
E(n) Equivariant Graph Neural Networks

A. Equivariance Proof
In this section we prove that our model is translation equivariant on x for any translation vector g 2 Rn and it is rotation
and reflection equivariant on x for any orthogonal matrix Q 2 Rn⇥n. More formally, we will prove the model satisfies:

Qxl+1 + g,hl+1 = EGCL(Qxl + g,hl)

We will analyze how a translation and rotation of the input coordinates propagates through our model. We start assuming h0

is invariant to E(n) transformations on x, in other words, we do not encode any information about the absolute position
or orientation of x0 into h0. Then, the output mij of Equation 3 will be invariant too since the distance between two
particles is invariant to translations kxl

i + g � [xl
j + g]k2 = kxl

i � xl
jk2, and it is invariant to rotations and reflections

kQxl
i�Qxl

jk2 = (xl
i�xl

j)
>Q>Q(xl

i�xl
j) = (xl

i�xl
j)

>I(xl
i�xl

j) = kxl
i�xl

jk2 such that the edge operation becomes
invariant:

mi,j = �e

⇣
hl
i,h

l
j ,
��Qxl

i + g � [Qxl
j + g]

��2 , aij
⌘
= �e

⇣
hl
i,h

l
j ,
��xl

i � xl
j

��2 , aij
⌘

The second equation of our model (eq. 4) that updates the coordinates x is E(n) equivariant. Following, we prove its
equivariance by showing that an E(n) transformation of the input leads to the same transformation of the output. Notice
mij is already invariant as proven above. We want to show:

Qxl+1
i + g = Qxl

i + g + C
X

j 6=i

�
Qxl

i + g � [Qxl
j + g]

�
�x (mi,j)

Derivation.

Qxl
i + g + C

X

j 6=i

�
Qxl

i + g �Qxl
j � g

�
�x (mi,j) = Qxl

i + g +QC
X

j 6=i

�
xl
i � xl

j

�
�x (mi,j)

= Q

0

@xl
i + C

X

j 6=i

�
xl
i � xl

j

�
�x (mi,j)

1

A+ g

= Qxl+1
i + g

Therefore, we have proven that rotating and translating xl results in the same rotation and translation on xl+1 at the output
of Equation 4.

Furthermore equations 5 and 6 only depend on mij and hl which as saw at the beginning of this proof, are E(n) invariant,
therefore the output of Equation 6 hl+1 will be invariant too. Thus concluding that a transformation Qxl+g on xl will result
in the same transformation on xl+1 while hl+1 will remain invariant to it such that Qxl+1+ g,hl+1 = EGCL(Qxl + g,hl)
is satisfied.

B. Re-formulation for velocity type inputs
In this section we write down the EGNN transformation layer hl+1,xl+1,vl+1 = EGCL[hl,xl,vl, E] that can take in
velocity input and output channels. We also prove it remains E(n) equivariant.

mij = �e

⇣
hl
i,h

l
j ,
��xl

i � xl
j

��2 , aij
⌘

vl+1
i = �v

�
hl
i

�
vl
i + C

X

j 6=i

�
xl
i � xl

j

�
�x (mij)

xl+1
i = xl

i + vl+1
i

mi =
X

j2N (i)

mij

hl+1
i = �h

�
hl
i,mi

�

E(n) Equivariant Graph Neural Networks

B.1. Equivariance proof for velocity type inputs

In this subsection we prove that the velocity types input formulation of our model is also E(n) equivariant on x. More
formally, for any translation vector g 2 Rn and for any orthogonal matrix Q 2 Rn⇥n, the model should satisfy:

hl+1, Qxl+1 + g,Qvl+1 = EGCL[hl, Qxl + g,Qvl, E]

In Appendix A we already proved the equivariance of our EGNN (Section 3) when not including vector type inputs. In its
velocity type inputs variant we only replaced its coordinate updates (eq. 4) by Equation 7 that includes velocity. Since this is
the only modification we will only prove that Equation 7 re-written below is equivariant.

vl+1
i = �v

�
hl
i

�
vl
i + C

X

j 6=i

�
xl
i � xl

j

�
�x (mij)

xl+1
i = xl

i + vl+1
i

First, we prove the first line preserves equivariance, that is we want to show:

Qvl+1
i = �v

�
hl
i

�
Qvl

i + C
X

j 6=i

�
Qxl

i + g � [Qxl
j + g]

�
�x (mij)

Derivation.

�v

�
hl
i

�
Qvl

i + C
X

j 6=i

�
Qxl

i + g � [Qxl
j + g]

�
�x (mij) = Q�v

�
hl
i

�
vl
i +QC

X

j 6=i

�
xl
i � xl

j

�
�x (mij) (10)

= Q

0

@�v

�
hl
i

�
vl
i + C

X

j 6=i

�
xl
i � xl

j

�
�x (mij)

1

A (11)

= Qvl+1
i (12)

Finally, it is straightforward to show the second equation is also equivariant, that is we want to show Qxl+1
i + g =

Qxl
i + g +Qvl+1

i

Derivation.

Qxl
i + g +Qvl+1

i = Q
�
xl
i + vl+1

i

�
+ g

= Qxl+1
i + g

Concluding we showed that an E(n) transformation on the input set of points results in the same transformation on the
output set of points such that hl+1, Qxl+1 + g,Qvl+1 = EGCL[hl, Qxl + g,Qvl, E] is satisfied.

C. Implementation details
In this Appendix section we describe the implementation details of the experiments. First, we describe those parts of
our model that are the same across all experiments. Our EGNN model from Section 3 contains the following three main
learnable functions.

• The edge function �e (eq. 3) is a two layers MLP with two Swish non-linearities: Input �! {LinearLayer() �! Swish()
�! LinearLayer() �! Swish() } �! Output.

• The coordinate function �x (eq. 4) consists of a two layers MLP with one non-linearity: mij �! {LinearLayer() �!
Swish() �! LinearLayer() } �! Output

• The node function �h (eq. 6) consists of a two layers MLP with one non-linearity and a residual connection:
[hl

i, mi] �! {LinearLayer() �! Swish() �! LinearLayer() �! Addition(hl
i) } �! hl+1

i

These functions are used in our EGNN across all experiments. Notice the GNN (eq. 2) also contains and edge operation and
a node operation �e and �h respectively. We use the same functions described above for both the GNN and the EGNN such
that comparisons are as fair as possible.

E(n) Equivariant Graph Neural Networks

C.1. Implementation details for Dynamical Systems

Dataset

In the dynamical systems experiment we used a modification of the Charged Particle’s N-body (N=5) system from (Kipf
et al., 2018). Similarly to (Fuchs et al., 2020), we extended it from 2 to 3 dimensions customizing the original code from
(https://github.com/ethanfetaya/NRI) and we removed the virtual boxes that bound the particle’s positions. The sampled
dataset consists of 3.000 training trajectories, 2.000 for validation and 2.000 for testing. Each trajectory has a duration
of 1.000 timesteps. To move away from the transient phase, we actually generated trajectories of 5.000 time steps and
sliced them from timestep 3.000 to timestep 4.000 (1.000 time steps into the future) such that the initial conditions are more
realistic than the Gaussian Noise initialization from which they are initialized.

In our second experiment, we sweep from 100 to 50.000 training samples, for this we just created a new training partition
following the same procedure as before but now generating 50.000 trajectories instead. The validation and test partition
remain the same from last experiment.

Models

All models are composed of 4 layers, the details for each model are the following.

• EGNN: For the EGNN we use its variation that considers vector type inputs from Section 3.2. This variation adds
the function �v to the model which is composed of two linear layers with one non-linearity: Input �! {LinearLayer()
�! Swish() �! LinearLayer() } �! Output. Functions �e, �x and �h that define our EGNN are the same than for all
experiments and are described at the beginning of this Appendix C.

• GNN: The GNN is also composed of 4 layers, its learnable functions edge operation �e and node operation �h from
Equation 2 are exactly the same as �e and �h from our EGNN introduced in Appendix C. We chose the same functions
for both models to ensure a fair comparison. In the GNN case, the initial position p0 and velocity v0 from the particles
is passed through a linear layer and inputted into the GNN first layer h0. The particle’s charges are inputted as edge
attributes aij = cicj . The output of the GNN hL is passed through a two layers MLP that maps it to the estimated
position.

• Radial Field: The Radial Field algorithm is described in the Related Work 4, its only parameters are contained in
its edge operation �rf() which in our case is a two layers MLP with two non linearities Input �! {LinearLayer() �!
Swish() �! LinearLayer() �! Tanh } �! Output. Notice we introduced a Tanh at the end of the MLP which fixes some
instability issues that were causing this model to diverge in the dynamical system experiment. We also augmented the
Radial Field algorithm with the vector type inputs modifications introduced in Section 3.2. In addition to the norms
between pairs of points, �rf() also takes as input the particle charges cicj .

• Tensor Field Network: We used the Pytorch implementation from https://github.com/FabianFuchsML/se3-transformer-
public. We swept over different hyper paramters, degree 2 {2, 3, 4}, number of features 2 {12, 24, 32, 64, 128}. We
got the best performance in our dataset for degree 2 and number of features 32. We used the Relu activation layer
instead of the Swish for this model since it provided better performance.

• SE(3) Transformers: For the SE(3)-Transformer we used code from https://github.com/FabianFuchsML/se3-
transformer-public. Notice this implementation has only been validated in the QM9 dataset but it is the only available
implementation of this model. We swept over different hyperparamters degree 2 {1, 2, 3, 4}, number of features 2 16,
32, 64 and divergence 2 {1, 2}, along with the learning rate. We obtained the best performance for degree 3, number
of features 64 and divergence 1. As in Tensor Field Networks we obtained better results by using the Relu activation
layer instead of the Swish.

Other implementation details

In Table 2 all models were trained for 10.000 epochs, batch size 100, Adam optimizer, the learning rate was fixed and
independently chosen for each model. All models are 4 layers deep and the number of training samples was set to 3.000.

C.2. Implementation details for Graph Autoneoders

Dataset

E(n) Equivariant Graph Neural Networks

In this experiment we worked with Community Small (You et al., 2018) and Erdos&Renyi (Bollobás & Béla, 2001) generated
datasets.

• Community Small: We used the original code from (You et al., 2018) (https://github.com/JiaxuanYou/graph-generation)
to generate a Community Small dataset. We sampled 5.000 training graphs, 500 for validation and 500 for testing.

• Erdos&Renyi is one of the most famous graph generative algorithms. We used the ”gnp random graph(M , p)” function
from (https://networkx.org/) that generates random graphs when povided with the number of nodes M and the edge
probability p following the Erdos&Renyi model. Again we generated 5.000 graphs for training, 500 for validation
and 500 for testing. We set the edge probability (or sparsity value) to p = 0.25 and the number of nodes M ranging
from 7 to 16 deterministically uniformly distributed. Notice that edges are generated stochastically with probability
p, therefore, there is a chance that some nodes are left disconnected from the graph, ”gnp random graph(M , p)”
function discards these disconnected nodes such that even if we generate graphs setting parameters to 7 M 16
and p = 0.25 the generated graphs may have less number of nodes.

Finally, in the graph autoencoding experiment we also overfitted in a small partition of 100 samples (Figure 5) for the
Erdos&Renyi graphs described above. We reported results for different p values ranging from 0.1 to 0.9. For each p value
we generated a partition of 100 graphs with initial number of nodes between 7 M 16 using the Erdos&Renyi generative
model.

Models

All models consist of 4 layers, 64 features for the hidden layers and the Swish activation function as a non linearity. The
EGNN is defined as explained in Section 3 without any additional modules (i.e. no velocity type features or inferring edges).
The functions �e, �x and �h are defined at the beginning of this Appendix C. The GNN (eq. 2) mimics the EGNN in terms
that it uses the same �h and �e than the EGNN for its edge and node updates. The Noise-GNN is exactly the same as the
GNN but inputting noise into the h0 features. Finally the Radial Field was defined in the Related Related work Section 4
which edge’s operation �rf consists of a two layers MLP: Input �! { Linear() �! Swish() �! Linear() } �! Output.

Other implementation details

All experiments have been trained with learning rate 10�4, batch size 1, Adam optimizer, weight decay 10�16, 100 training
epochs for the 5.000 samples sized datasets performing early stopping for the minimum Binary Cross Entropy loss in the
validation partition. The overfitting experiments were trained for 10.000 epochs on the 100 samples subsets.

C.3. Implementation details for QM9

For QM9 (Ramakrishnan et al., 2014) we used the dataset partitions from (Anderson et al., 2019). We imported the dataloader
from his code repository (https://github.com/risilab/cormorant) which includes his data-preprocessing. Additionally all
properties have been normalized by substracting the mean and dividing by the Mean Absolute Deviation.

Our EGNN consists of 7 layers. Functions �e and �h are defined at the beginning of this Appendix C. Additionally, we use
the module �inf presented in Section 3.3 that infers the edges . This function �inf is defined as a linear layer followed by a
sigmoid: Input �! {Linear() �! sigmoid()} �! Output. Finally, the output of our EGNN hL is forwarded through a two
layers MLP that acts node-wise, a sum pooling operation and another two layers MLP that maps the averaged embedding
to the predicted property value, more formally: hL �! {Linear() �! Swish() �! Linear() �! Sum-Pooling() �! Linear() �!
Swish() �! Linear} �! Property. The number of hidden features for all model hidden layers is 128.

We trained each property individually for a total of 1.000 epochs, we used Adam optimizer, batch size 96, weight decay
10�16, and cosine decay for the learning rate starting at at a lr=5 · 10�4 except for the Homo, Lumo and Gap properties
where its initial value was set to 10�3.

D. Further experiments
D.1. Graph Autoencoder

In this section we present an extension of the Graph Autoencoder experiment 5.2. In Table 4 we report the approximation
error of the reconstructed graphs as the embedding dimensionality n is reduced n 2 {4, 6, 8} in the Community Small

E(n) Equivariant Graph Neural Networks

Community Small Erdos&Renyi
n=4 n=6 n=8 n=4 n=6 n=8

% Err. F1 % Err. F1 % Err. F1 % Err. F1 % Err. F1 % Err. F1
GNN 1.45 0.977 1.29 0.9800 1.29 0.980 7.92 0.844 5.22 0.894 4.62 0.907
Noise-GNN 1.94 0.970 0.44 0.9931 0.44 0.993 3.80 0.925 2.66 0.947 1.25 0.975
EGNN 2.19 0.966 0.42 0.9934 0.06 0.999 3.09 0.939 0.58 0.988 0.11 0.998

Table 4. Analysis of the % of wrong edges and F1 score for different n embedding sizes {2, 4, 8 } for the GNN, Noise-GNN and EGNN
in Community Small and Erdos&Renyi datasets.

and Erdos&Renyi datasets for the GNN, Noise-GNN and EGNN models. For small embedding sizes (n = 4) all methods
perform poorly, but as the embedding size grows our EGNN significantly outperforms the others.

E(n) Equivariant Graph Neural Networks

E. Sometimes invariant features are all you need.
Perhaps surprisingly we find our EGNNs outperform other equivariant networks that consider higher-order representations.
In this section we prove that when only positional information is given (i.e. no velocity-type features) then the geometry
is completely defined by the invariant distance norms in-between points, without loss of relevant information. As a
consequence, it is not necessary to consider higher-order representation types of the relative distances, not even the relative
differences as vectors. To be precise, note that these invariant features still need to be permutation equivariant, they are only
E(n) invariant.

To be specific, we want to show that for a collection of points {xi}Mi=1 the norm of in-between distances `2(xi,xj) are a
unique identifier of the geometry, where collections separated by an E(n) transformations are considered to be identical. We
want to show invariance of the norms under E(n) transformations and uniqueness: two point collections are identical (up to
E(n) transform) when they have the same distance norms.

Invariance. Let {xi} be a collection of M points where xi 2 Rn and the `2 distances are `2(xi,xj). We want to show that
all `2(xi,xj) are unaffected by E(n) transformations.

Proof. Consider an arbitrary E(n) transformation Rn ! Rn : x 7! Qx + t where Q is orthogonal and t 2 Rn is a
translation. Then for all i, j:

`2(Qxi + t, Qxj + t) =
p
(Qxi + t� [Qxj + t])T (Qxi + t� [Qxj + t]) =

p
(Qxi �Qxj)

T (Qxi �Qxj)

=
p
(xi � xj)

TQTQ(xi � xj) =
p
(xi � xj)

T (xi � xj) = `2(xi,xj)

This proves that the `2 distances are invariant under E(n) transforms.

Uniqueness. Let {xi} and {yi} be two collection of M points each where all in-between distance norms are identical,
meaning `2(xi,xj) = `2(yi,yj). We want to show that xi = Qyi + t for some orthogonal Q and translation t, for all i.

Proof. Subtract x0 from all {xi} and y0 from all {yi}, so x̃i = xi � x0 and ỹi = yi � y0. As proven above, since
translation is an E(n) transformation the distance norms are unaffected and:

`2(x̃i, x̃j) = `2(xi,xj) = `2(yi,yj) = `2(ỹi, ỹj).

So without loss of generality, we may assume that x0 = y0 = 0. As a direct consequence ||xi||2 = ||yi||2. Now writing out
the square:

xT
i xi � 2xT

i xj + xT
j xj = ||xi � xj ||22 = ||yi � yj ||22 = yT

i yi � 2yT
i yj + yT

j yj

And since ||xi||2 = ||yi||2, it follows that xT
i xj = yT

i yj or equivalently written as dot product hxi,xji = hyi,yji. Notice
that this already shows that angles between pairs of points are the same.

At this moment, it might already be intuı̈tive that the collections of points are indeed identical. To finalize the proof formally
we will construct a linear map A for which we will show that (1) it maps every xi to yi and (2) that it is orthogonal. First
note that from the angle equality it follows immediately that for every linear combination:

||
X

i

cixi||2 = ||
X

i

ciyi||2 (⇤).

Let Vx be the linear span of {xi} (so Vx is the linear subspace of all linear combinations of {xi}). Let {xij}dj=1 be a basis
of Vx, where d n. Recall that one can define a linear map by choosing a basis, and then define for each basis vector where
it maps to. Define a linear map A from Vx to Vy by the transformation from the basis xij to yij for j = 1, ..., d. Now pick
any point xi and write it in its basis xi =

P
j cjxij 2 Vx. We want to show Axi = yi or alternatively ||yi �Axi||2 = 0.

Note that Axi = A
P

j cjxij =
P

j cjAxij =
P

j cjyij . Then:

||yi �
X

j

cjyij ||
2
2 = hyi,yii � 2hyi,

X

j

ciyij i+ h
X

j

ciyij ,
X

j

ciyij i

(⇤)
= hxi,xii � 2hxi,

X

j

cixij i+ h
X

j

cixij ,
X

j

cixij i = hxi,xii � 2hxi,xii+ hxi,xii = 0.

Thus showing that Axi = yi for all i = 1, . . . ,M , proving (1). Finally we want to show that A is orthogonal, when
restricted to Vx. This follows since:

hAxij , Axij i = hyij ,yij i = hxij ,xij i
for the basis elements xi1 , ...,xid . This implies that A is orthogonal (at least when restricted to Vx). Finally A can be
extended via an orthogonal complement of Vx to the whole space. This concludes the proof for (2) and shows that A is
indeed orthogonal.

