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Abstract

The Reinforcement Learning (RL) building
blocks, i.e. Q-functions and policy networks, usu-
ally take elements from the cartesian product of
two domains as input. In particular, the input of
the Q-function is both the state and the action,
and in multi-task problems (Meta-RL) the policy
can take a state and a context. Standard architec-
tures tend to ignore these variables’ underlying
interpretations and simply concatenate their fea-
tures into a single vector. In this work, we argue
that this choice may lead to poor gradient estima-
tion in actor-critic algorithms and high variance
learning steps in Meta-RL algorithms. To con-
sider the interaction between the input variables,
we suggest using a Hypernetwork architecture
where a primary network determines the weights
of a conditional dynamic network. We show that
this approach improves the gradient approxima-
tion and reduces the learning step variance, which
both accelerates learning and improves the final
performance. We demonstrate a consistent im-
provement across different locomotion tasks and
different algorithms both in RL (TD3 and SAC)
and in Meta-RL (MAML and PEARL).

1. Introduction
The rapid development of deep neural-networks as general-
purpose function approximators has propelled the recent
Reinforcement Learning (RL) renaissance (Zai and Brown,
2020). RL algorithms have progressed in robustness, e.g.
from (Lillicrap et al., 2016) to (Fujimoto et al., 2018); explo-
ration (Haarnoja et al., 2018); gradient sampling (Schulman
et al., 2017; 2015a); and off-policy learning (Fujimoto et al.,
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Figure 1. The Hypernetwork architecture

2019; Kumar et al., 2019). Many actor-critic algorithms
have focused on improving the critic learning routines by
modifying the target value (Hasselt et al., 2016), which
enables more accurate and robust Q-function approxima-
tions. While this greatly improves the policy optimization
efficiency, the performance is still bound by the networks’
ability to represent Q-functions and policies. Such a con-
straint calls for studying and designing neural models suited
for the representation of these RL building blocks.

A critical insight in designing neural models for RL is the
reciprocity between the state and the action, which both
serve as the input for the Q-function. At the start, each
input can be processed individually according to its source
domain. For example, when s is a vector of images, it
is common to employ CNN models (Kaiser et al., 2019),
and when s or a are natural language words, each input
can be processed separately with embedding vectors (He
et al., 2016). The common practice in incorporating the
state and action learnable features into a single network
is to concatenate the two vectors and follow with MLP to
yield the Q-value (Schulman et al., 2017). In this work, we
argue that for actor-critic RL algorithms (Grondman et al.,
2012), such an off-the-shelf method could be significantly
improved with Hypernetworks.

In actor-critic methods, for each state, sampled from the
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dataset distribution, the actor’s task is to solve an optimiza-
tion problem over the action distribution, i.e. the policy.
This motivates an architecture where the Q-function is ex-
plicitly modeled as the value function of a contextual bandit
(Lattimore and Szepesvári, 2020) Qπ(s, a) = Qπs (a) where
s is the context. While standard architectures are not de-
signed to model such a relationship, Hypernetworks were
explicitly constructed for that purpose (Ha et al., 2016).
Hypernetworks, also called meta-networks, can represent
hierarchies by transforming a meta variable into a context-
dependent function that maps a base variable to the required
output space. This emphasizes the underlying dynamic be-
tween the meta and base variables and has found success
in a variety of domains such as Bayesian neural-networks
(Lior Deutsch, 2019), continual learning (von Oswald et al.,
2019), generative models (Ratzlaff and Li, 2019) and ad-
versarial defense (Sun et al., 2017). The practical success
has sparked interest in the theoretical properties of Hyper-
networks. For example, it has recently been shown that
they enjoy better parameter complexity than classical mod-
els which concatenate the base and meta-variables together
(Galanti and Wolf, 2020a;b).

When analyzing the critic’s ability to represent the Q-
function, it is important to notice that in order to optimize
the policy, modern off-policy actor-critic algorithms (Fu-
jimoto et al., 2018; Haarnoja et al., 2018) utilize only the
parametric neural gradient of the critic with respect to the
action input, i.e.,∇aQπθ (s, a).1 Recently, (Ilyas et al., 2019)
examined the accuracy of the policy gradient in on-policy
algorithms. They demonstrated that standard RL implemen-
tations achieve gradient estimation with a near-zero cosine
similarity when compared to the “true” gradient. Therefore,
recovering better gradient approximations has the potential
to substantially improve the RL learning process. Motivated
by the need to obtain high-quality gradient approximations,
we set out to investigate the gradient accuracy of Hyper-
networks with respect to standard models. In Sec. 3 we
analyze three critic models and find that the Hypernetwork
model with a state as a meta-variable enjoys better gradient
accuracy which translates into a faster learning rate.

Much like the induced hierarchy in the critic, meta-policies
that optimize multi-task RL problems have a similar struc-
ture as they combine a task-dependent context and a state
input. While some algorithms like MAML (Finn et al.,
2017) and LEO (Rusu et al., 2019) do not utilize an explicit
context, other works, e.g. PEARL (Rakelly et al., 2019) or
MQL (Fakoor et al., 2019), have demonstrated that a context
improves the generalization abilities. Recently, (Jayakumar
et al., 2019) have shown that Multiplicative Interactions
(MI) are an excellent design choice when combining states

1This is in contrast to the REINFORCE approach (Williams,
1992) based on the policy gradient theorem (Sutton et al., 2000)
which does not require a differentiable Q-function estimation.

and contexts. MI operations can be viewed as shallow Hy-
pernetwork architectures. In Sec. 4, we further explore
this approach and study context-based meta-policies with
deep Hypernetworks. We find that with Hypernetworks,
the task and state-dependent gradients are disentangled s.t.
the state-dependent gradients are marginalized out, which
leads to an empirically lower learning step variance. This is
specifically important in on-policy methods such as MAML,
where there are fewer optimization steps during training.

The contributions of this paper are three-fold. First, in
Sec. 3 we provide a theoretical link between the Q-function
gradient approximation quality and the allowable learning
rate for monotonic policy improvement. Next, we show
empirically that Hypernetworks achieve better gradient ap-
proximations which translates into a faster learning rate and
improves the final performance. Finally, in Sec. 4 we show
that Hypernetworks significantly reduce the learning step
variance in Meta-RL. We summarize our empirical results
in Sec. 5, which demonstrates the gain of Hypernetworks
both in single-task RL and Meta-RL. Importantly, we find
empirically that Hypernetwork policies eliminate the need
for the MAML adaptation step and improve the Out-Of-
Distribution generalization in PEARL.

2. Hypernetworks
A Hypernetwork (Ha et al., 2016) is a neural-network ar-
chitecture designed to process a tuple (z, x) ∈ Z ×X and
output a value y ∈ Y . It is comprised of two networks, a
primary network wθ : Z → Rnw which produces weights
wθ(z) for a dynamic network fwθ(z) : X → Y . Both net-
works are trained together, and the gradient flows through
f to the primary networks’ weights θ. During test time or
inference, the primary weights are fixed while the z input
determines the dynamic network’s weights.

The idea of learnable context-dependent weights can be
traced back to (McClelland, 1985; Schmidhuber, 1992).
However, only in recent years have Hypernetworks gained
popularity when they have been applied successfully with
many dynamic network models, e.g. recurrent networks (Ha
et al., 2016), MLP networks for 3D point clouds (Littwin and
Wolf, 2019), spatial transformation (Potapov et al., 2018),
convolutional networks for video frame prediction (Jia et al.,
2016) and few-shot learning (Brock et al., 2018). In the
context of RL, Hypernetworks were also applied, e.g., in
QMIX (Rashid et al., 2018) to solve Multi-agent RL tasks
and for continual model-based RL (Huang et al., 2020).

Fig. 1 illustrates our Hypernetwork model. The primary
network wθ(z) contains residual blocks (Srivastava et al.,
2015) which transform the meta-variable into a 1024 sized
latent representation. This stage is followed by a series
of parallel linear transformations, termed “heads”, which
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output the sets of dynamic weights. The dynamic network
fwθ(z)(x) contains only a single hidden layer of 256 which
is smaller than the standard MLP architecture used in many
RL papers (Fujimoto et al., 2018; Haarnoja et al., 2018) of
2 hidden layers, each with 256 neurons. The computational
model of each dynamic layer is

xl+1 = σReLU
(
(1 + gl(z))� xlW l(z) + bl(z)

)
(1)

where the non-linearity is applied only over the hidden layer
and gl is an additional gain parameter that is required in
Hypernetwork architectures (Littwin and Wolf, 2019). We
defer the discussion of these design choices to Sec. 5.

3. Recomposing the Actor-Critic’s
Q-Function

3.1. Background

Reinforcement Learning concerns finding optimal policies
in Markov Decision Processes (MDPs). An MDP (Dean
and Givan, 1997) is defined by a tuple (S,A,P, R) where
S is a set of states, A is a set of actions, P is a set of
probabilities to switch from a state s to s′ given an action
a, and R : S × A → R is a scalar reward function. The
objective is to maximize the expected discounted sum of
rewards with a discount factor γ > 0

J(π) = E

[ ∞∑
t=0

γtR(st, at)

∣∣∣∣∣at ∼ π(·|st)

]
. (2)

J(π) can also be written, up to a constant factor 1− γ, as
an expectation over the Q-function

J(π) = Es∼dπ
[
Ea∼π(·|s) [Qπ(s, a)]

]
, (3)

where the Q-function is the expected discounted sum of re-
wards following visitation at state s and execution of action
a (Sutton and Barto, 2018), and dπ is the state distribution
induced by policy π.

Actor-critic methods maximize J(π) over the space of pa-
rameterized policies. Stochastic policies are constructed as
a state dependent transformation of an independent random
variable

πφ(a|s) = µφ(ε|s)s.t.ε ∼ pε, (4)

where pε is a predefined multivariate distribution over Rna
and na is the number of actions.2 To maximize J(πφ) over
the φ parameters, actor-critic methods operate with an itera-
tive three-phase algorithm. First, they collect into a replay
buffer D the experience tuples (s, a, r, s′) generated with
the parametric πφ and some additive exploration noise pol-
icy (Zhang and Sutton, 2017). Then they fit a critic which is

2Deterministic policies, on the other hand, are commonly de-
fined as a deterministic transformation of the state’s feature vector.

a parametric modelQπθ for theQ-function. For that purpose,
they apply TD-learning (Sutton and Barto, 2018) with the
loss function

Lcritic(θ) =

Es,a,r,s′∼D
[∣∣Qπθ (s, a)− r − γEa′∼πφ(·|s′)[Q

π
θ̄ (s′, a′)]

∣∣2] ,
where θ̄ is a lagging set of parameters (Lillicrap et al., 2016).
Finally, they apply gradient descent updates in the direction
of an off-policy surrogate of J(πφ)

φ← φ+ η∇φJactor(φ)

∇φJactor(φ) = E{s∼Dε∼pε} [∇φµφ(ε|s)∇aQπθ (s, µφ(ε|s))] .
(5)

Here, ∇φµφ(ε|s) is a matrix of size nφ × na where nφ is
the number of policy parameters to be optimized.

Two well-known off-policy algorithms are TD3 (Fujimoto
et al., 2018) and SAC (Haarnoja et al., 2018). TD3 op-
timizes deterministic policies with additive normal explo-
ration noise and double Q-learning to improve the robust-
ness of the critic part (Hasselt et al., 2016). On the other
hand, SAC adopts stochastic, normally distributed policies
but it modifies the reward function to include a high entropy
bonus R̃(s, a) = R(s, a) + αH(π(·|s)) which eliminates
the need for exploration noise.

3.2. Our Approach

The gradient of the off-policy surrogate ∇φJactor(φ) dif-
fers from the true gradient∇φJ(π) in two elements: First,
the distribution of states is the empirical distribution in the
dataset and not the policy distribution dπ; and second, the
Q-function gradient is estimated with the critic’s parametric
neural gradient ∇aQπθ ' ∇aQπ. Avoiding a distribution
mismatch is the motivation of many constrained policy im-
provement methods such as TRPO and PPO (Schulman
et al., 2015a; 2017). However, it requires very small and
impractical steps. Thus, many off-policy algorithms ignore
the distribution mismatch and seek to maximize only the
empirical advantage

A(φ′, φ) = Es∼D [Ea∼π′ [Qπ(s, a)]− Ea∼π [Qπ(s, a)]] .

In practice, a positive empirical advantage is associated with
better policies and is required by monotonic policy improve-
ment methods such as TRPO (Kakade and Langford, 2002;
Schulman et al., 2015a). Yet, finding positive empirical
advantage policies requires a good approximation of the
gradient ∇aQπ. The next proposition suggests that with a
sufficiently accurate approximation, applying the gradient
step as formulated in the actor update in Eq. (5) yields
positive empirical advantage policies.

Proposition 1. Let π(a|s) = µφ(ε|s) be a stochas-
tic parametric policy with ε ∼ pε, and µφ(·|s) a
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transformation with a Lipschitz continuous gradient
and a Lipschitz constant κµ. Assume that its Q-
function Qπ(s, a) has a Lipschitz continuous gradient
in a, i.e. |∇aQπ(s, a1) − ∇aQπ(s, a2)| ≤ κq‖a1 −
a2‖. Define the average gradient operator ∇φ · f =
Es∼D [Eε∼pε [∇φµφ(ε|s) · f(s, µφ(ε|s))]]. If there exists
a gradient estimation g(s, a) and 0 < α < 1 s.t.

‖∇φ · g −∇φ · ∇aQπ‖ ≤ α‖∇φ · ∇aQπ‖ (6)

then the ascent step φ′ ← φ + η∇φ · g with η ≤ 1
k̃

1−α
(1+α)2

yields a positive empirical advantage policy.

We define k̃ and provide the proof in the appendix. It fol-
lows that a positive empirical advantage can be guaranteed
when the gradient of the Q-function is sufficiently accurate,
and with better gradient models, i.e. smaller α, one may
apply larger ascent steps. However, instead of fitting the gra-
dient, actor-critic algorithms favor modeling the Q-function
and estimate the gradient with the parametric gradient of
the model ∇aQπθ . It is not obvious whether better mod-
els for the Q-functions, with lower Mean-Squared-Error
(MSE), provide better gradient estimation. A more direct
approach could be to explicitly learn the gradient of the
Q-function (Sarafian et al., 2020; Saremi, 2019); however,
in this work, we choose to explore which architecture re-
covers more accurate gradient approximation based on the
parametric gradient of the Q-function model.

We consider three alternative models:

1. MLP network, where state features ξ(s) (possibly
learnable) are concatenated into a single input of a
multi-layer linear network.

2. Action-State Hypernetwork (AS-Hyper) where the ac-
tions are the meta variable, input of the primary net-
work w, and the state features are the base variable,
input for the dynamic network f .

3. State-Action Hypernetwork (SA-Hyper), which re-
verses the order of AS-Hyper.

To develop some intuition, let us first consider the simplest
case where the dynamic network has a single linear layer
and the MLP model is replaced with a plain linear model.
Starting with the linear model, the Q-function and its gradi-
ent take the following parametric model:

Qπθ (s, a) = [ws, wa] · [ξ(s), a]

∇aQπθ (s, a) = wa
(7)

where θ = [ws, wa]. Clearly, in this case, the gradient is not
a function of the state, therefore it is impossible to exploit
this model for actor-critic algorithms. For the AS-Hyper we
obtain the following model

Qπθ (s, a) = w(a) · ξ(s)
∇aQπθ (s, a) = ∇aw(a)ξ(s)

(8)
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Figure 2. Illustrating three alternatives for combining states and ac-
tions: (a) MLP; (b) AS-Hyper; and (c) SA-Hyper. The blue arrows
represent the backpropagation calculation of the actions gradient.
Notice that in the SA-Hyper, the gradient flows only through the
dynamic network, which enables more efficient implementation as
the dynamic network is much smaller than the primary network.

Usually, the state feature vector ξ(s) has a much larger
dimension than the action dimension na. Thus, the matrix
∇aw(a) has a large null-space which can potentially hamper
the training as it may yield zero or near-zero gradients even
when the true gradient exists.

On the other hand, the SA-Hyper formulation is

Qπθ (s, a) = w(s) · a
∇aQπθ (s, a) = w(s)

(9)

which is a state-dependent constant model of the gradient
in a. While it is a relatively naive model, it is sufficient for
localized policies with low variance as it approximates the
tangent hyperplane around the policy mean value.

Moving forward to a multi-layer architecture, let us first
consider the AS-Hyper architecture. In this case the gra-
dient is ∇aQπθ (s, a) = ∇aw(a)∇wfw(s). We see that the
problem of the single layer is exacerbated since ∇aw(a) is
now a na × nw matrix where nw � na is the number of
dynamic network weights.

Next, the MLP and SA-Hyper models can be jointly ana-
lyzed. First, we calculate the input’s gradient of each layer

xl+1 = f l(xl) = σ
(
xlW l + bl

)
(10)

∇axl+1 = (∇axl)∇xlf l(xl) = (∇axl)W lΛl(xl) (11)

Λl(xl) = diag
(
σ′
(
xlW l + bl

))
, (12)

where σ is the activation function and W l and bl are the
weights and biases of the l-th layer, respectively. By the
chain rule, the input’s gradient of an L-layers network is the
product of these expressions. For the MLP model we obtain

∇aQπθ (s, a) = W aΛ1(s, a)

(
L−1∏
l=2

W lΛl(s, a)

)
WL.

(13)
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Figure 3. Comparing the Cosine-Similarity of different critic models: (a) The percentage of states with CS better than a τ threshold.
(b-c) The percentage of states with CS better than τ = 0.25 and τ = 0.75 with respect to the learning step. (d) The mean CS over time
averaged over all seeds and environments. The shaded area is the interquartile range Q3−Q1. In all cases, the CS was evaluated every
10K steps with Ns = 15 states and Nr = 15 independent trajectories for each state.

On the other hand, in SA-Hyper the weights are the outputs
of the primary network, thus we have

∇aQπθ (s, a) =

W 1(s)Λ1(s, a)

(
L−1∏
l=2

W l(s)Λl(s, a)

)
WL(s). (14)

Importantly, while the SA-Hyper’s gradient configuration
is controlled via the state-dependent matrices W l(s), in
the MLP model, it is a function of the state only via the
diagonal elements in Λl(s, a). These local derivatives of
the non-linear activation functions are usually piecewise
constant when the activations take the form of ReLU-like
functions. Also, they are required to be bounded and smaller
than one in order to avoid exploding gradients during train-
ing (Philipp et al., 2017). These restrictions significantly
reduce the expressiveness of the parametric gradient and its
ability to model the true Q-function gradient. For example,
with ReLU, for two different pairs (s1, a1) and (s2, a2) the
estimated gradient is equal if they have same active neurons
map (i.e. the same ReLUs are in the active mode). Follow-
ing this line of reasoning, we postulate that the SA-Hyper
configuration should have better gradient approximations.

Empirical analysis To test our hypothesis, we trained TD3
agents with different network models and evaluated their
parametric gradient∇aQθ(s, a). To empirically analyze the
gradient accuracy, we opted to estimate the true Q-function
gradient with a non-parametric local estimator at the policy
mean value, i.e. at aµ = Eε∼pε [µφ(ε|s)]. For that purpose,
we generated Nr independent trajectories with actions sam-
pled around the mean value, i.e. a = aµ + ∆a, and fit with
a Least-Mean-Square (LMS) estimator a linear model for
the empirical return of the sampled trajectories. The “true”
gradient is therefore the linear model’s gradient. Additional
technical details of this estimator are found in the appendix.

As our Q-function estimator is based on Temporal-
Difference (TD) learning, it bears bias. Hence, in practice
we cannot hope to reconstruct the true Q-function scale.

Thus, instead of evaluating the gradient’s MSE, we take
the Cosine Similarity (CS) as a surrogate for measuring the
gradient accuracy.

cs(Qπθ ) = Es∼D
[
∇aQπθ (s, aµ) · ∇aQπ(s, aµ)

‖∇aQπθ (s, aµ)‖ ‖∇aQπ(s, aµ)‖

]
,

Fig. 3 summarizes our CS evaluations with the three model
alternatives averaged over 4 Mujoco (Todorov et al., 2012)
environments. Fig. 3d presents the mean CS over states
during the training process. Generally, the CS is very low,
which indicates that the RL training is far from optimal.
While this finding is somewhat surprising, it corroborates
the results in (Ilyas et al., 2019) which found near-zero CS
in policy gradient algorithms. Nevertheless, note that the
impact of the CS accuracy is cumulative as in each gradient
ascent step the policy accumulates small improvements.
This lets even near-zero gradient models improve over time.
Overall, we find that the SA-Hyper CS is higher, and unlike
other models, it is larger than zero during the entire training
process. The SA-Hyper advantage is specifically significant
at the first 100K learning steps, which indicates that SA-
Hyper learns faster in the early learning stages.

Assessing the gradient accuracy by the average CS can be
somewhat confounded by states that have reached a local
equilibrium during the training process. In these states the
true gradient has zero magnitude s.t. the CS is ill-defined.
For that purpose, in Fig. 3a-c we measure the percentage
of states with a CS higher than a threshold τ . This indi-
cates how many states are learnable where more learnable
states are attributed to a better gradient estimation. Fig.
3a shows that for all thresholds τ ∈ [0, 1] SA-Hyper has
more learnable states, and Fig. 3b-c present the change
in learnable states for different τ during the training pro-
cess. Here we also find that the SA-Hyper advantage is
significant particularly at the first stage of training. Finally,
Fig. 4 demonstrates how gradient accuracy translates to
better learning curves. As expected, we find that SA-Hyper
outperforms both the MLP architecture and the AS-Hyper
configuration which is also generally inferior to MLP.
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(a) Hopper (b) Walker2d (c) Ant (d) HalfCheetah

Figure 4. Learning curves of the TD3 algorithm with different critic models. SA-Hyper refers to Qπθ = fwθ(s)(a), AS-Hyper refers to
Qπθ = fwθ(a)(s) and MLP refers to Qπθ = fθ(s, a), which concatenates both inputs.

In the next section, we discuss the application of Hypernet-
works in Meta-RL for modeling context conditional policies.
When such a context exists, it also serves as an input vari-
able to the Q-function. In that case, when modeling the
critic with a Hypernetwork, one may choose to use the con-
text as a meta-variable or alternatively as a base variable.
Importantly, when the context is the dynamic’s input, the
dynamic weights are fixed for each state, regardless of the
task. In our PEARL experiments in Sec. 5 we always used
the context as a base variable of the critic. We opted for
this configuration since: (1) we found empirically that it is
important for the generalization to have a constant set of
weights for each state; and (2) As the PEARL context is
learnable, we found that when the context gradient back-
propagates through three networks (primary, dynamic and
the context network), it hampers the training. Instead, as a
base variable, the context’s gradient backpropagates only
via two networks as in the original PEARL implementation.

4. Recomposing the Policy in Meta-RL
4.1. Background

Meta-RL is the generalization of Meta-Learning (Mishra
et al., 2018; Sohn et al., 2019) to the RL domain. It aims at
learning meta-policies that solve a distribution of different
tasks p(T ). Instead of learning different policies for each
task, the meta-policy shares weights between all tasks and
thus can generalize from one task to the other (Sung et al.,
2017). A popular Meta-RL algorithm is MAML (Finn et al.,
2017), which learns a set of weights that can quickly adapt
to a new task with a few gradient ascent steps. To do so,
for each task, it estimates the policy gradient (Sutton et al.,
2000) at the adaptation point. The total gradient is the sum
of policy gradients over the task distribution p(T ):

∇φJmaml(φ) = E{Ti∼p(T )
πφi
}

[ ∞∑
t=0

Âi,t∇φ log πφi(at|st)

]

φi = φ+ ηEπφ

[ ∞∑
t=0

Âi,t∇φ log πφi(at|st)

]
,

(15)

where Âi,t is the empirical advantage estimation at the t-th
step in task i (Schulman et al., 2015b). On-policy algorithms
tend to suffer from high sample complexity as each update
step requires many new trajectories sampled from the most
recent policy in order to adequately evaluate the gradient
direction.

Off-policy methods are designed to improve the sample com-
plexity by reusing experience from old policies (Thomas
and Brunskill, 2016). Although not necessarily related, in
Meta-RL, many off-policy algorithms also avoid the MAML
approach of weight adaptation. Instead, they opt to condi-
tion the policy and the Q-function on a context which distin-
guishes between different tasks (Ren et al., 2019; Sung et al.,
2017). A notable off-policy Meta-RL method is PEARL
(Rakelly et al., 2019). It builds on top of the SAC algorithm
and learns a Q-function Qπθ (s, a, z), a policy πφ(s, z) and
a context z ∼ qν(z|cTi). The context, which is a latent rep-
resentation of task Ti, is generated by a probabilistic model
that processes a trajectory cTi of (s, a, r) transitions sam-
pled from task Ti. To learn the critic alongside the context,
PEARL modifies the SAC critic loss to

Lcriticpearl (θ, ν) =

ET
[
Eqν(z|cTi )

[
Lcriticsac (θ, ν) +DKL

(
qν(z|cTi)

∣∣p(z))]] ,
where p(z) is a prior probability over the latent distribution
of the context. While PEARL’s context is a probabilistic
model, other works (Fakoor et al., 2019) have suggested that
a deterministic learnable context can provide similar results.

In this work, we consider both a learnable context and also
the simpler approach of an oracle-context cTi which is a
unique, predefined identifier for task i (Jayakumar et al.,
2019). It can be an index when there is a countable number
of tasks or a continuous number when the tasks are sam-
pled from a continuous distribution. In practice, the oracle
identifier is often known to the agent. Moreover, sometimes,
e.g., in goal-oriented tasks, the context cannot be recovered
directly from the transition tuples without prior knowledge,
since there are no rewards unless the goal is reached, which
rarely happens without policy adaptation.



Recomposing the Reinforcement Learning Building-Blocks with Hypernetworks

Figure 5. Visualizing gradient noise in MAML: The statistical population of the performance after 50 uncorrelated update steps is plotted
for 4 different time steps. Hyper-MAML refers to Hypernetwork where the oracle-context is the meta variable and the state features are
the base variable. Context-MAML refers to MLP policy where the oracle-context is concatenated with the state features.

4.2. Our Approach

Hypernetworks naturally fit into the meta-learning formu-
lation where the context is an input to the primary network
(von Oswald et al., 2019; Zhao et al., 2020). Therefore, we
suggest modeling meta-policies s.t. the context is the meta
variable and the state is the dynamic’s input

πφ(a|s, c) = µw(c)(ε|s) s.t. ε ∼ pε. (16)

Interestingly, this modeling disentangles the state dependent
gradient and the task dependent gradient of the meta-policy.
To see that, let us take for example the on-policy objective of
MAML and plug in a context dependent policy πφ(a|s, c) =
µφ(ε|s, c). Then, the objective in Eq. (15) becomes

J(φ) =
∑
Ti

∑
sj∈Ti

Âi,j
∇φµφi(εj |sj , ci)
µφi(εj |sj , ci)

. (17)

Applying the Hypernetwork modeling of the meta-policy in
Eq. (16), this objective can be written as

J(φ) =
∑
Ti

∇φw(ci) ·
∑
sj∈Ti

Âi,j
∇wµw(ci)(εj |sj)
µw(ci)(εj |sj)

(18)

In this form, the state-dependent gradients of the dynamic
weights ∇wµw(ci)(εj , sj) are averaged independently for
each task, and the task-dependent gradients of the primary
weights ∇φw(ci) are averaged only over the task distribu-
tion and not over the joint task-state distribution as in Eq.
(17). We postulate that such disentanglement reduces the
gradient noise for the same number of samples. This should
translate to more accurate learning steps and thus a more
efficient learning process.

To test our hypothesis, we trained two different meta-policy
models based on the MAML algorithm: (1) an MLP model
where a state and an oracle-context are joined together; and
(2) a Hypernetwork model, as described, with an oracle-
context as a meta-variable. Importantly, note that, other
than the neural architecture, both algorithms are identical.
For four different timestamps during the learning process,

we constructed 50 different uncorrelated gradients from
different episodes and evaluating the updated policy’s per-
formance. We take the performance statistics of the updated
policies as a surrogate for the gradient noise. In Fig. 5, we
plot the performance statistics of the updated meta-policies.
We find that the variance of the Hypernetwork model is
significantly lower than the MLP model across all tasks
and environments. This indicates more efficient improve-
ment and therefore we also observe that the mean value is
consistently higher.

5. Experiments
5.1. Experimental Setup

We conducted our experiments in the MuJoCo simulator
(Todorov et al., 2012) and tested the algorithms on the bench-
mark environments available in OpenAI Gym (Brockman
et al., 2016). For single task RL, we evaluated our method
on the: (1) Hooper-v2; (2) Walker2D-v2; (3) Ant-v23; and
(4) Half-Cheetah-v2 environments. For meta-RL, we eval-
uated our method on the: (1) Half-Cheetah-Fwd-Back and
(2) Ant-Fwd-Back, and on velocity tasks: (3) Half-Cheetah-
Vel and (4) Ant-Vel as is done in (Rakelly et al., 2019).
We also added the Half-Cheetah-Vel-Medium environment
as presented in (Fakoor et al., 2019), which tests out-of-
distribution generalization abilities. For Context-MAML
and Hyper-MAML we adopted the oracle-context as dis-
cussed in Sec. 4. For the forward-backward tasks, we
provided a binary indicator, and for the velocity tasks, we
adopted a continuous context in the range [0, 3] that maps
to the velocities in the training distribution.

In the RL experiments, we compared our model to SAC
and TD3, and in Meta-RL, we compared to MAML and
PEARL. We used the authors’ official implementations (or
open-source PyTorch (Ketkar, 2017) implementation when
the official one was not available) and the original base-
lines’ hyperparameters, as well as strictly following each
algorithm evaluation procedure. The Hypernetwork training
was executed with the baseline loss s.t. we changed only
the networks model and adjusted the learning rate to fit the
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different architecture. All experiments were averaged over
5 seeds. Further technical details are in the appendix.

5.2. The Hypernetwork Architecture

Our Hypernetwork model is illustrated in Fig. 1 and in Sec.
2. When designing the Hypernetwork model, we did not
search for the best performance model, rather we sought a
proper comparison to the standard MLP architecture used in
RL (denoted here as MLP-Standard). To that end, we used
a smaller dynamic network than the MLP model (single
hidden layer instead of two layers and the same number
of neurons (256) in a layer). With this approach, we wish
to show the gain of using dynamic weights with respect to
a fixed set of weights in the MLP model. To emphasize
the gain of the dynamic weights, we added an MLP-Small
baseline with equal configuration to the dynamic model (one
hidden layer with 256 neurons).

Unlike the dynamic network, the role of the primary net-
work is missing from the MLP architecture. Therefore, for
the primary network, we used a high-performance ResNet
model (Srivastava et al., 2015) which we found apt for gener-
ating the set of dynamic weights (Glorot and Bengio, 2010).
To make sure that the performance gain is not due to the
expressiveness of the ResNet model or the additional num-
ber of learnable weights, we added three more baselines:
(1) ResNet Features: the same primary and dynamic ar-
chitecture, but the output of the primary is a state feature
vector which is concatenated to the action as the input for an
MLP-Standard network; (2) MLP-Large: two hidden layers,
each with 2900 neurons which sum up to 9M weights as
in the Hypernetwork architecture; and (3) Res35: ResNet
with 35 blocks to yield the Q-value, which sum up to 4.5M
weights. In addition, we added a comparison to the Q-D2RL
model: a deep dense architecture for the Q-function which
was recently suggested in (Sinha et al., 2020).

One important issue with Hypernetworks is their numerical
stability. We found that they are specifically sensitive to
weight initialization as bad primary initialization may am-
plify into catastrophic dynamic weights (Chang et al., 2019).
We solved this problem by initializing the primary s.t. the
average initial distribution dynamic weights resembles the
Kaiming-uniform initialization (He et al., 2015). Further
details can be found in the appendix.

5.3. Results

The results and the comparison to the baselines are summa-
rized in Fig. 6. In all four experiments, our Hypernetwork
model achieves an average of 10% - 70% gain over the MLP-
Standard baseline in the final performance and reaches the

3We reduced the control cost as is done in PEARL (Rakelly
et al., 2019) to avoid numerical instability problems.

(a)
SAC

(b)
TD3

(c)
MAML

(d)
PEARL

Figure 6. The mean normalized score with respect to different base-
line models: (a) SAC; (b) TD3; (c) MAML; and (d) PEARL. The
Hypernetwork consistently improves all baselines in all algorithms.
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baseline’s score, with only 20%-70% of the total training
steps. As described in Sec. 5.2, for the RL experiments, in
addition to the MLP-Standard model, we tested five more
baselines: (1) MLP-Large; (2) MLP-Small; (3) ResNet Fea-
tures; (4) ResNet35; and (5) Q-D2RL. Both on TD3 and
SAC, we find a consistent improvement over all baselines
and SA-Hyper outperforms in all environments with two
exceptions: where MLP-Large or Q-D2RL achieve a better
score than SA-Hyper in the Ant-v2 environment (the learn-
ing curves for each environment are found in the appendix).
While it may seem like the Hypernetwork improvement is
due to its large parametric dimension or the ResNet design
of the primary model, our results provide strong evidence
that this assumption is not true. The SA-Hyper model out-
performs other models with the same number of parameters
(MLP-Large and ResNet Features4) and also models that em-
ploy ResNet architectures (ResNet Features and Res35). In
addition, it is as good (SAC) or better (TD3) than Q-D2RL,
which was recently suggested as an architecture tailored for
the RL problem (Sinha et al., 2020). Please note that as
discussed in Sec. 5.2 and unlike D2RL, we do not optimize
the number of layers in the dynamic model.5

In Fig. 6c we compared different models for MAML: (1)
Vanilla-MAML; (2) Context-MAML, i.e. a context-based
version of MAML with an oracle-context; and (3) Hyper-
MAML, similar to context-MAML but with a Hypernetwork
model. For all models, we evaluated both the pre-adaptation
(pre-ad) as well as the post-adaptation scores. First, we
verify the claim in (Fakoor et al., 2019) that context benefits
Meta-RL algorithms just as Context-MAML outperforms
Vanilla-MAML. However, we find that Hyper-MAML out-
performs Context-MAML by roughly 50%. Moreover, un-
like the standard MLP models, we find that Hyper-MAML
does not require any adaptation step (no observable dif-
ference between the pre- and post-adaptation scores). We
assume that this result is due to the better generalization
capabilities of the Hypernetwork architecture as can also be
seen from the next PEARL experiments.

In Fig. 6d we evaluated the Hypernetwork model with the
PEARL algorithm. The context is learned with a proba-
bilistic encoder as presented in (Rakelly et al., 2019) s.t.
the only difference with the original PEARL is the policy
and critic neural models. The empirical results show that

4Interestingly, The Resnet Features baseline achieved very low
scores even as compared to the MLP-Standard baseline. Indeed,
this result is not surprising as the action gradient model of Resnet
Features is identical to the action gradient model of MLP-Small
(single hidden layer with 256 neurons). While ResNet generated
state features may improve the Q-function estimation, they do not
necessarily improve the gradient estimation∇aQπ as the network
is not explicitly trained to model the gradient.

5We do not compare to the full D2RL model which also modi-
fies the policy architecture as our SA-Hyper model only changes
the Q-net model.

Hyper-PEARL outperforms the MLP baseline both in the fi-
nal performance (15%) and in sample efficiency (70% fewer
steps to reach the final baseline score). Most importantly,
we find that Hyper-PEARL generalizes better to the unseen
test tasks. This applies both to test tasks sampled from the
training distribution (as the higher score and lower variance
of Hyper-PEARL indicate) and also to Out-Of-Distribution
(OOD) tasks, as can be observed in Fig. 7.

HalfCheetah-Vel-Medium (OOD)

Figure 7. PEARL results in an Out Of Distribution environment,
HalfCheetah-Vel-Medium, where the training tasks’ target is
[0,2.5] and the test tasks’ target is [2.5,3]. The Hypernetwork
achieved slightly lower returns over the training tasks, yet it gener-
alizes better over the OOD test tasks.

6. Conclusions
In this work, we set out to study neural models for the RL
building blocks: Q-functions and meta-policies. Arguing
that the unique nature of the RL setting requires unconven-
tional models, we suggested the Hypernetwork model and
showed empirically several significant advantages over MLP
models. First, Hypernetworks are better able to estimate
the parametric gradient signal of the Q-function required to
train actor-critic algorithms. Second, they reduce the gradi-
ent variance in training meta-policies in Meta-RL. Finally,
they improve OOD generalization and they do not require
any adaptation step in Meta-RL training, which significantly
facilitates the training process.

7. Code
Our Hypernetwork PyTorch implementation is found at
https://github.com/keynans/HypeRL.

https://github.com/keynans/HypeRL
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