Taking modulus,
we get |λ1(µ)||λ2(µ)| = 1, which shows that necessarily, either |λ1(µ)| ≥ 1 or |λ1(µ)| ≥ 1.

Now, the previous reasoning is only a necessary condition on the eigenvalues, but we can now prove the advertised result by
going backwards: we let µ 6= 0 an eigenvalue of AB, and u ∈ Cd the associated eigenvector. We consider λ a solution of
λ2 − (2 + µ)λ + 1 = 0 such that |λ| ≥ 1 and λ 6= 1. Then, we consider w = (λ − 1)A−1u. We just have to verify that
(u, v) is an eigenvector of J(A,B). By construction, (10) holds. Next, we have

A(w +Bu+BAw) = (λ− 1)u+ABu+ (λ− 1)ABu = (λ− 1)u+ λABu

Leveraging the fact that u is an eigenvector of AB, we have λABu = λµu, and finally:

A(w +Bu+BAw) = (λ− 1 + λµ)u = λ(λ− 1)u = λAw

Which recovers exactly (11): λ is indeed an eigenvalue of J(A,B).

A.1. Momentum ResNets in the limit ε −→ 0 – Proof of Proposition 2

Proof. We take T = 1 without loss of generality. We are going to use the implicit function theorem. Note that xε is solution
of (6) if and only if (xε, vε = ẋε) is solution of{

ẋ = v, x(0) = x0

εv̇ = f(x, θ)− v, v(0) = v0.

Consider for u = (x, v) ∈ (x0, v0) + C∞0 ([0, 1],Rd)2

Ψ(u, ε) =

(
x0 − x+

∫ t

0

v,

∫ t

0

(f(x, θ)− v)− εv + εv0

)
,

so that xε is solution of (6) if and only if uε = (xε, vε = ẋε) satisfies Ψ(uε, ε) = 0. Let u∗ = (x∗, ẋ∗). One has
Ψ(u∗, 0) = 0. Ψ is differentiable everywhere, and at (u∗, 0) we have

∂uΨ(u∗, 0)(x, v) =

(
(

∫ t

0

v)− x,
∫ t

0

(∂xf(x∗, θ).x− v)

)
.

∂uΨ(u∗, 0) is continuous, and it is invertible with continuous inverse because it is linear and continuous, and because
∂uΨ(u∗, 0)(x, v) = 0 if and only if {

∀t ∈ [0, 1], x(t) =
∫ t
0
v

∀t ∈ [0, 1], v(t) = ∂xf(x∗(t), θ(t)).x(t)

which is equivalent to 
ẋ = ∂f(x∗, θ).x

x(0) = 0

v = ẋ,

which is equivalent, because this equation is linear to (x, v) = (0, 0). Using the implicit function theorem, we know
that there exists two neighbourhoods U ⊂ R and V ⊂ (x0, v0) + C∞0 ([0, 1],Rd)2 of 0 and u∗ and a continuous function
ζ : U → V such that

∀(u, ε) ∈ U × V,Ψ(u, ε) = 0⇔ u = ζ(ε)

This in particular ensures that xε converges uniformly to x∗ as ε goes to 0
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A.2. Momentum ResNets are more general than neural ODEs – Proof of Proposition 3

Proof. If x satisfies (5) we get by derivation that

ẍ = ∂xf(x, θ)f(x, θ) + ∂θf(x, θ)θ̇

Then, if we define f̂(x, θ) = ε[∂xf(x, θ)f(x, θ) + ∂θf(x, θ)θ̇] + f(x, θ), we get that x is also solution of the second-order
model εẍ+ ẋ = f̂(x, θ) with (x(0), ẋ(0)) = (x0, f(x0, θ0)).

A.3. Solution of (7) – Proof of Proposition 4

(7) writes

{
ẋ = v, x(0) = x0

v̇ = θx−v
ε , v(0) = 0.

For which the solution at time t writes

(
x(t)
v(t)

)
= exp

(
0 Iddt
θt
ε − Iddt

ε

)
.

(
x0
0

)
.

The calculation of this exponential gives

x(t) = e−
t
2ε

(
+∞∑
n=0

1

(2n)!
(
θ

ε
+

Idd
4ε2

)nt2n +

+∞∑
n=0

1

2ε(2n+ 1)!
(
θ

ε
+

Idd
4ε2

)nt2n+1

)
x0.

Note that it can be checked directly that this expression satisfies (7) by derivations. At time 1 this effectively gives
x(1) = Ψε(θ)x0.

A.4. Representable mappings for a Momentum ResNet with linear residual functions – Proof of Theorem 1

In what follows, we denote by fε the function of matrices defined by

fε(θ) = Ψε(εθ −
I

4ε
) = e−

1
2ε

+∞∑
n=0

(
1

(2n)!
+

1

2ε(2n+ 1)!

)
θn.

Because Ψε(Rd×d) = fε(Rd×d), we choose to work on fε.

We first need to prove that fε is surjective on C.

A.4.1. SURJECTIVITY ON C OF fε

Lemma 1 (Surjectivity of fε). For ε > 0, fε is surjective on C.

Proof. Consider

Fε : C −→ C

z 7−→ e−
1
2ε (cosh(z) +

1

2εz
sinh(z)).

For z ∈ C, we have fε(z2) = Fε(z), and because z 7→ z2 is surjective on C, it is sufficient to prove that Fε is surjective
on C. Suppose by contradiction that there exists w ∈ C such that ∀z ∈ C, exp ( 1

2ε )Fε(z) 6= w. Then exp ( 1
2ε )Fε − w is

an entire function (Levin, 1996) of order 1 with no zeros. Using Hadamard’s factorization theorem (Conway, 2012), this
implies that there exists a, b ∈ C such that ∀z ∈ C,

cosh(z) +
sinh(z)

2εz
− w = exp (az + b).
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However, since Fε is an even function one has that ∀z ∈ C

exp (az + b) = exp (−az + b)

so that ∀z ∈ C, 2az ∈ 2iπZ. Necessarily, a = 0, which is absurd because Fε is not constant.

We first prove Theorem 1 in the diagonalizable case.

A.4.2. THEOREM 1 IN THE DIAGONALIZABLE CASE

Proof. Necessity Suppose that D can be represented by a second-order model (7). This means that there exists a real matrix
X such that D = fε(X) with X real and

fε(X) = e−
1
2ε (

+∞∑
n=0

aεnX
n)

with

aεn =
1

(2n)!
+

1

2ε(2n+ 1)!
.

X commutes with D so that there exists P ∈ GLd(C) such that P−1DP is diagonal and P−1XP is triangular. Because
fε(P

−1XP ) = P−1DP , we have that ∀λ ∈ Sp(D), there exists z ∈ Sp(X) such that λ = fε(z). Because λ < λε,
necessarily, z ∈ C− R. In addition, λ = fε(z) = λ̄ = fε(z̄). Because X is real, each z ∈ Sp(X) must be associated with
z̄ in P−1XP . Thus, λ appears in pairs in P−1DP .

Sufficiency Now, suppose that ∀λ ∈ Sp(D) with λ < λε, λ is of even multiplicity order. We are going to exhibit a X real
such that D = fε(X). Thanks to Lemma 1, we have that fε is surjective. Let λ ∈ Sp(D).

• If λ ∈ R and λ < λε or λ ∈ C− R then there exists z ∈ C− R by Lemma 1 such that λ = fε(z).

• If λ ∈ R and λ ≥ λε, then because fε is continuous and goes to infinity when x ∈ R goes to infinity, there exists
x ∈ R such that λ = fε(x).

In addition, there exist (α1, ..., αk) ∈ (C− R)k ∪ [−∞, λε[k, (β1, ..., βp) ∈ [λε,+∞]p such that

D = Q−1∆Q,

with Q ∈ GLd(R), and

∆ =



P−11 Dα1
P1 02 · · · · · · · · · 02

02
. . . · · · · · · · · · 02

...
... P−1k Dαk

Pk 02 · · · 02
0 · · · · · · β1 · · · 0

0 · · · · · · 0
. . . 0

0 · · · · · · · · · · · · βp


∈ Rd×d

with Pj ∈ GL2(C) and Dαj =

(
αj 0
0 ᾱj

)
.

Let (z1, ..., zk) ∈ (C − R)k and (x1, ..., xp) ∈ Rp be such that fε(zj) = αj and fε(xj) = βj . For 1 ≤ j ≤ k, one
has P−1j DzjPj ∈ R2×2. Indeed, writing αj = aj + ibj with aj , bj ∈ R, the fact that P−1j DαjPj ∈ R2×2 implies that
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i

(
1 0
0 −1

)
∈ iR2×2. Writing zj = uj + ivj with uj , vj ∈ R, we get that P−1j DzjPj ∈ R2×2. Then

X = Q



P−11 Dz1P1 02 · · · · · · · · · 02

02
. . . · · · · · · · · · 02

...
... P−1k DzkPk 02 · · · 02

0 · · · · · · x1 · · · 0

0 · · · · · · 0
. . . 0

0 · · · · · · · · · · · · xp


Q−1 ∈ Rd×d

is such that fε(X) = D, and D is represented by a second-order model (7).

We now state and demonstrate the general version of Theorem 1.

First, we need to demonstrate properties of the complex derivatives of the entire function fε.

A.4.3. THE ENTIRE FUNCTION fε HAS A DERIVATIVE WITH NO-ZEROS ON C− R.

Lemma 2 (On the zeros of f ′ε). ∀z ∈ C− R we have f ′ε(z) 6= 0.

Proof. One has

Gε(z) = e−
1
2ε (cos(z) +

1

2εz
sin(z)) = fε(−z2)

so that G′ε(z) = −2zf ′ε(−z2) and it is sufficient to prove that the zeros of G′ε are all real.

We first show that Gε belongs to the Laguerre-Pólya class (Craven & Csordas, 2002). The Laguerre-Pólya class is the set
of entire functions that are the uniform limits on compact sets of C of polynomials with only real zeros. To show that Gε
belongs to the Laguerre-Pólya class, it is sufficient to show (Dryanov & Rahman, 1999, p. 22) that:

• The zeros of Gε are all real.

• If (zn)n∈N denotes the sequence of real zeros of Gε, one has
∑

1
|zn|2 <∞.

• Gε is of order 1.

First, the zeros of Gε are all real, as demonstrated in Runckel (1969). Second, if (zn)n∈N denotes the sequence of real zeros
of Gε, one has zn ∼ nπ + π

2 as n −→∞, so that
∑

1
|zn|2 <∞. Third, Gε is of order 1. Thus, we have that Gε is indeed in

the Laguerre-Pólya class.

This class being stable under differentiation, we get that G′ε also belongs to the Laguerre-Pólya class. So that the roots of
G′ε are all real, and hence those of fε as well.

A.4.4. THEOREM 1 IN THE GENERAL CASE

When ε = 0, we have in the general case the following from Culver (1966):

Let A ∈ Rd×d. Then A can be represented by a first-order model (8) if and only if A is not singular and each Jordan block
of A corresponding to an eigen value λ < 0 occurs an even number of time.

We now state and demonstrate the equivalent of this result for second order models (7).
Theorem 2 (Representable mappings for a Momentum ResNet with linear residual functions – General case). LetA ∈ Rd×d.

If A can be represented by a second-order model (7), then each Jordan block of A corresponding to an eigen value λ < λε
occurs an even number of time.

Reciprocally, if each Jordan block of A corresponding to an eigen value λ ≤ λε occurs an even number of time, then A can
be represented by a second-order model.
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Proof. We refer to the arguments from Culver (1966) and use results from Gantmacher (1959) for the proof.

Suppose that A can be represented by a second-order model (7). This means that there exists X ∈ Rd×d such that
A = fε(X ). The fact that X is real implies that its Jordan blocks are:

(λ− zk)ak , zk ∈ R
(λ− zk)bk and (λ− z̄k)bk , zk ∈ C− R.

Let λk = fε(zk) be an eigenvalue of A such that λk < λε. Necessarily, zk ∈ C− R, and f ′ε(zk) 6= 0 thanks to Lemma 2.
We then use Theroem 9 from Gantmacher (1959) (p. 158) to get that the Jordan blocks of A corresponding to λk are

(λ− fε(zk))bk and (λ− fε(z̄k))bk .

Since fε(z̄k) = fε(zk) = λk, we can conclude that the Jordan blocks of A corresponding λk < λε occur an even number of
time.

Now, suppose that each Jordan block of A corresponding to an eigen value λ ≤ λε occurs an even number of times. Let λk
be an eigenvalue of A.

• If λk ∈ C−R we can write, because fε is surjective (proved in Lemma 1), λk = fε(zk) with zk ∈ C−R. Necessarily,
because A is real, the Jordan blocks of A corresponding to λk have to be associated to those corresponding to λ̄k. In
addition, thanks to Lemma 2, f ′ε(zk) 6= 0

• If λk < λε, we can write, because fε is surjective, λk = fε(zk) = fε(z̄k) with zk ∈ C− R. In addition, f ′ε(zk) 6= 0.

• If λk > λε, then there exists zk ∈ R such that λk = fε(zk) and f ′ε(zk) 6= 0 because, if xε is such that fε(xε) = λε,
we have that f ′ε > 0 on ]xε,+∞[.

• If λk = λε, there exists zk ∈ R such that λk = fε(zk). Necessarily, f ′ε(zk) = 0 but f ′′ε (zk) 6= 0.

This shows that the Jordan blocks of A are necessarily of the form

(λ− fε(zk))bk and (λ− fε(z̄k))bk , zk ∈ C− R
(λ− fε(zk))ak , zk ∈ R, fε(zk) 6= λε

(λ− λε)ck and (λ− λε)ck .

Let Y ∈ Rd×d be such that its Jordan blocks are of the form

(λ− zk)bk and (λ− z̄k)bk , zk ∈ C− R, f ′ε(zk) 6= 0

(λ− zk)ak , zk ∈ R, fε(zk) 6= λε, f
′
ε(zk) 6= 0

(λ− zk)2ck , zk ∈ R, fε(zk) = λε.

Then again by the use of Theorem 7 from Gantmacher (1959) (p. 158), because if fε(zk) = λε with zk ∈ R, f ′′ε (zk) 6= 0, we
have that fε(Y ) is similar to A. Thus A writes A = P−1fε(Y )P = fε(P

−1Y P ) with P ∈ GLd(R). Then, X = P−1Y P
satisfies X ∈ Rd×d and fε(X) = A.

B. Additional theoretical results
B.1. On the convergence of the solution of a second order model when ε→∞

Proposition 5 (Convergence of the solution when ε −→ +∞). We let x∗ (resp. xε) be the solution of ẍ = f(x, θ) (resp.
ẍ + 1

ε ẋ = f(x, θ)) on [0, T ], with initial conditions x∗(0) = xε(0) = x0 and ẋ∗(0) = ẋε(0) = v0. Then xε converges
uniformly to x∗ as ε −→ +∞.
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Proof. The equation ẍ+ 1
ε ẋ = f(x, θ) with xε(0) = x0, ẋε(0) = v0 writes in phase space (x, v){

ẋ = v, x(0) = x0

v̇ = f(x, θ)− v
ε , v(0) = v0.

It then follows from the Cauchy-Lipschitz Theorem with parameters (Perko, 2013, Theorem 2, Chapter 2) that the solutions
of this system are continuous in the parameter 1

ε . That is xε converges uniformly to x∗ as ε −→ +∞.

B.2. Universality of Momentum ResNets

Proposition 6 (When v0 is free any mapping can be represented). Consider h : Rd −→ Rd, and the ODE

ẍ+ ẋ = 0

(x(0), ẋ(0)) = (x0,
h(x0)− x0

1− 1/e
)

Then ϕ1(x0) = h(x0).

Proof. This is because the solution is ϕt(x0) = x0 − v0(e−t − 1).

B.3. Non-universality of Momentum ResNets when v0 = 0

Proposition 7 (When v0 = 0 there are mappings that cannot be learned if the equation is autonomous.). When d = 1,
consider the autonomous ODE

εẍ+ ẋ = f(x)

(x(0), ẋ(0)) = (x0, 0)
(13)

If there exists x0 ∈ R+∗ such that h(x0) ≤ −x0 and x0 ≤ h(−x0) then h cannot be represented by (13).

This in particular proves that x 7→ λx for λ ≤ −1 cannot be represented by this ODE with initial conditions (x0, 0).

Proof. Consider such an x0 and h. Since ϕ1(x0) = h(x0) ≤ −x0, that ϕ0(x0) = x0 and that t 7→ ϕt(x0) is continuous,
we know that there exists t0 ∈ [0, 1] such that ϕt0(x0) = −x0. We denote x(t) = ϕt(x0), solution of

ẍ+
1

ε
ẋ = f(x)

Since d = 1, one can write f as a derivative: f = −E′. The energy Em = 1
2 ẋ

2 + E satisfies:

Ėm = −1

ε
ẋ2

So that

Em(t0)− Em(0) = −1

ε

∫ t0

0

ẋ2

In other words:
1

2
v(t0)2 +

1

ε

∫ t0

0

ẋ2 + E(−x0) = E(x0)

So that E(−x0) ≤ E(x0) We now apply the exact same argument to the solution starting at x1 = −x0. Since x0 ≤
h(−x0) = h(x1) there exists t1 ∈ [0, 1] such that ϕt1(x1) = x0. So that:

1

2
v(t1)2 +

1

ε

∫ t1

0

ẋ2 + E(x0) = E(−x0)

So that E(x0) ≤ E(−x0). We get that
E(x0) = E(−x0)

This implies that ẋ = 0 on [0, t0], so that the first solution is constant and x0 = −x0 which is absurd because x0 ∈ R∗.
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B.4. When v0 = 0 there are mappings that can be represented by a second-order model but not by a first-order one.

Proposition 8. There exits f such that the solution of

ẍ+
1

ε
ẋ = f(x)

with initial condition (x0, 0) at time 1 is

x(1) = −x0 × exp(− 1

2ε
)

Proof. Consider the ODE

ẍ+
1

ε
ẋ = (−π2 − 1

4ε2
)x (14)

with initial condition (x0, 0) The solution of this ODE is

x(t) = x0e
− t

2ε (cos(πt) +
1

2πε
sin(πt))

which at time 1 gives:
x(1) = −x0e−

1
2ε

B.5. Orientation preservation of first-order ODEs

Proposition 9 (The homeomorphisms represented by (5) are orientation preserving.). If K ⊂ Rd is a compact set and
h : K −→ Rd is a homeomorphism represented by (5), then h is in the connected component of the identity function on K for
the ‖.‖∞ topology.

We first prove the following:

Lemma 3. Consider K ⊂ Rd a compact set. Suppose that ∀x ∈ K, Φt(x) is defined for all t ∈ [0, 1]. Then

C = {Φt(x) | x ∈ K, t ∈ [0, 1]}

is compact as well.

Proof. We consider (Φtn(xn))n∈N a sequence in C. Since K × [0, 1] is compact, we can extract sub sequences (tϕ(n))n∈N,
(xϕ(n))n∈N that converge respectively to t0 and x0. We denote them (tn)n∈N and (xn)n∈N again for simplicity of the
notations. We have that:

‖Φtn(xn)− Φt(x)‖ ≤ ‖Φtn(xn)− Φtn(x)‖+ ‖Φtn(x)− Φt(x)‖.

Thanks to Gronwall’s lemma, we have

‖Φtn(xn)− Φtn(x)‖ ≤ ‖xn − x‖ exp (ktn),

where k is f ’s Lipschitz constant. So that ‖Φtn(xn) − Φtn(x)‖ −→ 0 as n −→ ∞. In addition, it is obvious that
‖Φtn(x)− Φt(x)‖ −→ 0 as n −→∞. We conclude that

Φtn(xn) −→ Φt(x) ∈ C,

so that C is compact.

Proof. Let’s denote by H the set of homeomorphisms defined on K. The application

Ψ : [0, 1] −→ H

defined by
Ψ(t) = Φt
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is continuous. Indeed, we have for any x0 in Rd that

‖Φt+ε(x0)− Φt(x0)‖ = ‖
∫ t+ε

t

f(Φs(x0))ds‖ ≤ εMf ,

where Mf bounds the continuous function f on C defined in lemma 3. Since Mf does not depend on x0, we have that

‖Φt+ε − Φt‖∞ −→ 0

as ε −→ 0, which proves that Ψ is continuous. Since Ψ(0) = IdK , we get that ∀t ∈ [0, 1], Φt is connected to IdK .

B.6. On the linear mappings represented by autonomous first order ODEs in dimension 1

Consider the autonomous ODE
ẋ = f(x), (15)

Theorem 3 (Linearity). Suppose d = 1. If (15) represents a linear mapping x 7→ ax at time 1, we have that f is linear.

Proof. If a = 1, consider some x0 ∈ R. Since Φ1(x0) = x0 = Φ0(x0), there exists, by Rolle’s Theorem a t0 ∈ [0, 1] such
that ẋ(t0) = 0. Then f(x(t0)) = 0. But since the constant solution y = x(t0) then solves ẏ = f(y), y(0) = x(t0), we get
by the unicity of the solutions that x(t0) = y(0) = x(1) = y(1− t0) = x0. So that f(x0) = f(x(t0)) = 0. Since this is
true for all x0, we get that f = 0. We now consider the case where a 6= 1 and a > 0. Consider some x0 ∈ R∗. If f(x0) = 0,
then the solution constant to x0 solves (3), and thus cannot reach ax0 at time 1 because a 6= 1. Thus, f(x0) 6= 0 if x0 6= 0.
Second, if the trajectory starting at x0 ∈ R∗ crosses 0 and f(0) = 0, then by the same argument we know that x0 = 0,
which is absurd. So that, ∀x0 ∈ R∗, ∀t ∈ [0, 1], f(Φt(x0)) 6= 0 . We can thus rewrite (3) as

ẋ

f(x)
= 1. (16)

Consider F a primitive of 1
f . Integrating (16), we get

F (ax0)− F (x0) =

∫ 1

0

F ′(x(t))ẋ(t)dt = 1.

In other words, ∀x ∈ R∗:
F (ax) = F (x) + 1.

We derive this equation and get:
af(x) = f(ax).

This proves that f(0) = 0. We now suppose that a > 1. We also have that

anf(
x

an
) = f(x).

But when n −→∞, f( x
an ) = x

an f
′(0) + o( 1

an ) so that

f(x) = f ′(0)x

and f is linear. The case a < 1 treats similarly by changing an to a−n.

B.7. There are mappings that are connected to the identity that cannot be represented by a first order autonomous
ODE

In bigger dimension, we can exhibit a matrix in GL+
d (R) (and hence connected to the identity) that cannot be represented by

the autonomous ODE (15).
Proposition 10 (A non-representable matrix). Consider the matrix

A =

(
−1 0
0 −λ

)
,

where λ > 0 and λ 6= 1. Then A ∈ GL+
2 (R)−GL2(R)2 and A cannot be represented by (15).
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Proof. The fact that A ∈ GL+
2 (R)−GL2(R)2 is because A has two single negative eigenvalues, and because det(A) =

λ > 0. We consider the point (0, 1). At time 1, it has to be in (0,−λ). Because the trajectory are continuous, there exists
0 < t0 < 1 such that the trajectory is at (x, 0) at time t0, and thus at (−x, 0) at time t0 + 1, and again at (x, 0) at time
t0 + 2. However, the particle is at (0, λ2) at time 2. All of this is true because the equation is autonomous. Now, we showed
that trajectories starting at (0, 1) and (0, λ2) would intersect at time t0 at (x, 0), which is absurd. Figure 11 illustrates the
paradox.

(0,1).
(x,0)

(0, − λ)

(−x,0)

(0,λ2)

..

.

.

Figure 11. Illustration of Proposition 10. The points starting at (0, 1) and (0, λ2) are distinct but their associated trajectories would have
to intersect in (x, 0), which is impossible.

C. Exact multiplication

Algorithm 1 Exactly reversible multiplication by a ratio, from Maclaurin et al. (2015)

1: Input: Information buffer i, value c, ratio n/d
2: i = i× d
3: i = i+ (c mod d)
4: c = c÷ d
5: c = c× n
6: c = c+ (i mod n)
7: i = i÷ n
8: return updated buffer i, updated value c

We here present the algorithm from Maclaurin et al. (2015). In their paper, the authors represent γ as a rational number,
γ = n

d ∈ Q. The information is lost during the integer division of vn by d in (2). The store this information, it is sufficient
to store the remainder r of this integer division. r is stored in an “information buffer” i. To update i, one has to left-shift the
bits in i by multiplying it by n before adding r. The entire procedure is illustrated in Algorithm 1 from Maclaurin et al.
(2015).
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D. Implementation details
D.1. Creating a Momentum ResNet with a MLP

import torch
import torch.nn as nn
from momentumnet import MomentumNet

function = nn.Sequential(nn.Linear(2, 16), nn.Tanh(), nn.Linear(16, 2))

mom_net = MomentumNet([function, ], gamma=0.9, n_iters=15)

D.2. Drop-in replacement

To illustrate the fact that Momentum ResNets are a drop-in replacement for ResNets, we implement a function

transform(model, pretrained=False, gamma=0.9)

This function takes a torchvision model ResNet and returns its Momentum ResNet counterpart. The Momentum ResNet can
be initialized with weights of a pretrained ResNet on ImageNet, and hence, as we show in this paper, quickly achieves great
performances on new datasets.

This method can be used as follow:

mresnet152 = transform(resnet152(pretrained=True), pretrained=True)

and is made available in the code.

E. Experiment details
In all our image experiments, we use Nvidia Tesla V100 GPUs.

For our experiments on CIFAR-10 and 100, we used a batch-size of 128 and we employed SGD with a momen-
tum of 0.9. The training was done over 220 epochs. The initial learning rate was 0.01 and was decayed by a factor 10 at
epoch 180. A constant weight decay was set to 5× 10−4. Standard inputs preprocessing as proposed in Pytorch (Paszke
et al., 2017) was performed.

For our experiments on ImageNet, we used a batch-size of 256 and we employed SGD with a momentum of 0.9.
The training was done over 100 epochs. The initial learning rate was 0.1 and was decayed by a factor 10 every 30 epochs. A
constant weight decay was set to 10−4. Standard inputs preprocessing as proposed in Pytorch (Paszke et al., 2017) was
performed: normalization, random croping of size 224× 224 pixels, random horizontal flip.

For our experiments in the continuous framework, we adapted the code made available by Chen et al. (2018) to
work on the CIFAR-10 data set and to solve second order ODEs. We used a batch-size of 128, and used SGD with a
momentum of 0.9. The initial learning rate was set to 0.1 and reduced by a factor 10 at iteration 60. The training was done
over 120 epochs.

For the learning to optimize experiment, we generate a random Gaussian matrix D of size 16× 32. The columns are then
normalized to unit variance. We train the networks by stochastic gradient descent for 10000 iterations, with a batch-size of
1000 and a learning rate of 0.001. The samples yq are generated as follows: we first sample a random Gaussian vector
ỹq, and then we use yq =

ỹq
‖D>ỹq‖∞ , which ensures that every sample verify ‖D>yq‖∞ = 1. This way, we know that the

solution x∗ is zero if and only if λ ≥ 1. The regularization is set to λ = 0.1.
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F. Backpropagation for Momentum ResNets
In order to backpropagate the gradient of some loss in a Momentum ResNet, we need to formulate an explicit version of (2).
Indeed, (2) writes explicitly

vn+1 = γvn + (1− γ)f(xn, θn)

xn+1 = xn + (γvn + (1− γ)f(xn, θn)).
(17)

Writing z = (x, v), the backpropagation for Momentum ResNets then writes, for some loss L

∇zk−1
L =

[
I + (1− γ)∂xf(xk−1, θk−1) γI

(1− γ)∂xf(xk−1, θk−1) γI

]T
∇zkL

∇θk−1
L = (1− γ)

[
∂θf(xk−1, θk−1)
∂θf(xk−1, θk−1)

]T
∇zkL.

We implement these formula to obtain a custom Jacobian-vector product in Pytorch.

G. Additional figures
G.1. Learning curves on CIFAR-10

We here show the learning curves when training a ResNet-101 and a Momentum ResNet-101 on CIFAR-10.
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Figure 12. Test error and test loss as a function of depth on CIFAR-10 with a ResNet-101 and two Momentum ResNets-101.


