Recomposing the Reinforcement Learning Building Blocks with Hypernetworks

Elad Sarafian* 1 Shai Keynan* 1 Sarit Kraus 1

Abstract

The Reinforcement Learning (RL) building blocks, i.e. Q-functions and policy networks, usually take elements from the cartesian product of two domains as input. In particular, the input of the Q-function is both the state and the action, and in multi-task problems (Meta-RL) the policy can take a state and a context. Standard architectures tend to ignore these variables’ underlying interpretations and simply concatenate their features into a single vector. In this work, we argue that this choice may lead to poor gradient estimation in actor-critic algorithms and high variance learning steps in Meta-RL algorithms. To consider the interaction between the input variables, we suggest using a Hypernetwork architecture where a primary network determines the weights of a conditional dynamic network. We show that this approach improves the gradient approximation and reduces the learning step variance, which both accelerates learning and improves the final performance. We demonstrate a consistent improvement across different locomotion tasks and different algorithms both in RL (TD3 and SAC) and in Meta-RL (MAML and PEARL).

1. Introduction

The rapid development of deep neural-networks as general-purpose function approximators has propelled the recent Reinforcement Learning (RL) renaissance (Zai and Brown, 2020). RL algorithms have progressed in robustness, e.g. from (Lillicrap et al., 2016) to (Fujimoto et al., 2018); exploration (Haarnoja et al., 2018); gradient sampling (Schulman et al., 2017; 2015a); and off-policy learning (Fujimoto et al., 2019; Kumar et al., 2019). Many actor-critic algorithms have focused on improving the critic learning routines by modifying the target value (Hasselt et al., 2016), which enables more accurate and robust Q-function approximations. While this greatly improves the policy optimization efficiency, the performance is still bound by the networks’ ability to represent Q-functions and policies. Such a constraint calls for studying and designing neural models suited for the representation of these RL building blocks.

A critical insight in designing neural models for RL is the reciprocity between the state and the action, which both serve as the input for the Q-function. At the start, each input can be processed individually according to its source domain. For example, when s is a vector of images, it is common to employ CNN models (Kaiser et al., 2019), and when s or a are natural language words, each input can be processed separately with embedding vectors (He et al., 2016). The common practice in incorporating the state and action learnable features into a single network is to concatenate the two vectors and follow with MLP to yield the Q-value (Schulman et al., 2017). In this work, we argue that for actor-critic RL algorithms (Grondman et al., 2012), such an off-the-shelf method could be significantly improved with Hypernetworks.

In actor-critic methods, for each state, sampled from the...
dataset distribution, the actor’s task is to solve an optimization problem over the action distribution, i.e. the policy. This motivates an architecture where the \(Q \)-function is explicitly modeled as the value function of a contextual bandit (Lattimore and Szepesvári, 2020) \(Q^\pi(s,a) = Q^\pi_\theta(a) \) where \(s \) is the context. While standard architectures are not designed to model such a relationship, Hypernetworks were explicitly constructed for that purpose (Ha et al., 2016). Hypernetworks, also called meta-networks, can represent hierarchies by transforming a meta variable into a context-dependent function that maps a base variable to the required output space. This emphasizes the underlying dynamic between the meta and base variables and has found success in a variety of domains such as Bayesian neural-networks (Lior Deutsch, 2019), continual learning (von Oswald et al., 2019), generative models (Ratzlaff and Li, 2019) and adversarial defense (Sun et al., 2017). The practical success has sparked interest in the theoretical properties of Hypernetworks. For example, it has recently been shown that they enjoy better parameter complexity than classical models which concatenate the base and meta-variables together (Galanti and Wolf, 2020a,b).

When analyzing the critic’s ability to represent the \(Q \)-function, it is important to notice that in order to optimize the policy, modern off-policy actor-critic algorithms (Fujimoto et al., 2018; Haarnoja et al., 2018) utilize only the parametric neural gradient of the critic with respect to the action input, i.e., \(\nabla_a Q^\pi_\theta(s,a) \). Recently, (Ilyas et al., 2019) examined the accuracy of the policy gradient in on-policy algorithms. They demonstrated that standard RL implementations achieve gradient estimation with a near-zero cosine similarity when compared to the “true” gradient. Therefore, recovering better gradient approximations has the potential to substantially improve the RL learning process. Motivated by the need to obtain high-quality gradient approximations, we set out to investigate the gradient accuracy of Hypernetworks with respect to standard models. In Sec. 3 we analyze three critic models and find that the Hypernetwork model with a state as a meta-variable enjoys better gradient accuracy which translates into a faster learning rate.

Much like the induced hierarchy in the critic, meta-policies that optimize multi-task RL problems have a similar structure as they combine a task-dependent context and a state input. While some algorithms like MAML (Finn et al., 2017) and LEO (Rusu et al., 2019) do not utilize an explicit context, other works, e.g. PEARL (Rakelly et al., 2019) or MQL (Fakoor et al., 2019), have demonstrated that a context improves the generalization abilities. Recently, (Jayakumar et al., 2019) have shown that Multiplicative Interactions (MI) are an excellent design choice when combining states and contexts. MI operations can be viewed as shallow Hypernetwork architectures. In Sec. 4, we further explore this approach and study context-based meta-policies with deep Hypernetworks. We find that with Hypernetworks, the task and state-dependent gradients are disentangled s.t. the state-dependent gradients are marginalized out, which leads to an empirically lower learning step variance. This is specifically important in on-policy methods such as MAML, where there are fewer optimization steps during training.

The contributions of this paper are three-fold. First, in Sec. 3 we provide a theoretical link between the \(Q \)-function gradient approximation quality and the allowable learning rate for monotonic policy improvement. Next, we show empirically that Hypernetworks achieve better gradient approximations which translates into a faster learning rate and improves the final performance. Finally, in Sec. 4 we show that Hypernetworks significantly reduce the learning step variance in Meta-RL. We summarize our empirical results in Sec. 5, which demonstrates the gain of Hypernetworks both in single-task RL and Meta-RL. Importantly, we find empirically that Hypernetwork policies eliminate the need for the MAML adaptation step and improve the Out-Of-Distribution generalization in PEARL.

2. Hypernetworks

A Hypernetwork (Ha et al., 2016) is a neural-network architecture designed to process a tuple \((z,x)\) \(\in Z \times X\) and output a value \(y \in Y\). It is comprised of two networks, a primary network \(w_\theta : Z \to \mathbb{R}^{n_\theta}\) which produces weights \(w_\theta(z)\) for a dynamic network \(f_{w \theta}(z) : X \to Y\). Both networks are trained together, and the gradient flows through \(f\) to the primary networks’ weights \(\theta\). During test time or inference, the primary weights are fixed while the \(z\) input determines the dynamic network’s weights.

The idea of learnable context-dependent weights can be traced back to (McClelland, 1983; Schmidhuber, 1992). However, only in recent years have Hypernetworks gained popularity when they have been applied successfully with many dynamic network models, e.g., recurrent networks (Ha et al., 2016), MLP networks for 3D point clouds (Littwin and Wolf, 2019), spatial transformation (Potapov et al., 2018), convolutional networks for video frame prediction (Jia et al., 2016) and few-shot learning (Brock et al., 2018). In the context of RL, Hypernetworks were also applied, e.g., in QMIX (Rashid et al., 2018) to solve Multi-agent RL tasks and for continual model-based RL (Huang et al., 2020).

Fig. 1 illustrates our Hypernetwork model. The primary network \(w_\theta(z)\) contains residual blocks (Srivastava et al., 2015) which transform the meta-variable into a 1024 sized latent representation. This stage is followed by a series of parallel linear transformations, termed “heads”, which
output the sets of dynamic weights. The dynamic network $f_{\theta}(z)(x)$ contains only a single hidden layer of 256 which is smaller than the standard MLP architecture used in many RL papers (Fujimoto et al., 2018; Haarnoja et al., 2018) of 2 hidden layers, each with 256 neurons. The computational model of each dynamic layer is

$$x^{t+1} = \sigma_{ReLU} \left((1 + g^t(z)) \odot x^t W^t(z) + b^t(z) \right)$$

(1)

where the non-linearity is applied only over the hidden layer and g^t is an additional gain parameter that is required in Hypernetwork architectures (Littwin and Wolf, 2019). We defer the discussion of these design choices to Sec. 5.

3. Recomposing the Actor-Critic’s Q-Function

3.1. Background

Reinforcement Learning concerns finding optimal policies in Markov Decision Processes (MDPs). An MDP (Dean and Givan, 1997) is defined by a tuple $(\mathcal{S}, \mathcal{A}, \mathcal{P}, R)$ where \mathcal{S} is a set of states, \mathcal{A} is a set of actions, \mathcal{P} is a set of probabilities to switch from a state s to s' given an action a, and $R : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is a scalar reward function. The objective is to maximize the expected discounted sum of rewards with a discount factor $\gamma > 0$

$$J(\pi) = \mathbb{E} \left[\sum_{t=0}^{\infty} \gamma^t R(s_t, a_t) \right] a_t \sim \pi(\cdot | s_t) \right].$$

(2)

$J(\pi)$ can also be written, up to a constant factor $1-\gamma$, as an expectation over the Q-function

$$J(\pi) = \mathbb{E}_{s \sim d^\pi} \left[\mathbb{E}_{a \sim \pi(\cdot | s)} \left[Q^\pi(s, a) \right] \right],$$

(3)

where the Q-function is the expected discounted sum of rewards following visitation at state s and execution of action a (Sutton and Barto, 2018), and d^π is the state distribution induced by policy π.

Actor-critic methods maximize $J(\pi)$ over the space of parameterized policies. Stochastic policies are constructed as a state dependent transformation of an independent random variable

$$\pi_\phi(a | s) = \mu_\phi(\varepsilon | s) s, \varepsilon \sim p_\varepsilon,$$

(4)

where p_ε is a predefined multivariate distribution over \mathbb{R}^{n_a} and n_a is the number of actions. To maximize $J(\pi_\phi)$ over the ϕ parameters, actor-critic methods operate with an iterative three-phase algorithm. First, they collect into a replay buffer D the experience tuples (s, a, r, s'). For the parametric π_ϕ and some additive exploration noise policy (Zhang and Sutton, 2017). Then they fit a critic which is a parametric model Q^ϕ_π for the Q-function. For that purpose, they apply TD-learning (Sutton and Barto, 2018) with the loss function

$$\mathcal{L}_{\text{critic}}(\theta) = \mathbb{E}_{s, a, r, s' \sim D} \left[| Q^\phi_\pi(s, a) - r - \gamma \mathbb{E}_{a' \sim \pi_\phi(\cdot | s')} [Q^\phi_\pi(s', a')] |^2 \right],$$

where $\tilde{\theta}$ is a lagging set of parameters (Lillicrap et al., 2016). Finally, they apply gradient descent updates in the direction of an off-policy surrogate of $J(\pi_\phi)$

$$\phi \leftarrow \phi + \eta \nabla_\phi J_{\text{actor}}(\phi),$$

$$\nabla_\phi J_{\text{actor}}(\phi) = \mathbb{E}_{(s, a) \sim D} \left[\nabla_\phi \mu_\phi(\varepsilon | s) \nabla_\phi Q^\phi_\pi(s, \mu_\phi(\varepsilon | s)) \right].$$

(5)

Here, $\nabla_\phi \mu_\phi(\varepsilon | s)$ is a matrix of size $n_\phi \times n_a$ where n_ϕ is the number of policy parameters to be optimized.

Two well-known off-policy algorithms are TD3 (Fujimoto et al., 2018) and SAC (Haarnoja et al., 2018). TD3 optimizes deterministic policies with additive normal exploration noise and double Q-learning to improve the robustness of the critic part (Hasselt et al., 2016). On the other hand, SAC adopts stochastic, normally distributed policies but it modifies the reward function to include a high entropy bonus $\tilde{R}(s, a) = R(s, a) + \alpha H(\pi(\cdot | s))$ which eliminates the need for exploration noise.

3.2. Our Approach

The gradient of the off-policy surrogate $\nabla_\phi J_{\text{actor}}(\phi)$ differs from the true gradient $\nabla_\phi J(\pi)$ in two elements: First, the distribution of states is the empirical distribution in the dataset and not the policy distribution d^π; and second, the Q-function gradient is estimated with the critic’s parametric gradient $\nabla_\phi Q^\phi_\pi \approx \nabla_\phi Q^\pi$. Avoiding a distribution mismatch is the motivation of many constrained policy improvement methods such as TRPO and PPO (Schulman et al., 2015a; 2017). However, it requires very small and impractical steps. Thus, many off-policy algorithms ignore the distribution mismatch and seek to maximize only the empirical advantage

$$A(\phi', \phi) = \mathbb{E}_{s \sim D} \left[\mathbb{E}_{a \sim \pi_\phi(\cdot | s)} [Q^\phi_\pi(s, a)] - \mathbb{E}_{a \sim \pi_\phi(\cdot | s)} [Q^\phi_\pi(s, a)] \right] .$$

In practice, a positive empirical advantage is associated with better policies and is required by monotonic policy improvement methods such as TRPO (Kakade and Langford, 2002; Schulman et al., 2015a). Yet, finding positive empirical advantage policies requires a good approximation of the gradient $\nabla_\phi Q^\pi$. The next proposition suggests that with a sufficiently accurate approximation, applying the gradient step as formulated in the actor update in Eq. (5) yields positive empirical advantage policies.

Proposition 1. Let $\pi(\cdot | s) = \mu_\phi(\varepsilon | s)$ be a stochastic parametric policy with $\varepsilon \sim p_\varepsilon$, and $\mu_\phi(\cdot | s)$ a
We define \(\tilde{\theta} \) when the gradient of the (MSE), provide better gradient estimation. A more direct approach could be to explicitly learn the gradient of the \(Q \)-function model. The blue arrows represent the backpropagation calculation of the actions gradient. Notice that in the SA-Hyper, the gradient flows only through the dynamic network, which enables more efficient implementation as the dynamic network is much smaller than the primary network.

Usually, the state feature vector \(\xi(s) \) has a much larger dimension than the action dimension \(n_a \). Thus, the matrix \(\nabla_a w(a) \) has a large null-space which can potentially hamper the training as it may yield zero or near-zero gradients even when the true gradient exists.

On the other hand, the SA-Hyper formulation is

\[
Q^*_\theta(s, a) = w(s) \cdot a \quad \nabla_a Q^*_\theta(s, a) = w(s)
\]

which is a state-dependent constant model of the gradient in \(a \). While it is a relatively naive model, it is sufficient for localized policies with low variance as it approximates the tangent hyperplane around the policy mean value.

Moving forward to a multi-layer architecture, let us first consider the AS-Hyper architecture. In this case the gradient is \(\nabla_a Q^*_\theta(s, a) = \nabla_a w(a) \nabla_w f_w(s) \). We see that the problem of the single layer is exacerbated since \(\nabla_a w(a) \) is now a \(n_a \times n_w \) matrix where \(n_w \gg n_a \) is the number of dynamic network weights.

Next, the MLP and SA-Hyper models can be jointly analyzed. First, we calculate the input’s gradient of each layer

\[
x^{l+1} = f^l(x^l) = \sigma (x^lW^l + b^l) \quad \nabla_a x^{l+1} = (\nabla_a x^l)\nabla_x f^l(x^l) = (\nabla_a x^l)\nabla^l \Lambda^l (x^l) \quad \Lambda^l (x^l) = \text{diag} \left(\sigma' (x^lW^l + b^l) \right)
\]

where \(\sigma' \) is the activation function and \(W^l \) and \(b^l \) are the weights and biases of the \(l \)-th layer, respectively. By the chain rule, the input’s gradient of an \(L \)-layers network is the product of these expressions. For the MLP model we obtain

\[
\nabla_a Q^*_\theta(s, a) = W^a \Lambda^l (s, a) \left(\prod_{l=2}^{L-1} W^l \Lambda^l (s, a) \right) W^1.
\]
On the other hand, in SA-Hyper the weights are the outputs of the primary network, thus we have

\[\nabla_a Q^\theta(s, a) = W^1(s)\Lambda^1(s, a) \left(\prod_{l=2}^{L-1} W^l(s)\Lambda^l(s, a) \right) W^L(s). \tag{14} \]

Importantly, while the SA-Hyper’s gradient configuration is controlled via the state-dependent matrices \(W^l(s) \), in the MLP model, it is a function of the state only via the diagonal elements in \(\Lambda^l(s, a) \). These local derivatives of the non-linear activation functions are usually piecewise constant when the activations take the form of ReLU-like functions. Also, they are required to be bounded and smaller than one in order to avoid exploding gradients during training (Philipp et al., 2017). These restrictions significantly reduce the expressiveness of the parametric gradient and its ability to model the true \(Q \)-function gradient. For example, with ReLU, for two different pairs \((s_1, a_1)\) and \((s_2, a_2)\) the estimated gradient is equal if they have same active neurons map (i.e. the same ReLUs are in the active mode). Following this line of reasoning, we postulate that the SA-Hyper configuration should have better gradient approximations.

Empirical analysis To test our hypothesis, we trained TD3 agents with different network models and evaluated their parametric gradient \(\nabla_a Q^\theta(s, a) \). To empirically analyze the gradient accuracy, we opted to estimate the true \(Q \)-function gradient with a non-parametric local estimator at the policy mean value, i.e. at \(a_\mu = \mathbb{E}_{e \sim p_e} [\mu_e(e|s)] \). For that purpose, we generated \(N_e \) independent trajectories with actions sampled around the mean value, i.e. \(a = a_\mu + \Delta_a \), and fit with a Least-Mean-Square (LMS) estimator a linear model for the empirical return of the sampled trajectories. The “true” gradient is therefore the linear model’s gradient. Additional technical details of this estimator are found in the appendix.

As our \(Q \)-function estimator is based on Temporal-Difference (TD) learning, it bears bias. Hence, in practice we cannot hope to reconstruct the true \(Q \)-function scale. Thus, instead of evaluating the gradient’s MSE, we take the Cosine Similarity (CS) as a surrogate for measuring the gradient accuracy.

\[\text{CS}(Q^\theta) = \mathbb{E}_{s \sim \mathcal{D}} \frac{\nabla_a Q^\theta(s, a_\mu) \cdot \nabla_a Q^\pi(s, a_\mu)}{\| \nabla_a Q^\theta(s, a_\mu) \| \| \nabla_a Q^\pi(s, a_\mu) \|} , \]

Fig. 3 summarizes our CS evaluations with the three model alternatives averaged over 4 Mujoco (Todorov et al., 2012) environments. Fig. 3d presents the mean CS over states during the training process. Generally, the CS is very low, which indicates that the RL training is far from optimal. While this finding is somewhat surprising, it corroborates the results in (Ilyas et al., 2019) which found near-zero CS in policy gradient algorithms. Nevertheless, note that the impact of the CS accuracy is cumulative as in each gradient ascent step the policy accumulates small improvements. This lets even near-zero gradient models improve over time. Overall, we find that the SA-Hyper CS is higher, and unlike other models, it is larger than zero during the entire training process. The SA-Hyper advantage is specifically significant at the first 100\(K \) learning steps, which indicates that SA-Hyper learns faster in the early learning stages.

Assessing the gradient accuracy by the average CS can be somewhat confounded by states that have reached a local equilibrium during the training process. In these states the true gradient has zero magnitude s.t. the CS is ill-defined. For that purpose, in Fig. 3a-c we measure the percentage of states with a CS higher than a threshold \(\tau \). This indicates how many states are learnable where more learnable states are attributed to a better gradient estimation. Fig. 3a shows that for all thresholds \(\tau \in [0, 1] \) SA-Hyper has more learnable states, and Fig. 3b-c present the change of learnable states for different \(\tau \) during the training process. Here we also find that the SA-Hyper advantage is significant particularly at the first stage of training. Finally, Fig. 4 demonstrates how gradient accuracy translates to better learning curves. As expected, we find that SA-Hyper outperforms both the MLP architecture and the AS-Hyper configuration which is also generally inferior to MLP.
In the next section, we discuss the application of Hypernetworks in Meta-RL for modeling context conditional policies. When such a context exists, it also serves as an input variable to the Q-function. In that case, when modeling the critic with a Hypernetwork, one may choose to use the context as a meta-variable or alternatively as a base variable. Importantly, when the context is the dynamic’s input, the dynamic weights are fixed for each state, regardless of the task. In our PEARL experiments in Sec. 5 we always used the context as a base variable of the critic. We opted for this configuration since: (1) we found empirically that it is important for the generalization to have a constant set of weights for each state; and (2) As the PEARL context is learnable, we found that when the context gradient backpropagates only to a new task with a few gradient ascent steps. To do so, instead of learning different policies for each task, it estimates the policy gradient (Sutton et al., 2018; Sohn et al., 2019) to the RL domain. It aims at learning meta-policies that solve a distribution of different tasks or a continuous number when the tasks are sampled from a continuous distribution. While PEARL’s context is a probabilistic model that processes a trajectory c^{T_i} of (s, a, r) transitions sampled from task T_i. To learn the critic alongside the context, PEARL modifies the SAC critic loss to

$$L_{\text{critic}}^{\text{pearl}}(\theta, \nu) = \mathbb{E}_T \left[\mathbb{E}_{q_i(z|c^{T_i})} \left[L_{\text{sac}}^{\text{critic}}(\theta, \nu) + D_{KL} \left(q_v(z|c^{T_i})|p(z) \right) \right] \right],$$

where $p(z)$ is a prior probability over the latent distribution of the context. While PEARL’s context is a probabilistic model, other works (Fakoor et al., 2019) have suggested that a deterministic learnable context can provide similar results.

In this work, we consider both a learnable context and also the simpler approach of an oracle-context c^{T_i} which is a unique, predefined identifier for task i (Jayakumar et al., 2019). It can be an index when there is a countable number of tasks or a continuous number when the tasks are sampled from a continuous distribution. In practice, the oracle identifier is often known to the agent. Moreover, sometimes, e.g., in goal-oriented tasks, the context cannot be recovered directly from the transition tuples without prior knowledge, since there are no rewards unless the goal is reached, which rarely happens without policy adaptation.
4.2. Our Approach

Hypernetworks naturally fit into the meta-learning formulation where the context is an input to the primary network (von Oswald et al., 2019; Zhao et al., 2020). Therefore, we suggest modeling meta-policies s.t. the context is the meta-variable and the state is the dynamic’s input

\[\pi_\phi(a|s, c) = \mu_w(c)(\varepsilon|s), \text{ s.t. } \varepsilon \sim p_\varepsilon. \] (16)

Interestingly, this modeling disentangles the state dependent gradient and the task dependent gradient of the meta-policy. To see that, let us take for example the on-policy objective of MAML and plug in a context dependent policy \(\pi_\phi(a|s, c) = \mu_\phi(\varepsilon|s, c) \). Then, the objective in Eq. (15) becomes

\[J(\phi) = \sum_{T_i} \sum_{s_j \in T_i} \tilde{A}_{i,j} \frac{\nabla_\phi \mu_\phi(\varepsilon_j|s_j, c_i)}{\mu_\phi(\varepsilon_j|s_j, c_i)}. \] (17)

Applying the Hypernetwork modeling of the meta-policy in Eq. (16), this objective can be written as

\[J(\phi) = \sum_{T_i} \nabla_\phi w(c_i) \cdot \sum_{s_j \in T_i} \tilde{A}_{i,j} \frac{\nabla_w \mu_w(c_i)(\varepsilon_j|s_j)}{\mu_w(c_i)(\varepsilon_j|s_j)} \] (18)

In this form, the state-dependent gradients of the dynamic weights \(\nabla_w \mu_w(c_i)(\varepsilon_j, s_j) \) are averaged independently for each task, and the task-dependent gradients of the primary weights \(\nabla_\phi w(c_i) \) are averaged only over the task distribution and not over the joint task-state distribution as in Eq. (17). We postulate that such disentanglement reduces the gradient noise for the same number of samples. This should translate to more accurate learning steps and thus a more efficient learning process.

To test our hypothesis, we trained two different meta-policy models based on the MAML algorithm: (1) an MLP model where a state and an oracle-context are joined together; and (2) a Hypernetwork model, as described, with an oracle-context as a meta-variable. Importantly, note that, other than the neural architecture, both algorithms are identical. For four different timestamps during the learning process, we constructed 50 different uncorrelated gradients from different episodes and evaluating the updated policy’s performance. We take the performance statistics of the updated policies as a surrogate for the gradient noise. In Fig. 5, we plot the performance statistics of the updated meta-policies. We find that the variance of the Hypernetwork model is significantly lower than the MLP model across all tasks and environments. This indicates more efficient improvement and therefore we also observe that the mean value is consistently higher.

5. Experiments

5.1. Experimental Setup

We conducted our experiments in the MuJoCo simulator (Todorov et al., 2012) and tested the algorithms on the benchmark environments available in OpenAI Gym (Brockman et al., 2016). For single task RL, we evaluated our method on the: (1) Hooper-v2; (2) Walker2D-v2; (3) Ant-v2 3; and (4) Half-Cheetah-v2 environments.

For meta-RL, we evaluated our method on the: (1) Half-Cheetah-Fwd-Back and (2) Ant-Fwd-Back, and on velocity tasks: (3) Half-Cheetah-Vel and (4) Ant-Vel as is done in (Rakelly et al., 2019). We also added the Half-Cheetah-Vel-Medium environment as presented in (Fakoor et al., 2019), which tests out-of-distribution generalization abilities. For Context-MAML and Hyper-MAML we adopted the oracle-context as discussed in Sec. 4. For the forward-backward tasks, we provided a binary indicator, and for the velocity tasks, we adopted a continuous context in the range \([0, 3]\) that maps to the velocities in the training distribution.

In the RL experiments, we compared our model to SAC and TD3, and in Meta-RL, we compared to MAML and PEARL. We used the authors’ official implementations (or open-source PyTorch (Ketkar, 2017) implementation when the official one was not available) and the original baselines’ hyperparameters, as well as strictly following each algorithm evaluation procedure. The Hypernetwork training was executed with the baseline loss s.t. we changed only the networks model and adjusted the learning rate to fit the
different architecture. All experiments were averaged over 5 seeds. Further technical details are in the appendix.

5.2. The Hypernetwork Architecture

Our Hypernetwork model is illustrated in Fig. 1 and in Sec. 2. When designing the Hypernetwork model, we did not search for the best performance model, rather we sought a proper comparison to the standard MLP architecture used in RL (denoted here as MLP-Standard). To that end, we used a smaller dynamic network than the MLP model (single hidden layer instead of two layers and the same number of neurons (256) in a layer). With this approach, we wish to show the gain of using dynamic weights with respect to a fixed set of weights in the MLP model. To emphasize the gain of the dynamic weights, we added an MLP-Small baseline with equal configuration to the dynamic model (one hidden layer with 256 neurons).

Unlike the dynamic network, the role of the primary network is missing from the MLP architecture. Therefore, for the primary network, we used a high-performance ResNet model (Srivastava et al., 2015) which we found apt for generating the set of dynamic weights (Glorot and Bengio, 2010). To make sure that the performance gain is not due to the expressiveness of the ResNet model or the additional number of learnable weights, we added three more baselines: (1) ResNet Features: the same primary and dynamic architecture, but the output of the primary is a state feature vector which is concatenated to the action as the input for an MLP-Standard network; (2) MLP-Large: two hidden layers, each with 2900 neurons which sum up to \(9M\) weights as in the Hypernetwork architecture; and (3) Res35: ResNet with 35 blocks to yield the \(Q\)-value, which sum up to \(4.5M\) weights. In addition, we added a comparison to the Q-D2RL model: a deep dense architecture for the \(Q\)-function which was recently suggested in (Sinha et al., 2020).

One important issue with Hypernetworks is their numerical stability. We found that they are specifically sensitive to weight initialization as bad primary initialization may amplify into catastrophic dynamic weights (Chang et al., 2019). We solved this problem by initializing the primary s.t. the average initial distribution dynamic weights resembles the Kaiming-uniform initialization (He et al., 2015). Further details can be found in the appendix.

5.3. Results

The results and the comparison to the baselines are summarized in Fig. 6. In all four experiments, our Hypernetwork model achieves an average of 10% - 70% gain over the MLP-Standard baseline in the final performance and reaches the

\[1\]

\(\text{We reduced the control cost as is done in PEARL (Rakelly et al., 2019) to avoid numerical instability problems.}\)
Recomposing the Reinforcement Learning Building-Blocks with Hypernetworks

baseline’s score, with only 20%-70% of the total training steps. As described in Sec. 5.2, for the RL experiments, in addition to the MLP-Standard model, we tested five more baselines: (1) MLP-Large; (2) MLP-Small; (3) ResNet Features; (4) ResNet35; and (5) Q-D2RL. Both on TD3 and SAC, we find a consistent improvement over all baselines and SA-Hyper outperforms in all environments with two exceptions: where MLP-Large or Q-D2RL achieve a better score than SA-Hyper in the Ant-v2 environment (the learning curves for each environment are found in the appendix). While it may seem like the Hypernetwork improvement is due to its large parametric dimension or the ResNet design of the primary model, our results provide strong evidence that this assumption is not true. The SA-Hyper model outperforms other models with the same number of parameters (MLP-Large and ResNet Features) and also models that employ ResNet architectures (ResNet Features and Res35). In addition, it is as good (SAC) or better (TD3) than Q-D2RL, which was recently suggested as an architecture tailored for the RL problem (Sinha et al., 2020). Please note that as discussed in Sec. 5.2 and unlike D2RL, we do not optimize the number of layers in the dynamic model.

In Fig. 6c we compared different models for MAML: (1) Vanilla-MAML; (2) Context-MAML, i.e. a context-based version of MAML with an oracle-context; and (3) Hyper-MAML, similar to context-MAML but with a Hypernetwork model. For all models, we evaluated both the pre-adaptation (pre-ad) as well as the post-adaptation scores. First, we verify the claim in (Fakoor et al., 2019) that context benefits Meta-RL algorithms just as Context-MAML outperforms Vanilla-MAML. However, we find that Hyper-MAML outperforms Context-MAML by roughly 50%. Moreover, unlike the standard MLP models, we find that Hyper-MAML does not require any adaptation step (no observable difference between the pre- and post-adaptation scores). We assume that this result is due to the better generalization capabilities of the Hypernetwork architecture as can also be seen from the next PEARL experiments.

In Fig. 6d we evaluated the Hypernetwork model with the PEARL algorithm. The context is learned with a probabilistic encoder as presented in (Rakelly et al., 2019) s.t. the only difference with the original PEARL is the policy and critic neural models. The empirical results show that Hyper-PEARL outperforms the MLP baseline both in the final performance (15%) and in sample efficiency (70% fewer steps to reach the final baseline score). Most importantly, we find that Hyper-PEARL generalizes better to the unseen test tasks. This applies both to test tasks sampled from the training distribution (as the higher score and lower variance of Hyper-PEARL indicate) and also to Out-Of-Distribution (OOD) tasks, as can be observed in Fig. 7.

6. Conclusions

In this work, we set out to study neural models for the RL building blocks: Q-functions and meta-policies. Arguing that the unique nature of the RL setting requires unconventional models, we suggested the Hypernetwork model and showed empirically several significant advantages over MLP models. First, Hypernetworks are better able to estimate the parametric gradient signal of the Q-function required to train actor-critic algorithms. Second, they reduce the gradient variance in training meta-policies in Meta-RL. Finally, they improve OOD generalization and they do not require any adaptation step in Meta-RL training, which significantly facilitates the training process.

7. Code

Our Hypernetwork PyTorch implementation is found at https://github.com/keynans/HypeRL.
Recomposing the Reinforcement Learning Building-Blocks with Hypernetworks

References

Recomposing the Reinforcement Learning Building-Blocks with Hypernetworks

