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Towards Understanding Neural Networks with Linear Teachers
Supplementary Material

Here we provide proofs of the theorems stated in the paper, and additional empirical results.

1. Gradient Flow Definitions
We next formally define gradient flow. A function f : X → R is locally Lipschitz if for every x ∈ X there exists a
neighborhood U of x such that the restriction of f on U is Lipschitz continuous. For a locally Lipschitz function f : X→ R,
the Clarke subdifferential at x ∈ X is the convex set:

∂◦f(x) := conv

{
lim
k→∞

∇f(xk) : xk → x, f is differentiable at xk

}
(1)

As in (Lyu & Li, 2020) and (Ji & Telgarsky, 2020), a curve z from an interval I to a real space Rm is called an arc
if it is absolutely continuous on any compact subinterval of I . For an arc z we use z′(t) (or dz

dt (t)) to denote the
derivative at t if it exists. We say that a locally Lipschitz function f : Rd → R admits a chain rule if for any arc
z : [0; +∞)→ Rd,∀h ∈ ∂◦f(z(t)) : (f ◦ z)′(t) = 〈h, z′(t)〉 holds for a.e. t ≥ 0. It holds that an arc is a.e. differentiable,
and the composition of an arc and a locally Lipschitz function is still an arc.

Given the definitions above, we define gradient flow W : [0,∞)→ Rk to be an arc that satisfies the following differential
inclusion for a.e. t ≥ 0:

dWt

dt
∈ −∂◦LS(Wt) (2)

2. Proof of Theorem 4.1
Throughout this proof we will sometimes use the notation 〈x,y〉 as the dot product between two vectors x and y for
readability purposes.

Let
−→
W ∗ = (

k︷ ︸︸ ︷
w∗ . . .w∗,

k︷ ︸︸ ︷
−w∗ · · · −w∗) ∈ R2kd.

Define the following two functions:

F (Wt) = 〈
−→
W t,

−→
W ∗〉 =

k∑
i=1

〈w(i)
t ,w∗〉 −

k∑
i=1

〈u(i)
t ,w∗〉

and

G(Wt) = ||
−→
W t|| =

√√√√ k∑
i=1

||w(i)
t ||2 +

k∑
i=1

||u(i)
t ||2

Then, from Cauchy-Schwartz inequality we have:

|F (Wt)|
G(Wt)||

−→
W ∗||

=
|〈
−→
W t,

−→
W ∗〉|

||
−→
W t||||

−→
W ∗||

≤ 1 (3)

Recall we define: NW (x) = v
k∑
j=1

σ(w(j) · x)− v
k∑
j=1

σ(u(j) · x).
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We consider minimizing the objective function:

LS(W ) =
1

n

n∑
i=1

log
(

1 + e−yiNW (xi)
)

using SGD on S where each point is sampled without replacement at each epoch. WLOG, we set σ′(0) = α.

We first outline the proof structure. Let’s assume we run SGD for Ne epochs and denote T = nNe. Furthermore, we assume
that for all epochs up to this point there is at least one point in the epoch s.t. `(ytNWt−1

(xt)) > ε0 for some ε0 > 0 (recall
that n is the number of training points, and (yt,xt) is some training point selected during some epoch).

First, we will show that after at most T ≤M(n, ε0) iterations, there exists an epoch ie such that for each point (xt, yt) ∈ S
sampled in the epoch, it holds that:

`(ytNWt−1
(xt)) ≤ ε0 (4)

Next, using the Lipschitzness of `(x) we will show that the loss on points cannot change too much during an epoch.
Specifically, we will use this to show that at the end of epoch ie, which we denote by time T ∗, it holds for all (xi, yi) ∈ S:

`(yiNWT∗ (xi)) ≤ (1 + 2v2R2
xηkn)ε0 (5)

now by choosing ε0 = ε
1+2v2R2

xηkn
we will get that ∀1 ≤ i ≤ n `(yiNWT∗ (xi)) ≤ ε which shows that LS(WT∗) ≤ ε as

required.

We start by showing Eq. (4).

For the gradient of each neuron we have:

∂L{(xi,yi)}(W )

∂w(j)
=

e−yiNW (xi)

1 + e−yiNW (xi)
· −yi∂NW (xi)

∂w(j)

=
−yie−yiNW (xi)

1 + e−yiNW (xi)
· vxiσ′(w(j) · xi)

= −vyixi |`′(yiNW (xi))|σ′(w(j) · xi)

and similarly:
∂L{(xi,yi)}(W )

∂u(j)
= vyixi |`′(yiNW (xi))|σ′(u(j) · xi)

where `′(x) = − e−x

1+e−x = − 1
1+ex and `(x) = log(1 + e−x).

Optimizing by SGD yields the following update rule:

Wt = Wt−1 − η
∂

∂W
L{(xt,yt)}(Wt−1)

where Wt = (w
(1)
t , ...,w

(k)
t ,u

(1)
t , ...,u

(k)
t ).

For every neuron we get the following updates:

1. w
(j)
t = w

(j)
t−1 + ηvytxt

∣∣`′(ytNWt−1(xt))
∣∣ p(j)t−1

2. u
(j)
t = u

(j)
t−1 − ηvytxt

∣∣`′(ytNWt−1
(xt))

∣∣ q(j)t−1
where p(j)t := σ′(w

(j)
t · xt+1); q

(j)
t := σ′(u

(j)
t · xt+1).
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Next we will show recursive upper bounds for G(Wt) and F (Wt).

G(Wt)
2 =

k∑
j=1

||w(j)
t ||2 +

k∑
j=1

||u(j)
t ||2

≤
k∑
j=1

||w(j)
t−1||2 +

k∑
j=1

||u(j)
t−1||2

+ 2ηyt|`′(ytNWt−1
(xt))|

 k∑
j=1

〈w(j)
t−1,xt〉p

(j)
t−1v −

k∑
j=1

〈u(j)
t−1,xt〉q

(j)
t−1v


+ 2kη2v2||xt||2|`′(ytNWt−1

(xt))|2 =

k∑
j=1

||w(j)
t−1||2 +

k∑
j=1

||u(j)
t−1||2

+ 2η|`′(ytNWt−1(xt))|ytNWt−1(xt) + 2kη2v2||xt||2|`′(ytNWt−1(xt))|2

= G(Wt−1)2 + 2η|`′(ytNWt−1
(xt))|ytNWt−1

(xt) + 2kη2v2||xt||2|`′(ytNWt−1
(xt))|2

On the other hand,

F (Wt) =

k∑
j=1

〈w(j)
t ,w∗〉 −

k∑
j=1

〈u(j)
t ,w∗〉 =

k∑
j=1

〈w(j)
t−1,w

∗〉 −
k∑
j=1

〈u(j)
t−1,w

∗〉

+ η|`′(ytNWt−1(xt))|
k∑
j=1

〈ytxt,w∗〉p(j)t−1v + η|`′(ytNWt−1(xt))|
k∑
j=1

〈ytxt,w∗〉q(j)t−1v

≥
k∑
j=1

〈w(j)
t−1,w

∗〉 −
k∑
j=1

〈u(j)
t−1,w

∗〉+ 2kηvα|`′(ytNWt−1
(xt))|

Where we used the inequalities 〈ytxt,w∗〉 ≥ 1 and q(j)t , p
(j)
t ≥ α.

To summarize we have:

G(Wt)
2 ≤ G(Wt−1)2 + 2η|`′(ytNWt−1

(xt))|ytNWt−1
(xt) + 2kη2v2R2

x|`′(ytNWt−1
(xt))|2 (6)

F (Wt) ≥ F (Wt−1) + 2kηvα|`′(ytNWt−1
(xt))| (7)

For an upper bound on G(Wt) we use the following inequalities (which hold for the cross entropy loss):

∀x ∈ R x
1+ex ≤ 1⇒ |`′(ytNWt−1

(xt))|ytNWt−1
(xt) =

ytNWt−1
(xt)

1+e
ytNWt−1

(xt)
≤ 1 and |`′(ytNWt−1

(xt))| ≤ 1. Together we

have for any t:
G(Wt)

2 ≤ G(Wt−1)2 + 2η + 2kη2v2R2
x

Using this recursively up until T = nNe we get:

G(WT )2 ≤ G(W0)2 + T (2kη2v2R2
x + 2η) (8)

Now, for F (Wt), let ε0 > 0, under our assumption, in any epoch ie until Ne (1 ≤ ie ≤ Ne) there exists at least one point in
the epoch (ytie ,xtie ) ∈ S s.t. `(ytieNWtie

(xtie )) > ε0.

Now, since in our case `(x) = log(1 + e−x) and `′(x) = − 1
1+ex , we see that the condition `(x) > ε0 implies that:

|`′(x)| > 1− e−ε0 (9)



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Towards Understanding Learning in Neural Networks with Linear Teachers

In any other case |`′(ytNWt−1
(xt))| ≥ 0, so if we assume at least one point violation per epoch (i.e. `(ytieNWtie

(xtie )) ≥
ε0 for some point

(
ytie ,xtie

)
in the epoch) we would get that at the end of epoch Ne:

F (WT ) ≥ F (WT−n) + 2kηvα(1− e−ε0) (10)

This implies that (recursively using Eq. (10)):

F (WT ) ≥ F (W0) + 2kηvαNe(1− e−ε0) (11)

where Ne is the number of epochs and n the number of training points, T = nNe.

Now, using the Cauchy-Schwartz, Eq. (8) and Eq. (11) we have:

−G(W0)||
−→
W ∗||+ 2kηvαNe(1− e−ε0) ≤ F (W0) + 2kηvαNe(1− e−ε0)

≤ F (WT ) ≤ ||
−→
W ∗||G(WT ) ≤ ||

−→
W ∗||

√
G(W0)2 + T (2kη2v2R2

x + 2η)

Using
√
a+ b ≤

√
a+
√
b the above implies:

−G(W0)||
−→
W ∗||+ 2kηvαNe(1− e−ε0) ≤ ||

−→
W ∗||G(W0) + ||

−→
W ∗||

√
T
√

2kη2v2R2
x + 2η

Now using
∣∣∣∣∣∣w(i)

0

∣∣∣∣∣∣ , ∣∣∣∣∣∣u(i)
0

∣∣∣∣∣∣ ≤ R0 we get G(W0) ≤
√

2kR0.

Noting that
∥∥∥−→W ∗

∥∥∥ =
√

2k||w∗|| and that Ne = T
n , we get :

(
2kηvα(1− e−ε0)

n

)
T ≤

√
4k2η2v2R2

x + 4kη||w∗||
√
T + 4kR0||w∗||

Therefore, we have an inequality of the form:
aT ≤ b

√
T + c

where a =
2kηvα(1− e−ε0)

n
, b =

√
4k2η2v2R2

x + 4kη||w∗|| and c = 4kR0||w∗||.

By inspecting the roots of the parabola P (X) = x2 − b
ax−

c
a we conclude that:

T ≤
(
b

a

)2

+

√
c

a

b

a
+
c

a
=

(4k2η2v2R2
x + 4kη)||w∗||2n2

4k2η2v2α2(1− e−ε0)2
+

√
4k2η2v2R2

x + 4kη||w∗||n
2kηvα(1− e−ε0)

√
4kR0||w∗||n

2kηvα(1− e−ε0)

+
4kR0||w∗||n

2kηvα(1− e−ε0)
=

(
R2
x

α2
+

1

kηv2α2

)
||w∗||2n2

(1− e−ε0)2
+

√
R0(8k2η2v2R2

x + 8kη)||w∗||1.5n1.5

2k(ηvα)1.5(1− e−ε0)1.5

+
2R0||w∗||n

ηvα(1− e−ε0)

By the inequality 1 − e−x > x
1+x for x > 0 (which is equivalent to 1

1−e−x < x+1
x ), with x = ε0 > 0 we get

1
1−e−ε0

< ε0+1
ε0

= 1 + 1
ε0

. Therefore for β > 0 (all arguments are positive):

1

(1− e−ε0)β
<

(
1 +

1

ε0

)β
By using the above inequality we can reach a polynomial bound on T :

T ≤
(
R2
x

α2
+

1

kηv2α2

)
||w∗||2n2

(
1 +

1

ε0

)2

+

√
R0(8k2η2v2R2

x + 8kη)||w∗||1.5n1.5(1 + 1
ε0

)1.5

2k(ηvα)1.5
+

2R0||w∗||n(1 + 1
ε0

)

ηvα
(12)
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We have shown that there is at most a finite amount of epochs Ne = T
n such that there exists at least one point in each of

them with a loss greater than ε0. Therefore, there exists an epoch 1 ≤ ie ≤ Ne + 1 such that each point sampled in the
epoch has a loss smaller than ε0. Formally, for any (ie − 1)n+ 1 ≤ t ≤ ien, `

(
ytNWt−1(xt)

)
≤ ε0. Recall that SGD

samples without replacement and therefore, each point is sampled at some t in the epoch ie.

Next, we will show that there exists a time t such that LS(Wt) < ε by bounding the change in the loss values during
the epoch. We’ll start by noticing that our loss function `(x) is locally Lipschitz with coefficient 1, that is because
∀x |`′(x)| = 1

1+ex ≤ 1. With this in mind for any point (yi,xi) ∈ S if we can bound |yiNWt+s
(xi) − yiNWt

(xi)| we
would also bound |`

(
yiNWt+s

(xi)
)
− ` (yiNWt

(xi)) |.

For any iteration (ie − 1)n+ 1 ≤ t ≤ ien and 1 ≤ s ≤ n we have:

|yiNWt+s
(xi)− yiNWt

(xi)| = |NWt+s
(xi)−NWt

(xi)|

=

∣∣∣∣∣∣v
k∑
j=1

(
σ(w

(j)
t+s · xi)− σ(w

(j)
t · xi)

)
− v

k∑
j=1

(
σ(u

(j)
t+s · xi)− σ(u

(j)
t · xi)

)∣∣∣∣∣∣
≤ v

k∑
j=1

∣∣∣σ(w
(j)
t+s · xi)− σ(w

(j)
t · xi)

∣∣∣+ v
k∑
j=1

∣∣∣σ(u
(j)
t+s · xi)− σ(u

(j)
t · xi)

∣∣∣
≤ v

k∑
j=1

∣∣∣(w(j)
t+s −w

(j)
t

)
· xi
∣∣∣+ v

k∑
j=1

∣∣∣(u(j)
t+s − u

(j)
t

)
· xi
∣∣∣ (13)

≤ v
k∑
j=1

||w(j)
t+s −w

(j)
t || · ||xi||+ v

k∑
j=1

||u(j)
t+s − u

(j)
t || · ||xi|| (14)

≤ vRx
k∑
j=1

∣∣∣∣∣
∣∣∣∣∣
s∑

h=1

ηvyt+hxt+h
∣∣`′(yt+hNWt+h−1

(xt+h))
∣∣ p(j)t+h−1

∣∣∣∣∣
∣∣∣∣∣

+ vRx

k∑
j=1

∣∣∣∣∣
∣∣∣∣∣
s∑

h=1

ηvyt+hxt+h
∣∣`′(yt+hNWt+h−1

(xt+h))
∣∣ q(j)t+h−1

∣∣∣∣∣
∣∣∣∣∣ (15)

≤ vRx
k∑
j=1

s∑
h=1

ηv
∣∣`′(yt+hNWt+h−1

(xt+h))
∣∣ ||xt+h||+ vRx

k∑
j=1

s∑
h=1

ηv
∣∣`′(yt+hNWt+h−1

(xt+h))
∣∣ ||xt+h||

≤ 2v2R2
xηk

s∑
h=1

∣∣`′(yt+hNWt+h−1
(xt+h))

∣∣ ≤ 2v2R2
xηks(1− e−ε0) ≤ 2v2R2

xηkn(1− e−ε0) ≤ 2v2R2
xηknε0 (16)

Where in Eq. (13) we used the Lipschitzness of σ(·) : ∀x1, x2 ∈ R|σ(x1)− σ(x2)| ≤ |x1 − x2|, in Eq. (14) we used the
Cauchy-Shwartz inequality, in Eq. (15) we used the update rule Eq. (2) recursively and finally in Eq. (16) we used that if
`(x) ≤ ε0 then |`′(x)| ≤ 1− e−ε0 (follows from a similar derivation to Eq. (9)) and that 1− e−ε0 ≤ ε0.

Now we can use the bound we just derived and the Lipschitzness of ` and reach

|`
(
yiNWt+s

(xi)
)
− ` (yiNWt

(xi)) | ≤ 2v2R2
xηknε0 (17)

for any time (ie−1)n+1 ≤ t ≤ ien and 1 ≤ s ≤ n. We know that for all 1 ≤ i ≤ n, there exists (ie−1)n+1 ≤ t∗i ≤ ien
such that `(yiNWt∗

i
−1

(xi)) ≤ ε0. Therefore, by Eq. (17), for time T ∗ = ien+ 1 and any (yi,xi) ∈ S we have:

` (yiNWT∗ (xi)) ≤ `
(
yiNWt∗

i
−1

(xi)
)

+ 2v2R2
xηknε0 ≤ ε0 + 2v2R2

xηknε0 (18)

If ∀1 ≤ i ≤ n `(yiNW (xi)) ≤ ε we would get our bound LS(W ) ≤ ε.

Therefore, if we set ε0 = ε
1+2v2R2

xηkn
in Eq. (18) we’ll reach our result.
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Setting this ε0 at Eq. (12) leads to:

T ≤
(
R2
x

α2
+

1

kηv2α2

)
||w∗||2n2

(
1 +

1 + 2v2R2
xηkn

ε

)2

+

√
R0(8k2η2v2R2

x + 8kη)||w∗||1.5n1.5
(

1 +
1+2v2R2

xηkn
ε

)1.5
2k(ηvα)1.5

+
2R0||w∗||n

(
1 +

1+2v2R2
xηkn

ε

)
ηvα

(19)

We denote the right hand side of Eq. (19) plus n by M(n, ε). 1 Note that M(n, ε) = O(n
4

ε2 ) and therefor for simplicity we
can alternatively denote M(n, ε) to be a less tight bound of the form Cn4

ε2 where C is a constant that depends polynomially

on Rx, R0, k,
1
α ,max

{
η, 1η

}
,max

{
v, 1v

}
and ||w∗||. Overall, we proved that after O(n

4

ε2 ) steps, SGD will converge to a
solution with LS(Wt) < ε empirical loss for some t ≤M(n, ε).

1We need to add n to Eq. (18) because we may consider the epoch immediately after T .
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3. Proof of Theorem 5.1
Before we start proving the main theorem we will prove some useful lemmas and corollaries.

We first show the following.

Corollary 3.1. if |(w − u) · x| ≥ 2r||x|| then |w · x| ≥ r||x|| ∨ |u · x| ≥ r||x||.

Proof. Assume in contradiction that |w·x| < r||x||∧|u·x| < r||x||. then by the triangle inequality and the Cauchy-Shwartz
inequality we’ll get:

|(w−u) ·x| ≤ |w ·x|+ |u ·x| < r||x||+ r||x|| = 2r||x|| in contradiction to the assumption |(w−u) ·x| ≥ 2r||x||.

Next, we prove the following lemma, which will be used throughout the proof of the main theorem. The lemma ties the dot
products with the center of the cluster to the dot products with the individual neurons:

Lemma 3.1. If ∀1 ≤ j ≤ k : w(j) ∈ Ball(w, r) ∧ u(j) ∈ Ball(u, r) then: ∀x ∈ Rd s.t |w · x| ≥ r||x|| : [∀1 ≤ j ≤
k w(j) · x > 0] ∨ [∀1 ≤ j ≤ k w(j) · x < 0] and similarly for u type neurons ∀x ∈ Rd s.t |u · x| ≥ r||x|| : [∀1 ≤ j ≤
k u(j) · x > 0] ∨ [∀1 ≤ j ≤ k u(j) · x < 0].

Proof. Let’s assume that w · x ≥ r||x||, therefore ∀1 ≤ j ≤ k : w(j) · x = (w(j) −w) · x + w · x ≥ −||w(j) −w|| ·
||x||+ r||x|| > −r||x||+ r||x|| = 0 where we had used Cauchy-Shwartz inequality and that ||w(j) −w|| < r.

If w ·x ≤ −r||x||, ∀1 ≤ j ≤ k : w(j) ·x = (w(j) −w) ·x+w ·x < ||w(j) −w|| · ||x|| − r||x|| < r||x|| − r||x|| = 0
the same derivation would work for u.

We are now ready to move forward with proving the main lemma.

By Corollary 3.1 we see that {x ∈ Rd| |(w − u) · x| ≥ 2r||x||} ⊆ {x ∈ Rd| |w · x| ≥ r||x|| ∨ |u · x| ≥ r||x||} so if we
prove that:

∀x ∈ Rd ∈ {x ∈ Rd| |(w − u) · x| ≥ 2r||x||} ∩ {x ∈ Rd| |w · x| ≥ r||x|| ∨ |u · x| ≥ r||x||} : sign (NW (x)) =
sign ((w − u) · x) we will be done.

We’ll start by showing first our lemma holds ∀x ∈ Rd s.t |w · x| ≥ r||x|| ∧ |u · x| ≥ r||x|| and then deal with the points in
which only one of the above conditions holds.

Proposition 3.1. ∀x ∈ Rd s.t |w · x| ≥ r||x|| ∧ |u · x| ≥ r||x|| : sign (NW (x)) = sign ((w − u) · x)

Proof. Under our clusterization assumption ∀1 ≤ j ≤ k : w(j) ∈ Ball(w, r) ∧ u(j) ∈ Ball(u, r) so we can use Lemma
3.1 and we are left with proving that ∀x ∈ Rd such that for the w neurons {[∀1 ≤ j ≤ k w(j) · x > 0] ∨ [∀1 ≤
j ≤ k w(j) · x < 0]} and for the u neurons {[∀1 ≤ j ≤ k u(j) · x > 0] ∨ [∀1 ≤ j ≤ k u(j) · x < 0]} we get
sign (NW (x)) = sign ((w − u) · x).

We can represent {x ∈ Rd| |w · x| ≥ r||x|| ∧ |u · x| ≥ r||x||} as a union of {C+
+ , C

−
− , C

−
+ , C

+
−} where:

C+
+ = {x ∈ Rd| ∀1 ≤ j ≤ k w(j) · x > 0 and ∀1 ≤ j ≤ k u(j) · x > 0}

C−− = {x ∈ Rd| ∀1 ≤ j ≤ k w(j) · x < 0 and ∀1 ≤ j ≤ k u(j) · x < 0}

C−+ = {x ∈ Rd| ∀1 ≤ j ≤ k w(j) · x > 0 and ∀1 ≤ j ≤ k u(j) · x < 0}

C+
− = {x ∈ Rd| ∀1 ≤ j ≤ k w(j) · x < 0 and ∀1 ≤ j ≤ k u(j) · x > 0}

Now we will show that sign (NW (x)) = sign ((w − u) · x) in each region, from which the claim follows.

1. If x ∈ C+
+ then NW (x) = v

(
k∑
j=1

σ(w(j) · x)− σ(u(j) · x)

)
= v

(
k∑
j=1

w(j) − u(j)

)
· x and therefore

sign (NW (x)) = sign ((w − u) · x).
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2. If x ∈ C−− then NW (x) = v

(
k∑
j=1

σ(w(j) · x)− σ(u(j) · x)

)
= αv

(
k∑
j=1

w(j) − u(j)

)
· x and therefore

sign (NW (x)) = sign ((w − u) · x)

3. If x ∈ C−+ then both NW (x) = v

(
k∑
j=1

σ(w(j) · x)− σ(u(j) · x)

)
= v

(
k∑
j=1

w(j) · x− αu(j) · x

)
> 0 and

w · x− u · x > 0. Therefore, sign (NW (x)) = sign ((w − u) · x).

4. If x ∈ C+
− then both NW (x) = v

(
k∑
j=1

σ(w(j) · x)− σ(u(j) · x)

)
= v

(
k∑
j=1

αw(j) · x− u(j) · x

)
< 0 and

w · x− u · x < 0. Therefore, sign (NW (x)) = sign ((w − u) · x).

We are left with proving sign (NW (x)) = sign ((w − u) · x) holds when exactly one condition holds ,i.e., either |w · x| ≥
r||x|| or |u · x| ≥ r||x||.
Proposition 3.2.

∀x ∈ {x ∈ Rd| |w · x| < r||x|| ∧ |u · x| ≥ r||x|| ∧ |(w − u) · x| ≥ 2r||x||} : sign (NW (x)) = sign ((w − u) · x)

and similarly our decision boundary is linear for points in which our condition only holds for w:

∀x ∈ {x ∈ Rd| |u · x| < r||x|| ∧ |w · x| ≥ r||x|| ∧ |(w − u) · x| ≥ 2r||x||} : sign (NW (x)) = sign ((w − u) · x)

Proof. We start with the domain {x ∈ Rd| |w · x| < r||x|| ∧ |u · x| ≥ r||x|| ∧ |(w − u) · x| ≥ 2r||x||}

i.e. our condition only holds for u.

There are two cases, and we’ll prove the result for each of them:

If u · x ≥ r||x||:

In this case NW (x) = v

(
k∑
j=1

σ(w(j) · x)− σ(u(j) · x)

)
= v

(
k∑
j=1

σ(w(j) · x)− ku · x

)
.

Next, for any x in the domain, we’ll denote Jw+ (x) := {j|w(j) · x > 0} and kw+(x) := |Jw+ (x)| similarly Jw− (x) =

{j|w(j) · x < 0} and kw−(x) := |Jw− (x)|. Using these definitions, our network has the following form:

NW (x) = v

 ∑
j+∈Jw

+ (x)

w(j+) · x + α
∑

j−∈Jw
−(x)

w(j−) · x− ku · x

 = v

kw · x− ku · x + (α− 1)
∑

j−∈Jw
−(x)

w(j−) · x


Next, we bound ∀j |w(j) ·x| = |(w(j)−w+w)·x| ≤ ||w(j)−w||·||x||+|w ·x| < 2r||x||where we used ||w(j)−w|| < r
and |w · x| < r||x||.

Now, if (w − u) · x ≥ 2r||x|| > 0 we get that NW (x) = v

(
k(w − u) · x− (1− α)

∑
j−∈Jw

−(x)

w(j−) · x

)
>

v
(
2r||x||k − 2r||x||kw−(x)(1− α)

)
> 0 since (1 − α) < 1 and kw−(x) ≤ k and therefore sign (NW (x)) =

sign ((w − u) · x) = 1 for this case.

If (w − u) · x ≤ −2r||x|| < 0 we get that NW (x) = v

(
k(w − u) · x− (1− α)

∑
j−∈Jw

−(x)

w(j−) · x

)
<

v
(
−2r||x||k + 2r||x||kw−(x)(1− α)

)
< 0 since (1 − α) < 1 and kw−(x) ≤ k. Therefore, we get that sign (NW (x)) =

sign ((w − u) · x) = −1 in this case.
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At any rate, we have shown that ∀x ∈ {x ∈ Rd| |w · x| < r||x|| ∧ u · x ≥ r||x|| ∧ |(w − u) · x| ≥ 2r||x||} :
sign (NW (x)) = sign ((w − u) · x).

If u · x ≤ −r||x||:

First, we notice that (w − u) · x > −r||x|| + r||x|| = 0 so sign ((w − u) · x) = 1 again we use Lemma 3.1 and from
our assumption u · x ≤ −r||x|| we have ∀1 ≤ j ≤ k u(j) · x < 0 and we can see that our network takes the form:

NW (x) = v

(
k∑
j=1

σ(w(j) · x)− σ(u(j) · x)

)
= v

(
k∑
j=1

σ(w(j) · x)− α · ku · x

)
≥ v

(
k∑
j=1

σ(w(j) · x) + αkr||x||

)
.

Next, we prove the following lemma:

Lemma 3.2. If |w · x| < r||x|| then α · k · r||x|| > −
k∑
j=1

σ(w(j) · x).

Proof. Let’s assume by contradiction that −
k∑
j=1

σ(w(j) · x) ≥ α · k · r||x||. We notice that regardless of the sign of the

dot product ∀j : −σ(w(j) · x) ≤ −αw(j) · x so we have −α
k∑
j=1

w(j) · x ≥ −
k∑
j=1

σ(w(j) · x) ≥ α · k · r||x||, which

leads to −αkw · x ≥ α · k · r||x|| (where we used the definition of w) finally we reach w · x ≤ −r||x||. This contradicts
|w · x| < r||x||.

Therefore, we have −
k∑
j=1

σ(w(j) · x) < α · k · r||x|| and sign (NW (x)) = sign ((w − u) · x)) = 1 as desired.

To conclude we proved that ∀x ∈ {x ∈ Rd| |w ·x| < r||x||∧|u ·x| ≥ r||x||∧|(w−u) ·x| ≥ 2r||x||}, sign (NW (x)) =
sign ((w − u) · x).

Next we look at ∀x ∈ {x ∈ Rd| |u · x| < r||x|| ∧ |w · x| ≥ r||x|| ∧ |(w − u) · x| ≥ 2r||x||} and through a similar
derivation of two cases we will prove that sign (NW (x)) = sign ((w − u) · x).

If w · x ≥ r||x||:

Through a similar derivation for the case of u · x ≥ r||x||, our network has the following form:

NW (x) = v

 k∑
j=1

σ(w(j) · x)− σ(u(j) · x)

 = v

kw · x− k∑
j=1

σ(u(j) · x)


= vkw · x− v

 ∑
j+∈Ju

+(x)

u(j+) · x +
∑

j−∈Ju
−(x)

αu(j−) · x


= vkw · x− v

 ∑
j+∈Ju

+(x)

u(j+) · x +
∑

j−∈Ju
−(x)

u(j−) · x + (α− 1)
∑

j−∈Ju
−(x)

u(j−) · x


= v

kw · x− ku · x + (1− α)
∑

j−∈Ju
−(x)

u(j−) · x


where Ju−(x) := {j|u(j) · x < 0}, Ju+(x) := {j|u(j) · x > 0} and ku−(x) = |Ju−(x)|, ku+(x) = |Ju+(x)|.
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If (w − u) · x ≥ 2r||x|| > 0 then NW (x) = v

(
k(w − u) · x + (1− α)

∑
j−∈Ju

−(x)

u(j−) · x

)
≥

v
(
2kr||x|| − 2r||x||(1− α)ku−(x)

)
> 0 (because (1 − α) < 1 and ku−(x) ≤ k) and sign (NW (x)) =

sign ((w − u) · x) = 1 (where we used the fact that ∀j : |u(j) · x| < 2r||x|| which follows from |u · x| < r||x||
and ||u(j) − u|| < r).

If (w − u) · x ≤ −2r||x|| < 0 we get that NW (x) ≤ v
(
−2r||x||k + 2r||x||(1− α)ku−(x)

)
< 0 and sign (NW (x)) =

sign ((w − u) · x) = 1.

To summarize, we showed that ∀x ∈ {x ∈ Rd| |u · x| < r||x|| ∧ w · x ≥ r||x|| ∧ |(w − u) · x| ≥ 2r||x||},
sign (NW (x)) = sign ((w − u) · x).

If w · x ≤ −r||x||:

We again use Lemma 3.1 which yields from w ·x ≤ −r||x|| that ∀1 ≤ j ≤ k w(j) ·x < 0 and we can see that our network
takes the form:

NW (x) = v

 k∑
j=1

σ(w(j) · x)− σ(u(j) · x)

 = αkvw ·x−v

 k∑
j=1

σ(u(j) · x)

 ≤ v
−αkr||x|| − k∑

j=1

σ(u(j) · x)


If −

k∑
j=1

σ(u(j) · x) < αkr||x|| we have sign (NW (x)) = sign ((w − u) · x) = −1 as desired.

The same contradiction proof from u · x ≤ −r||x|| segment above (Lemma 3.2) would show

−
k∑
j=1

σ(u(j) · x) < α · k · r||x|| (just exchange w and u) and we’ll get sign (NW (x)) = sign ((w − u) · x) = −1.

Finally, we proved that

∀x ∈ {x ∈ Rd| |w · x| < r||x|| ∧ |u · x| ≥ r||x|| ∧ |(w − u) · x| ≥ 2r||x||} sign (NW (x)) = sign ((w − u) · x)

and that

∀x ∈ {x ∈ Rd| |u · x| < r||x|| ∧ |w · x| ≥ r||x|| ∧ |(w − u) · x| ≥ 2r||x||} sign (NW (x)) = sign ((w − u) · x)

as required.

We can now combine Corollary 3.1, Proposition 3.1 and Proposition 3.2 and prove Theorem 5.1:

We have ∀x ∈ Rd s.t |(w − u) · x| ≥ 2r||x|| then |w · x| ≥ r||x|| ∨ |u · x| ≥ r||x||. If x is such that |w · x| ≥
r||x|| ∧ |u · x| ≥ r||x|| we can use Proposition (3.1) and get sign (NW (x)) = sign ((w − u) · x).

If only one condition holds i.e. x ∈ {x ∈ Rd| |w · x| < r||x|| ∧ |u · x| ≥ r||x|| ∧ |(w − u) · x| ≥ 2r||x||} or
x ∈ {x ∈ Rd| |u · x| < r||x|| ∧ |w · x| ≥ r||x|| ∧ |(w − u) · x| ≥ 2r||x||} then we can use Proposition (3.2) and get
sign (NW (x)) = sign ((w − u) · x).

Therefore, overall for |(w − u) · x| ≥ 2r||x|| we get sign (NW (x)) = sign ((w − u) · x) as required.

3.1. Proof of Corollary 6.1

Since the network is perfectly clustered, the corollary follows by Proposition (3.1) with r = 0.
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4. Additional Experiments - Linear Decision Boundary
In this section we provide additional empirical evaluations of the decision boundary that SGD converges to in our setting.

4.1. Leaky ReLU vs ReLU decision boundary

Theorem 5.1 addresses the case of Leaky ReLU activation. Here we show that the result is indeed not true for ReLU
networks. We compare two perfectly clustered networks (i.e., each with two neurons) one with a Leaky ReLU activation
and the other with a ReLU activation. Figure 1 shows a decision boundary for a two neuron network, in the case of Leaky
ReLU (Figure 1a) and ReLU (Figure 1b). It can be seen that the leaky ReLU indeed provides a linear decision boundary, as
predicted by Theorem 5.1, whereas the ReLU case is non-linear (we explicitly show the regime where the network output is
zero. This can be orange or blue, depending on whether zero is given label positive or negative. In any case the resulting
boundary is non-linear).

(a) Leaky ReLU network - Linear Decision Boundary (b) ReLU network - Non Linear Decision Boundary

Figure 1: The prediction landscape for two neuron networks with Leaky ReLU and ReLU activations. Orange for positive
prediction, blue for a negative prediction and grey for zero prediction. The w neuron is (1, 0) ∈ R2 and the u neuron is
(0, 1) ∈ R2.

4.2. MNIST - Linear Regime

In Figure 2 in the main text we saw how for MNIST digit pairs (0,1) and (3,5) the network enters the linear regime at some
point in the training process. In Figure 2 we see the robustness of this behavior across the MNIST data-set by showing the
above holds for more pairs of digits.

Figure 2: Convergence to a classifier that is linear on the data, for MNIST pairs. Each line corresponds to an average over 5
initializations.
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4.3. Clustering of Neurons - Empirical Evidence

In Section 5 in the main text and Figure 2 above, we saw that learning converges to a linear decision boundary on the train
and test points. Theorem 5.1 suggests that this will happen if neurons are well clustered (in the w and u groups). Here we
show that indeed clustering occurs.

We consider two different measures of clustering. The first is the ratio r
||w−u|| , and the second is the maximum angle

between the neurons of the same type (i.e., the maximal angle between vectors in the same cluster). Figure 3 shows these
two measures as a function of the training epochs. They can indeed be seen to converge to zero, which by Theorem 5.1
implies convergence to a linear decision boundary.

(a) Max Angle In Same Cluster Neurons (b) r
||w−u||

Figure 3: Evaluation of clustering measures during training. We consider two different clustering measures in (a) and (b)
(see text). It can be seen that both measures converge to zero.

5. Assumptions for Gradient Flow Analysis
In the paper we use results from (Lyu & Li, 2020) and (Ji & Telgarsky, 2020). Here we show that the assumptions required
by these theorems are satisfied in our setup.

The assumptions in (Lyu & Li, 2020) and (Ji & Telgarsky, 2020) are:

(A1) . (Regularity). For any fixed x,Φ(·;x) is locally Lipschitz and admits a chain rule;

(A2) . (Homogeneity). There exists L > 0 such that ∀α > 0 : Φ(αW ;x) = αLΦ(W ;x);

(B3) . The loss function `(q) can be expressed as `(q) = e−f(q) such that

(B3.1). f : R→ R is C1-smooth.

(B3.2). f ′(q) > 0 for all q ∈ R.

(B3.3). There exists bf ≥ 0 such that f ′(q)q is non-decreasing for q ∈ (bf ,+∞), and f ′(q)q → +∞ as q → +∞.

(B3.4). Let g : [f(bf ),+∞) → [bf ,+∞) be the inverse function of f on the domain [bf ,+∞). There exists
bg ≥ max{2f(bf ), f(2bf )},K ≥ 1 such that g′(x) ≤ Kg′(θx) and f ′(y) ≤ Kf ′(θy) for all x ∈ (bg,+∞), y ∈
(g(bg),+∞) and θ ∈ [1/2, 1)

(B4). (Separability). There exists a time t0 such that L(W ) < e−f(bf ) = `(bf )

We next show that these are satisfied in our setup.
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Proof. (A1). (Regularity) first we show that Φ(·;x) is locally Lipschitz, with slight abuse of notations, let W1 =
−→
W 1,W2 =

−→
W 2 ∈ R2kd so in our case:

Φ(W1;x)− Φ(W2;x) = v · σ(W1 · x)− v · σ(W2 · x)

= v

 k∑
j=1

σ
(
w

(j)
1 · x

)
− σ

(
w

(j)
2 · x

)
−
(
σ
(
u
(j)
1 · x

)
− σ

(
u
(j)
2 · x

))
and therefore

||Φ(W1;x)− Φ(W2;x)||

=

∣∣∣∣∣∣
∣∣∣∣∣∣v
 k∑
j=1

σ
(
w

(j)
1 · x

)
− σ

(
w

(j)
2 · x

)
−
(
σ
(
u
(j)
1 · x

)
− σ

(
u
(j)
2 · x

))∣∣∣∣∣∣
∣∣∣∣∣∣

≤ v

 k∑
j=1

∣∣∣∣∣∣σ (w(j)
1 · x

)
− σ

(
w

(j)
2 · x

)∣∣∣∣∣∣+
∣∣∣∣∣∣σ (u(j)

1 · x
)
− σ

(
u
(j)
2 · x

)∣∣∣∣∣∣


≤ 2v||x||

 k∑
j=1

||w(j)
1 −w

(j)
2 ||+ ||u

(j)
1 − u

(j)
2 ||

 = 2v · ||x|| · ||
−→
W 1 −

−→
W 2||

And we showed Φ(·;x) is globally Lipschitz (and therfor locally Lispchitz). Next for the chain rule, as shown in (Davis
et al., 2018) (corollary for deep learning therein), any function definable in an o-minimal structure admits a chain rule.
Our network is definable because algebraic, composition, inverse, maximum and minimum operations over definable
functions are also definable. Leaky ReLUs are definable as maximum operations over two linear functions (linear
functions are definable).and because Leaky ReLUs are definable our network is also definable.

(A2). (Homogeneity). It is easy to see from the definition that in our case, the trainable parameters are only the first layer
weights and the network Φ(·;x) is L = 1 homogeneous.

(B3). As seen in Lyu & Li (2020) (Remark A.2. therein) the logistic loss `(q) = log(1 + e−q) satisfies (B3) with
f(q) = − log

(
log(1 + e−q)

)
, g(q) = − log

(
ee

−q

− 1
)
, bf = 0.

(B4). (Separability). This is Assumption 6.1 in the main text. As we mentioned in the main text, this assumption is satisfied
with SGD by Theorem 4.1.

6. Proof of Theorem 6.1
In this proof we will show that the normalized parameters Ŵt := Wt

||Wt|| under gradient flow optimization, converges to a

solution in N and that the network NŴ at convergence is perfectly clustered. Under our assumption ∀t ≥ TNAR Ŵt ∈ N .
From the definition of the NAR it’s easy to see that the NAR is a closed domain. Therefore any limit point of Ŵt is also in
the NAR. From Ji & Telgarsky (2020) (Theorem 3.1. therein) we have that the normalized parameters flow converges when
using gradient flow. To conclude so far, we had shown that Ŵt converges to a point inside the NAR N .

We are left with showing that the limit point of lim
t→∞

Ŵt := Ŵ∗ has a perfectly clustered form.

Lyu & Li (2020) (Theorem A.8. therein) shows that every limit point of Ŵt is along the direction of a KKT point of the
following optimization problem (P):

min
1

2
||W ||22

s.t. qi(W ) ≥ 1 ∀i ∈ [n]
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where qi(W ) = yiNW (xi) is the network margin on the sample point (yi,xi).2

We are left with showing that at convergence the neurons align in two directions. We will use a characterization of the KKT
points of (P) and show that they are perfectly clustered. Since every limit point of the normalized parameters flow is along
the direction of a KKT point of (P) that would mean Ŵ∗ has a perfectly clustered form.

A feasible point W of (P) is a KKT point if there exist λ1, . . . , λn ≥ 0 such that:

1. W −
n∑
i=1

λihi = 0 for some h1, . . . ,hn satisfying hi ∈ ∂◦qi(W )

2. ∀i ∈ [n] : λi(qi(W )− 1) = 0

From Lyu & Li (2020) (Theorem A.8. therein) we know ∃β s.t. βŴ∗ is a KKT point of (P). Since our limit point is in an
NAR we don’t need to worry about the non differential points of the network because ∀1 ≤ j ≤ k, i ∈ [n] : w

(j)
∗ · xi 6=

0 ∧ u
(j)
∗ · xi 6= 0. (where w

(j)
∗ and u

(j)
∗ stands for the w and u type neurons of W∗, respectively). Therefore the Clarke

subdifferential coincides with the gradient in our domain, and we can derive it using calculus rules.

By looking at the gradient of the margin for any point (yi,xi):

•
∂qi(W )

∂w(j)
=
yi∂NW (xi)

∂w(j)
= yivxiσ

′(w(j) · xi) = yivxiσ
′(w(j) · xi)

•
∂qi(W )

∂u(j)
=
yi∂NW (xi)

∂u(j)
= −yivxiσ′(u(j) · xi) = −yivxiσ′(u(j) · xi)

Now using the above gradients implies that: ∂qi(W ) = yivxi(

k︷ ︸︸ ︷
σ′(w(1) · xi), . . . , σ′(w(k) · xi),

k︷ ︸︸ ︷
−σ′(u(1) · xi), . . . ,−σ′(u(k) · xi))

By the definition of the NAR N with parameters (β, cwi , c
u
i ) the dot product of a point xi with all neurons of the same type

is of the same sign, i.e.:
∀i ∈ [n],∀1 ≤ l, p ≤ k : σ′(w(l) · xi) = σ′(w(p) · xi) = cwi

and
∀i ∈ [n],∀1 ≤ l, p ≤ k : σ′(u(l) · xi) = σ′(u(p) · xi) = cui

It follows that for W ∈ N , ∂qi(W ) = yi · v · xi(
k︷ ︸︸ ︷

cwi , . . . , c
w
i ,

k︷ ︸︸ ︷
−cui , . . . ,−cui ).

Therefore, by the definition of a KKT point we have:

Ŵ∗ =
1

β


k︷ ︸︸ ︷

n∑
i=1

λiyivxic
w
i , . . . ,

n∑
i=1

λiyi vxic
w
i ,

k︷ ︸︸ ︷
−

n∑
i=1

λiyivxic
u
i , . . . ,−

n∑
i=1

λiyivxic
u
i

 ∈ R2kd

We can see that the first k entries are equal, as well as the next k entries (equal to each other and not to the first k entries).

Therefore the normalized parameters flow Ŵt converges to a perfectly clustered solution.

6.1. Proof Of Corollary 6.2.

By Theorem 6.1, we know the normalized parameters Ŵt are perfectly clustered at convergence so by Corollary 6.1
we get that the decision boundary of NŴ is linear at convergence. From the homogeneity of the network we have
NW (x) = ||W ||NŴ (x) for any W ∈ R2kd and because the norm is a non negative scalar we get sign (NW (x)) =
sign

(
NŴ (x)

)
, i.e., NW and NŴ are the same classifiers. Therefore, this implies that the decision boundary of NW is

linear at convergence.3

2It is not hard to see that given that the solution is in an NAR, then this optimization problem is convex.
3We use sign (∞) = 1 and sign (−∞) = −1, since the norm ||W || diverges.
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7. Proof of Theorem 6.2
We divide the proof of Theorem 6.2 into two parts. First, we show that the NAR is a PAR, and then we show that if a
network enters and remains in the PAR the network weights at convergence are proportional to the solutions of the SVM
problem we defined in the main text.

7.1. The NAR is a PAR

In this subsection we will prove the NAR is in fact a PAR under the conditions of the theorem. In the first step we show
that for all w(i)’s,

(
w(i)

||w(i)||

)
· x+ ≥ β for all positive x+ ∈ S+ and times t ≥ TMargin. Assume by contradiction that

the latter does not hold. Thus, by assumption 2 the network is in a NAR(β) and there exists a positive x+ ∈ S+ such that(
w(i)

||w(i)||

)
· x+ ≤ −β for all w(i). Denote by γt,{x} the margin of the network at time t ≥ TMargin on the point x. we

notice that γt ≤ γt,{x} by definition. Then:

γ̃t ≤ γt ≤ γt,{x+} =
+1 ·NW (x+)∥∥∥−→W∥∥∥ =

v

(
k∑
i=1

σ
(
w

(i)
t · x+

)
−

k∑
i=1

σ
(
u
(i)
t · x+

))
√

k∑
i=1

∣∣∣∣∣∣w(i)
t

∣∣∣∣∣∣2 +
∣∣∣∣∣∣u(i)

t

∣∣∣∣∣∣2 (20)

≤
v

(
k∑
i=1

σ
(
w

(i)
t · x+

)
−

k∑
i=1

σ
(
u
(i)
t · x+

))
√

k∑
i=1

∣∣∣∣∣∣u(i)
t

∣∣∣∣∣∣2 ≤
v

(
−

k∑
i=1

σ
(
u
(i)
t · x+

))
√

k∑
i=1

∣∣∣∣∣∣u(i)
t

∣∣∣∣∣∣2 ≤
vα

(
k∑
i=1

∣∣∣u(i)
t · x+

∣∣∣)√
k∑
i=1

∣∣∣∣∣∣u(i)
t

∣∣∣∣∣∣2 (21)

≤
vα

(
k∑
i=1

∣∣∣∣∣∣u(i)
t

∣∣∣∣∣∣ · ||x+||
)

√
k∑
i=1

∣∣∣∣∣∣u(i)
t

∣∣∣∣∣∣2 ≤
vα

(
k∑
i=1

∣∣∣∣∣∣u(i)
t

∣∣∣∣∣∣) ·max
i∈[n]
||xi||√

k∑
i=1

∣∣∣∣∣∣u(i)
t

∣∣∣∣∣∣2

=

v · α ·

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣


k︷ ︸︸ ︷∣∣∣∣∣∣u(1)
t

∣∣∣∣∣∣ , . . . , ∣∣∣∣∣∣u(k)
t

∣∣∣∣∣∣

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
1

·max
i∈[n]
||xi||

√
k∑
i=1

∣∣∣∣∣∣u(i)
t

∣∣∣∣∣∣2

where the first inequality follows by Lyu & Li (2020) (Theorem A.7. therein). In Eq. (21) we noticed that−
k∑
i=1

σ
(
u
(i)
t · x+

)
is largest when ∀1 ≤ i ≤ k u

(i)
t · x+ < 0 and therefore σ

(
u
(i)
t · x+

)
= αu

(i)
t · x+. Therefore, by the inequality

∀v ∈ Rk ||v||1 ≤
√
k · ||v||2, we have:

γ̃t ≤

v · α ·
√
k

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣


k︷ ︸︸ ︷∣∣∣∣∣∣u(1)
t

∣∣∣∣∣∣ , . . . , ∣∣∣∣∣∣u(k)
t

∣∣∣∣∣∣

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
2

·max
i∈[n]
||xi||

√
k∑
i=1

∣∣∣∣∣∣u(i)
t

∣∣∣∣∣∣2 =
√
k · α · v ·max

i∈[n]
||xi|| (22)

Now under assumption 3 there exists a time TMargin ≥ TNAR such that γ̃
TMargin

>
√
kαv · max

i∈[n]
||xi||. By Lyu & Li

(2020) (Theorem A.7. therein) the smoothed margin γ̃t is a non-decreasing function and we will get that ∀t ≥ TMargin :
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γ̃t >
√
kαv ·max

i∈[n]
||xi|| which is a contradiction to Eq. (22). Hence, ∀1 ≤ i ≤ k ∧ x ∈ S+ :

(
w

(i)
t

||w(i)
t ||

)
· x ≥ β.

In a similar fashion, assume there is some x− ∈ S− such that for

(
u
(l)
t

||u(l)
t ||

)
· x− ≥ β doesn’t hold. Then by assumption 1

the network is in a NAR,

(
u
(l)
t

||u(l)
t ||

)
· x− ≤ −β and by symmetry again we get:

γ̃t ≤ γt ≤ γt,{x−} =
−1 ·NW (x−)

||
−→
W t||

=

−v
(

k∑
i=1

σ
(
w

(i)
t · x−

)
−

k∑
i=1

σ
(
u
(i)
t · x−

))
√

k∑
i=1

∣∣∣∣∣∣w(i)
t

∣∣∣∣∣∣2 +
∣∣∣∣∣∣u(i)

t

∣∣∣∣∣∣2
· · · ≤

√
kαv ·max

i∈[n]
||xi||

By Lyu & Li (2020) (Theorem A.7. therein) we reach a contradiction to the network margin assumption again, so

∀x ∈ S− :

(
u

(l)
t∣∣∣∣∣∣u(l)
t

∣∣∣∣∣∣
)
· x ≥ β.

To conclude, we have proven so far for all t > TMargin:

1. ∀1 ≤ i ≤ k :, ∀x ∈ S+ :

(
w

(i)
t

||w(i)
t ||

)
· x ≥ β.

2. ∀1 ≤ i ≤ k :, ∀x ∈ S− :

(
u

(l)
t∣∣∣∣∣∣u(l)
t

∣∣∣∣∣∣
)
· x ≥ β.

Now, by assumption 4, ∀x ∈ S− :

(
w

(i)
t

||w(i)
t ||

)
· x 6≥ β and similarly ∀x ∈ S+ :

(
u

(i)
t

||u(i)
t ||

)
· x 6≥ β. This follows since

otherwise V+
β (S) and V−β (S) would not be empty in contradiction to assumption 4.

Next, under the network being in an NAR assumption we have for all t > TMargin:

1. ∀x ∈ S− :

(
w

(i)
t

||w(i)
t ||

)
· x ≤ −β

2. ∀x ∈ S+ :

(
u

(i)
t

||u(i)
t ||

)
· x ≤ −β

Thus, for all t > TMargin, the network is in PAR(β).

7.2. PAR alignment direction

Now we will find where the parameters converge to when the network is in the PAR(β). By Theorem 6.1, the normalized
gradient flow converges to a perfectly clustered solution, i.e., lim

t→∞
Ŵt := Ŵ∗ is of a perfectly clustered form. Formally that

means ∃β and ∃δ such that the normalized parameters Ŵ are of the form Ŵ∗ = (βw̃, . . . , βw̃, δũ, . . . , δũ) ∈ R2kd and
WLOG we can assume ||w̃|| = ||ũ|| = 1.

Because the solution is in the PAR(β), the network margins are given as follows for positive points:

∀xi ∈ S+ : qi(W ) = yiNW (xi) = yi||W ||NŴ (xi) = v||W ||

(
k∑
i=1

σ(βw̃ · xi)− σ(δũ · xi)

)
= v||W || (kβw̃ · xi − αkδũ · xi)
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Figure 4: The ratio of neurons from each type in the PAR throughout the training process. We sample 400 data points from
two antipodal separable Gaussians (one for each label) in R50. Our network is of 100 neurons (50 of each type) optimized
on the data using SGD with batch size 1 with learning rate η = 10−3.

and negative points:

∀xi ∈ S− : qi(W ) = yiNW (xi) = yi||W ||NŴ (xi) = v||W ||

(
k∑
i=1

σ(δũ · xi)− σ(βw̃ · xi)

)
= v||W || (kδũ · xi − αkβw̃ · xi)

where we used the fact we know the normalized solution would has a perfectly clustered form. We denote β̃ := ||W || · β
and similarly δ̃ := ||W || · δ

Using the above notations, the max margin problem in Lyu & Li (2020) (Theorem A.8. therein) takes the form:

arg min
β̃∈R,δ̃∈R

kβ̃2 + kδ̃2 = arg min
β̃∈R,δ̃∈R

v2k2β̃2 + v2k2δ̃2

∀x+ ∈ S+ : vkβ̃w̃ · x+ − αvkδ̃ũ · x+ ≥ 1

∀x− ∈ S− : vkδ̃ũ · x− − αvkβ̃w̃ · x− ≥ 1

Now we can denote w := vkβ̃w̃ and u := vkδ̃ũ and reach the desired formulation:

argmin
w∈Rd,u∈Rd

||w||2 + ||u||2

∀x+ ∈ N+ : w · x+ − αu · x+ ≥ 1

∀x− ∈ N− : u · x− − αw · x− ≥ 1

We obtained a reformulation of (P) as an SVM problem with variables (w,u) ∈ R2d and with a transformed dataset
which is a concatenated version of the original data φ(x) = [σ′(w∗ · x)x,−σ′(−w∗ · x)x] ∈ R2d, where for x+ ∈ N+,
φ(x+) = (x+,−αx+) ∈ R2d and for x− ∈ N−, φ(x−) = (−αx−,x−) ∈ R2d.

8. Proof of Lemma 6.1
Assume V+

β (S) 6= ∅, i.e. ∃v ∈ S, s.t. ∀x ∈ S+v̂ · x ≥ β and ∃x∗ ∈ S− s.t. v̂ · x∗ ≥ β. This means that v̂ · −x∗ ≤ −β,
because the data is linearly separable −x∗ ∈ S has to be a positive point and by the definition of V+

β (S) that would mean
v̂ · −x∗ ≥ β in contradiction.

By symmetry, if we assume V−β (S) 6= ∅ by taking the positive point which v̂ ∈ V−β (S) mistakenly classifies as a negative
one, we’ll reach a contradiction again.

Therefore if ∀x ∈ S,−x ∈ S we have V+
β (S) = ∅ and V−β (S) = ∅ and Assumption 4 in Theorem 6.2. holds in this case.
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(a) sign (NW (x)) (b) Neurons Directions

(c) Entrance to NAR (d) Non Entrance to PAR

Figure 5: The entrance to the NAR of a 100 neurons network.The weights initialization std is 10−4, learning rate is η = 10−2.
Each line in (c) and (d) is averaged over 5 initializations.

9. Entrance to PAR - High Dimensional Gaussians
We will show that the entrance to the PAR indeed happens empirically for two separable Gaussians. We measure the
percentage of neurons which are in the PAR of both types. A w type neuron is considered in the PAR if it classifies like the
ground truth w∗. A u type neuron is considered in the PAR if it classifies like −w∗.

The percentage of neurons in the PAR throughout the training process is given in Figure 4. We can see that the network
enters the PAR.

10. Entrance to NAR which is not a PAR
In this section we show that learning can enter an NAR which is not a PAR. We sample two antipodal Gaussians and add one
outlier positive point. Then for each neuron type (w or u) we measure the maximum amount of data points classification
disagreements between neurons of the same type denoted max(ndiff ) and the percentage of neurons which are in the PAR.

In Figure 5a we can see that the network yields 100% prediction accuracy. In Figure 5b we can see the directions of the
neurons (w type in black and u type in yellow). In Figure 5c we can see that the maximal number of points which neurons
of the same type classified differently goes to zero, therefore all neurons of the same type agree on the classification of the
data points. In Figure 5d we can see that the ratio of w type neurons which perfectly classifies the data does not increase to
1 so the network does not enter the PAR.
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11. Extension - First Layer Bias Term
In order to extend our results to include a bias term in the first layer, we would just need to reformulate our data points S to
S′ by

(x, y) ∈ S ⊆ Rd × Y 7→ ((x, 1), y) ∈ S′ ⊆ Rd+1 × Y

and extend our neurons to include a bias term:

∀ 1 ≤ i ≤ k w
(i)
t ∈ Rd 7→ (w

(i)
t , b(i)w ) ∈ Rd+1, u

(i)
t ∈ Rd 7→ (u

(i)
t , b(i)u ) ∈ Rd+1

This is equivalent to reformulating the first weights matrix W ∈ R2k×d 7→W ′ ∈ R2k×(d+1).

This reformulation is equivalent to adding a bias term for every neuron in the first layer, and all of the following results
would still hold under the above reformulation.

The proofs of Theorem 4.1 and Theorem 5.1 follow exactly if we exchange W with W ′ while for the proofs of Theorem 6.1
and Theorem 6.2 we use results from (Lyu & Li, 2020) and (Ji & Telgarsky, 2020) that require the model to be homogeneous.
Note that if we add a bias in the first layer, the model remains homogeneous and the proofs of Theorem 6.1 and Theorem
6.2 still hold for those cases as well.

References
Davis, D., Drusvyatskiy, D., Kakade, S., and Lee, J. D. Stochastic subgradient method converges on tame functions, 2018.

Ji, Z. and Telgarsky, M. Directional convergence and alignment in deep learning, 2020.

Lyu, K. and Li, J. Gradient descent maximizes the margin of homogeneous neural networks. ICLR, 2020.


	Gradient Flow Definitions
	Proof of Theorem 4.1
	Proof of Theorem 5.1
	Proof of Corollary 6.1

	Additional Experiments - Linear Decision Boundary
	Leaky ReLU vs ReLU decision boundary
	MNIST - Linear Regime
	Clustering of Neurons - Empirical Evidence

	Assumptions for Gradient Flow Analysis
	Proof of Theorem 6.1
	Proof Of Corollary 6.2.

	Proof of Theorem 6.2
	The NAR is a PAR
	PAR alignment direction

	Proof of Lemma 6.1
	Entrance to PAR - High Dimensional Gaussians
	Entrance to NAR which is not a PAR
	Extension - First Layer Bias Term

