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Supplementary material
In Sec. A, we introduce some important notions linked to the mirror-descent scheme. We also prove in this section a
general result which states the non-asymptotic stationary convergence of the mirror-descent according to a specific criterion
introcuded in this work. In Sec. B, we detail the computation of the Dykstra’s algorithm 2 for which we have obtained a
simple expression of the updates of the couplings. In Sec. C, we provides all the proofs of the Propositions introduced in
this work in the main text. In Sec D, we detail the algorithm presented in (Indyk et al., 2019). In Sec. E, F, we give two
variants of our algorithm when either the marginal g is fixed or when no lower bound is provided on the coordinates of g. In
Sec. G, we provides more experiment to illustrate our method.

A. Mirror Descent Algorithm
Let X a closed convex subset in a Euclidean space Rq, f : X ! R continuously differentiable and let us consider the
following problem

min
x2X

f(x). (11)

Given a convex function h : X ! R continuously differentiable, one can define the Bregman Divergence associated to h as

Dh(x, z) := h(x)� h(z)� hrh(z), x� zi.

To solve Eq. (11), one can employ the mirror-descent (MD) algorithm. Given an initial point x0 2 X and a sequence of
positive step-size (�k)k�0, the mirror-descent scheme associated to the prox-function Dh computes

xk+1 = argmin
x2X

hrf(xk), xi+
1

�k
Dh(x, xk).

In the following, we need to introduce two notions of relative strong convexity and relative smoothness in order to prove
non-asymptotic stationary convergence of the MD scheme.
Definition (Relative smoothness.). Let L > 0 and f continuously differentiable on X . f is said to be L-smooth relatively

to h if

f(y)  f(x) + hrf(x), y � xi+ LDh(y, x)

Definition (Relative strong convexity). Let ↵ > 0 and f continuously differentiable on X . f is said to be ↵-strongly convex

relatively to h if

f(y) � f(x) + hrf(x), y � xi+ ↵Dh(y, x) 8 x, y 2 X

Note that h is always 1-strongly convex relatively to h. Let us now prove a general result to show non-asymptotic stationary
convergence of the MD scheme. For that purpose, we introduce for all k � 0 the following criterion to establish convergence:

�k , 1

�2
k

(Dh(xk, xk+1) + Dh(xk+1, xk)).

Proposition 5. Let N � 1, f continuously differentiable on X which is L-smooth relatively to h. By considering for all

k = 1, . . . , N , �k = 1/2L, and by denoting D0 = f(x0)�minx2X f(x), we have

min
0kN�1

�k 
4LD0

N
.

Proof. Let k � 0, then by L-smoothness of f , we have

f(xk+1)  f(xk) + hrf(xk), xk+1 � xki+ LDh(xk+1, xk),

and by optimality of xk+1, we have for all x 2 X ,

hrf(xk) +
1

�k
[rh(xk+1)�rh(xk)], x� xk+1i � 0,
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which implies, by taking x = xk, that

hrf(xk), xk � xk+1i �
1

�k
[�hrh(xk+1), xk � xk+1i � hrh(xk), xk+1 � xki]

�
1

�k
[Dh(xk, xk+1) + Dh(xk+1, xk)].

Then we have

f(xk+1)  f(xk)�
1

�k
[Dh(xk, xk+1) + Dh(xk+1, xk)] + LDh(xk+1, xk) + LDh(xk, xk+1)

where the last term is added by positivity of Dh(·, ·) (as h is supposed to be convex on X ). Finally we obtain that

 
N�1X

k=0

�k(1� �kL)�k

!
 f(x0)� f(xN )  D0,

and as soon as �k < 1
L , we have

min
0kN�1

�k 
D0⇣PN�1

k=0 �k(1� �kL)

⌘ .

Then by taking �k =
1
2L , the result follows.

In this paper, we consider h to be the negative entropy function defined on �
⇤
q as

h(x) =

qX

i=1

xi log(xi). (12)

Therefore the prox-function associated is just the Kullback–Leibler divergence (KL) defined as,

KL(x, z) =

qX

i=1

xi log(xi/zi).

Moreover if X ⇢
Qp

i=1 �
⇤
qi for p � 1, we consider instead

h((x(1), . . . , x(p)
)) :=

pX

i=1

qiX

j=1

x(i)
j log(x(i)

j )

where the associated prox-function is

Dh((x(1), . . . , x(p)
), (z(1), . . . , z(p))) =

pX

i=1

KL(x(i), z(i)).

B. The Dykstra’s Algorithm
In order to solve Eq. (10), we use the Dykstra’s Algorithm (Dykstra, 1983). Given a closed convex set C ⇢ Rn⇥r

+ ⇥Rm⇥r
+ ⇥

Rr
+, we denote for all ⇠ 2 (R⇤

+)
n⇥r
⇥ (R⇤

+)
m⇥r
⇥ (R⇤

+)
r the projection according to the Kullback-Leibler divergence as

P
KL
C (⇠) , argmin

⇣2C
KL(⇣, ⇠).
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Starting from ⇣0 , ⇠ and q0 = q�1 = (1,1,1) 2 Rn⇥r
+ ⇥ Rm⇥r

+ ⇥ Rr
+, the Dykstra’s Algorithm 2 applied to our problem

consists in computing for all j � 0,

⇣2j+1 = P
KL
C1(a,b,r,↵)(⇣2j � q2j�1)

q2j+1 = q2j�1 �
⇣2j

⇣2j+1

⇣2j+2 = P
KL
C2(r)

(⇣2j+1 � q2j)

q2j+2 = q2j �
⇣2j+1

⇣2j+2
.

In fact these operations can be simplified to simple matrix/vector multiplications. More precisely, the Dykstra’s Algorithm
produces the iterates (⇣j)j�0 which satisfy for all j � 0 ⇣j = (Qj , Rj , gj) where

Qj = diag(u1
j )⇠

(1)
diag(v1j )

Rj = diag(u2
j )⇠

(2)
diag(v2j )

for the sequences (ui
j , v

i
j)j�0 initialized as, ui

0 , 1n, vi
0 , 1m for all i 2 {1, 2}, q(3)0,1 = q(3)0,2 = q(1)0 = q(2)0 = 1r and

computed with the iterations

uk,i
n+1 =

pi

⇠i
kvk,i

n

g̃n+1 = max(↵, gn � q(3)n,1), q(3)n+1,1 = (gn � q(3)n,1)/g̃n+1

gn+1 = (g̃n+1 � q(3)n,2)
1/3

2Y

i=1

(vk,i
n � q(i)n � (⇠i

k)
T uk,i

n )
1/3

vk,i
n+1 =

gn+1

(⇠i
k)T uk,i

n

q(i)n+1 = (vk,i
n � q(i)n )/vk,i

n+1, q(3)n+1,2 = (g̃n+1 � q(3)n,2)/gn+1

C. Proofs
C.1. Proof of Proposition 1

Proof. The case when " = 0 is clear. Assume now that " > 0. When r = 1, note that C1(a, b, r) \ C2(r) is closed as g = 1

and bounded, therefore and by continuity of the objective the mininum exists. Let r � 2. First remarks that we always have
LOTr,"(µ, ⌫)  LOTr�1,"(µ, ⌫). Let us assume that (8) does not admits a minimum. Because the objective F" is a lower
semi-continuous function on C1(a, b, r) \ C2(r), and by compacity of C1(a, b, r) \ C2(r), the objective function admits a
minimum (Q, R, g) 2 C1(a, b, r) \ C2(r) and we have LOTr,"(µ, ⌫) = F"(Q, R, g). But as the minimum is not attained
on C1(a, b, r) \ C2(r), it means that there exists at least one coordinate i 2 {1, . . . , r} such that gi = 0. Then because the
constraints, Q and R both admit a column which is the null vector. By deleting these coordinates in Q, R, g, we obtain that
LOTr,"(µ, ⌫) = LOTr�1,"(µ, ⌫).

C.2. Proof of Proposition 2

Proof. The first oder conditions of the projection gives that there exists (�1, �2, �3) 2 Rn
⇥ Rm

⇥ Rr
+ such that

log(Q/Q̃) + �11
T

= 0

log(R/R̃) + �21
T

= 0

log(g/g̃) + �3 = 0
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Moreover the conditions Q1 = a, R1 = b and g � ↵ imply that

Q = Diag(a/Q̃1)Q̃

R = Diag(b/R̃1)R̃

g = max(↵, g̃).

C.3. Proof of Proposition 3

Proof. The first order conditions of the projection states that there exists (�1, �2) 2 Rr
⇥ Rr such that

log(Q/Q̃) + 1n�T
1 = 0

log(R/R̃) + 1m�T
2 = 0

log(g/g̃)� (�1 + �2) = 0

Moreover the conditions QT1n = RT1m = g imply that

Q = Q̃Diag(g/Q̃T1n)

R = R̃Diag(g/R̃T1m)

g3 = g̃ � Q̃T1n � R̃T1m

from which the result follows.

C.4. Proof of Proposition 4

Proof. To show the result, we just need to show that

F" : (Q, R, g) 2 C(a, b, r, ↵)! hC, Q diag(1/g)RT
i � "H(Q, R, g)

is smooth relatively to

H(Q, R, g) :=

X

i,j

Qi,j log(Qi,j) +

X

i,j

Ri,j log(Ri,j) +

X

j

gj log(gj),

then by applying Proposition 5, the result will follow. Let us now show that F" is L",↵-smooth. To do so, it is enough to
show that (Lu et al., 2017; Zhang et al., 2020)

krF"(Q1, R1, g1)�rF"(Q2, R2, g2)k2  L",↵kH(Q1, R1, g1)�H(Q2, R2, g2)k2.

We first have that

rF"(Q, R, g) =
�
CR diag(1/g) + "(log Q + 1), CT Q diag(1/g) + "(log R + 1),�D(QT RC)/g2 + "(log g + 1)

�

Now we have,

krF"(Q1)�rF"(Q2)k
2
2  kCR1 diag(1/g1)� CR2 diag(1/g2)k

2
2 + "2k log Q1 � log Q2k

2
2

+ 2"k log Q1 � log Q2k2kCR1 diag(1/g1)� CR2 diag(1/g2)k2

 kCk22k(R1 �R2) diag(1/g1) + (diag(1/g1)� diag(1/g2))R2k
2
2 + "2k log Q1 � log Q2k

2
2

+ 2"k log Q1 � log Q2k2kCR1 diag(1/g1)� CR2 diag(1/g2)k2

 kCk22


kR1 �R2k

2
2

↵2
+ k1/g1 � 1/g2k

2
2 +
kR1 �R2kk1/g1 � 1/g2k2

↵

�
+ "2k log Q1 � log Q2k

2
2

+ 2"k log Q1 � log Q2k2kCR1 diag(1/g1)� CR2 diag(1/g2)k2.
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As Q! H(Q) is 1-strongly convex w.r.t to the `2-norm on �n⇥r, we have

kQ1 �Q2k
2
2  hlog Q1 � log Q2, Q1 �Q2i

 k log Q1 � log Q2k2kQ1 �Q2k2

from which follows that

kQ1 �Q2k2  log Q1 � log Q2k2.

Moreover we have

k1/g1 � 1/g2k2 
kg1 � g2k2

↵2
 k
k log g1 � log g2k2

↵2

Therefore we obtain that

krF"(Q1)�rF"(Q2)k
2
2 

✓
kCk2

↵
k log R1 � log R2k2 +

kCk2
↵2
k log g1 � log g2k2 + "k log Q1 � log Q2k2

◆2

.

An analogue proof leads to

krF"(R1)�rF"(R2)k
2
2 

✓
kCk2

↵
k log Q1 � log Q2k2 +

kCk2
↵2
k log g1 � log g2k2 + "k log R1 � log R2k2

◆2

.

Let us now consider smoothness of F" w.r.t g,

krF"(g1)�rF"(g2)k
2
2 

����
D(QT

1 CR1)

g21
�

D(QT
2 CR2)

g22

����
2

2

+ "2k log g1 � log g2k
2
2

+ 2"

����
D(QT

1 CR1)

g21
�

D(QT
2 CR2)

g22

����
2

k log g1 � log g2k2.

but we have that
����

D(QT
1 CR1)

g21
�

D(QT
2 CR2)

g22

����
2

2

 k(1/g21 � 1/g22) diag(QT
1 CR1)k

2
2 + kD(QT

1 CR1)�D(QT
2 CR2)/g22k

2
2

+ 2k(1/g21 � 1/g22) diag(QT
1 CR1)k2kD(QT

1 CR1)�D(QT
2 CR2)/g22k2



✓
2kCk2

↵3
k log g1 � log g2k2 +

kCk2
↵2

⇥
kQ1 �Q2k

2
2 + kR1 �R2k2

⇤◆2

.

Therefore we obtain that

krF"(g1)�rF"(g2)k
2
2 

✓✓
" +

2kCk2
↵3

◆
k log g1 � log g2k2 +

kCk

↵2
kQ1 �Q2k2 + +

kCk

↵2
kR1 �R2k2

◆2

Finally we obtain that

krF"(Q1, R1, g1)�rF"(Q2, R2, g2)k
2
2  3

✓
kCk22
↵2

+
kCk22
↵4

+ "2
◆

[k log Q1 � log Q2k
2
2 + k log R1 � log R2k

2
2]

+ 3

 
2kCk22

↵4
+

✓
" +

2kCk2
↵3

◆2
!
k log g1 � log g2k

2
2

Thus we obtain that

krF"(Q1, R1, g1)�rF"(Q2, R2, g2)k2  L",↵krH(Q1, R1, g1)�rH(Q2, R2, g2)k2

and the result follows.
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D. Low-Rank Factorization of Distance Matrix
In this section we present the algorithm used to perform a low-rank approximation of a distance matrix (Bakshi & Woodruff,
2018; Indyk et al., 2019). Given a metric space (X , d), X = {xi}

n
i=1 2 X

n and Y = {yj}
m
j=1 2 X

m we aim at obtaining a
low-rank approximation of the distance matrix D = (d(xi, yj))i,j with a precision � > 0. Let us now present the algorithm
considered where we have denoted t = br/�c.

Algorithm 4 LR-Distance(X,Y, r, �)

Inputs: X, Y, r, �
Choose i⇤ 2 {1, . . . , n}, and j⇤

{1, . . . , m} uniformly at random.
For i = 1, . . . , n, pi  d(xi, y⇤

j )
2

+ d(x⇤
i , y

⇤
j )

2
+

1
m

Pm
j=1 d(x⇤

i , yj)
2.

Independently choose i(1), . . . , i(t) according (p1, . . . , pn).
X(t)

 [xi(1) , . . . , xi(t) ], P (t)
 [
p

tpi(1) , . . . ,
p

tpi(t) ], S  d(X(t), Y )/P (t)

Denote S = [S(1), . . . , S(m)
],

For j = 1, . . . , m, qj  kS(j)
k
2
2/kSk

2
F

Independently choose j(1), . . . , j(t) according (q1, . . . , qm).
S(t)
 [Sj(1)

, . . . , Sj(t)

], Q(t)
 [
p

tqj(1) , . . . ,
p

tqj(t) ], W  S(t)/Q(t)

U1, D1, V1  SVD(W ) (decreasing order of singular values).
N  [U1(1), . . . , U (r)

1 ], N  ST N/kWT NkF
Choose j(1), . . . , j(t) uniformly at random in {1, . . . , m}.
Y (t)

 [yj(1) , . . . , yj(t) ], D(t)
 d(X, Y (t)

)/
p

t.
U2, D2, V2 = SVD(NT N), U2  U2/D2, N (t)

 [(NT
)
(j(1)), . . . , (NT

)
(j(t))

], B  UT
2 N (t)/

p
t, A (BBT

)
�1.

Z  AB(D(t)
)
T , M  ZT UT

2

Result: M, N

E. Positive low-rank factorization with fixed marginal
Let g 2 �

⇤
r , and let us for now consider the following problem

LOTr,g(µ, ⌫) := min
P2⇧a,g,b

hC, P i. (13)

By definition of ⇧a,g,b, this problem can be formulated as follows:

LOTr,g(µ, ⌫) = min
Q2⇧a,g

R2⇧b,g

hC, QDiag(1/g)RT
i. (14)

As in the classical OT problem, one can extend the above objective and consider for any " � 0 an entropic version of the
problem defined as

LOTr,g,"(µ, ⌫) := min
Q2⇧a,g

R2⇧b,g

hC, QDiag(1/g)RT
i � "H((Q, R))

(15)

Note that for any " � 0, the minimum always exists as the objective is continuous and ⇧a,g,b is compact. Moreover we
clearly have that LOTr,g,0(µ, ⌫) = LOTr,g(µ, ⌫). Applying a MD method to the objective (14) leads for all k � 0 to the
following updates

Qk+1 := argmin
Q2⇧a,g

hC(1)
k , Qi �

1

�k
H(Q)

Rk+1 := argmin
R2⇧a,g

hC(2)
k Ri �

1

�k
H(R)

where, (Q0, R0) 2 ⇧a,g⇥⇧b,g is an initial point, C(1)
k := CRkDiag(1/g)+("� 1

�k
) log(Qk), C(2)

k := CT QkDiag(1/g)+

(" � 1
�k

) log(Rk) and �k is a sequence of positive real numbers. Therefore a MD method bowls down to solve at each
iteration two regularized OT problems which can be done efficiently using the Sinkhorn algorithm (1).
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Convergence of the Mirror Descent. Even if the objective (14) is not convex in (Q, R), one can obtain the non-asymptotic
stationary convergence of the MD algorithm in this setting.

Let f" be the objective function of the problem (15) defined on X := ⇧a,g ⇥ ⇧b,g and let us denotes for any � > 0 and
x 2 X

G"(x, �) := argmin
u2X

{hrf"(x), ui+
1

�
KL(u, x)}.

Let us now define the following criterion to establish convergence:

�"(x, �) :=
1

�2
(KL(x, G"(x, �)) + KL(G"(x, �), x)).

To show the non-asymptotic stationary convergence, we show that for any " � 0, the objective is smooth relative to the
entropy function (Bauschke et al., 2017) and we extend the proof of (Ghadimi et al., 2013) to this case.
Proposition. Let " � 0 and N � 1. By denoting L" :=

p
2(kCk22kDiag(1/g)k22 + "2) and by considering a constant

stepsize in the MD scheme such that for all k = 1, . . . , N �k =
1

L"
, we obtain that

min
1kN

�"((Qk, Rk), �k) 
2L"D0

N
.

where D0 := f"(Q0, R0)� LOTr,g," is the distance of the initial value to the optimal one.

Proof. A similar proof of the one given for Proposition 4 gives that f" is L"-smooth relatively to H .

Let us now introduce our first algorithm (5) to compute a positive low-rank factorization of the optimal coupling. Here
we consider the case where g := 1r/r. Before introducing our algorithm it is worth noting that a trivial initialization may
lead to a trivial fixed point in the MD updates. Indeed if one initialize Q := agT and R := bgT , then CRDiag(1/g) =

Ca1T and CT QDiag(1/g) = CT b1T and therefore (Q, R) is a fixed point of the MD. To avoid this, we initialize our
algorithm in the following way: let � := mini,j,k(ai, bj , gk)/2, a1 2 �

⇤
n\{a}, a2 := (a � �a1)/(1 � �), b1 2 �

⇤
n\{b},

b2 := (b � �b1)/(1 � �), g1 2 �
⇤
r\{g} and g2 := (g � �g1)/(1 � �). We can now define our initialization as

Q := �a1gT
1 + (1� �)a2gT

2 , R := �b1gT
1 + (1� �)b2gT

2 .

Algorithm 5 LOT-F(C, a, b, �)

Inputs: C, a, b, �, Q, R, g, �, �S
repeat

Qold  Q, Rold  R
C(1)

 CRDiag(1/g)�
1
� log(Q),

C(2)
 CT QDiag(1/g)�

1
� log(R),

K(1)
 exp(��C(1)

),
K(2)

 exp(��C(2)
),

u, v  Sinkhorn(K(1), a, g, �S) (Algorithm (1)),
Q Diag(u)K(1)Diag(v),
u, v  Sinkhorn(K(2), a, g, �S) (Algorithm (1)),
R Diag(u)K(2)Diag(v)

until �((Q, R), �) < �;
Result: Q, R

Computational Cost. Note that the kernels (K(i)
)1i2 considered in algorithm (5) live in Rn⇥r

+ ⇥ Rm⇥r
+ and therefore

each iteration of both Sinkhorn algorithms can be computed either in O(nr) or in O(mr) algebraic operations as it involves
only matrix/vector multiplications of the form K(i)v and (K(i)

)
T u. However without any assumption on the cost matrix C,

computing (K(i)
)1i2 costs O(nmr) algebraic operations as it requires to compute both CR and CT Q at each iteration.

Thanks to assumption 1, such multiplications can be performed in O((n+m)dr) algebraic operations and thus algorithm (5)
requires only a linear number of algebraic operations with respect to the number of samples at each iteration.
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In the following, we will see that if we do not fix the marginal, the problem can also be solved efficiently as each iteration of
the MD algorithm can be seen as a wasserstein barycenter problem.

F. A Positive low-rank factorization with free marginal
Applying a MD method to the objective (8) leads, for all k � 0, to the following updates

(Qk+1, Rk+1, gk+1) := argmin

⇣2C1(a,b,r)\C2(r)
KL(⇣, ⇠k) (16)

where (Q0, R0, g0) 2 C1(a, b, r) \ C2(r) is an initial point, ⇠k := (⇠(1)k , ⇠(2)k , ⇠(3)k ), ⇠(1)k := exp(��kCRkDiag(1/gk)k �

(�k"� 1) log(Qk)), ⇠(2)k := exp(��kCT QkDiag(1/gk)� (�k"� 1) log(Rk)), ⇠(3)k := exp(�k!k/g2k� (�k"� 1) log(gk))

with [!k]i := [QT
k CRk]i,i for all i 2 {1, . . . , r} and (�k)k�0 is a sequence of positive real numbers.

Eq. (16) is well defined. Indeed as the kernels (⇠(i)k ) are matrices with positive coefficients, the infimum is attained in
C1(a, b, r) \ C2(r) and the problem admits a unique solution. Moreover solving Eq. (16) bowls down to solve

(Qk+1, Rk+1, gk+1) := argmin

⇣2C1(a,b,r)\C2(r)

KL(⇣, ⇠k) (17)

In order to solve Eq. (17), we consider the Iterative Bregman Projections (IBP) algorithm. Starting from ⇣(k)
0 := ⇠k, the IBP

algorithm consists in computing for all j � 0,

⇣(k)
2j+1 = P

KL
C1(a,b,r)

(⇣(k)
2j )

⇣(k)
2j+2 = P

KL
C2(r)

(⇣(k)
2j+1).

As C1(a, b, r) and C2(r) are affine subspaces (note that nonnegativity constraints are already in the definition of the objective)
one can show that ⇣(k)

j converges towards the unique solution of Eq. (17), (Bregman, 1967). Remarks that the projection on
C1(a, b, r) can be computed very easily as one has for any ⇠̃ := (Q̃, R̃, g̃) 2 Rn⇥r

+ ⇥ Rn⇥r
+ ⇥ Rr

+,

P
KL
C1(a,b,r)

(⇠̃) =

✓
Diag

✓
a

Q̃1r

◆
Q̃, Diag

✓
b

R̃1r

◆
R̃, g̃

◆

and the solution of the projection on C2(r) is already given in Proposition 3.

Efficient computation of the updates. For all k � 0, starting with ⇣(k)
0 := ⇠k the IBP algorithm leads to a simple

algorithm (6) which computes only scaling vectors. More precisely, the IBP algorithm produces the iterates (⇣(k)
n )n�0

which satisfy for all n � 0 ⇣(k)
n = (Q(k)

n , R(k)
n , g(k)n ) where

Q(k)
n = Diag(uk,1

n )⇠1kDiag(vk,1
n )

R(k)
n = Diag(uk,2

n )⇠2kDiag(vk,2
n )

for the sequences (uk,i
n , vk,i

n ) initialized as vk,i
0 := 1 for all i 2 {1, 2} and computed with the iterations

uk,i
n =

pi

⇠i
kvk,i

n

g(k)n+1 = (g(k)n )
1/3

2Y

i=1

(vk,i
n � (⇠i

k)
T uk,i

n )
1/3

vk,i
n+1 =

g(k)n+1

(⇠i
k)T uk,i

n

where we have denoted p1 := a and p2 := b to simplify the notations.
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Algorithm 6 LR-IBP((⇠(i))1i3, p1, p2, �)

Inputs: ⇠(1), ⇠(2), g := ⇠(3), p1, p2, �, v(i)

repeat
u(i)
 pi/⇠(i)v(i) 8i 2 {1, 2},

g  (g)
1/3
Q2

i=1(v
(i)
� (⇠(i))T u(i)

)
1/3,

v(i)  g/(⇠(i))T u(i)
8i 2 {1, 2}

until
P2

i=1 ku
(i)
� ⇠(i)v(i) � pik1 < �;

Q Diag(u(1)
)⇠(1)k Diag(v(1))

R Diag(u(2)
)⇠(2)k Diag(v(2))

Result: Q, R, g

Let us now introduce the proposed MD algorithm applied to (7). By denoting D(·) the operator extracting the diagonal
of a square matrix we obtain the following algorithm (7) to solve Eq. (6). We initialize our algorithm with the exact same
procedure as in algorithm (5).

Algorithm 7 LOT(C, a, b, r, �)

Inputs: C, a, b, (�k)k�0, Q, R, g, �
for k = 1, . . . do

⇠(1)  exp(��kCRDiag(1/g)� (�k"� 1) log(Q)),
⇠(2)  exp(��kCT QDiag(1/g)� (�k"� 1) log(R)),
!  D(QT CR), ⇠(3)  exp(�k!/g2 � (�k"� 1) log(g)),
Q, R, g  LR-IBP((⇠(i))1i3, a, b, �) (Algorithm (6))

end
Result: hC, QDiag(1/g)RT

i

Computational Cost. Note that (⇠(i))1i3 considered in algorithm (7) lives in Rn⇥r
+ ⇥ Rm⇥r

+ ⇥ ⇥Rr
+ and therefore

each iteration of algorithm (6) can be computed in O((n + m)r) algebraic operations as it involves only matrix/vector
multiplications of the form ⇠(i)vi and (⇠(i))T ui. However without any assumption on the cost matrix C, computing
(⇠(i))1i3 costs O(nmr) algebraic operations as it requires to compute both CR and CT Q at each iteration. Thanks to
assumption 1, such multiplications can be performed in O((n + m)dr) algebraic operations and thus algorithm (7) requires
only a linear number of algebraic operations with respect to the number of samples at each iterations.

G. Addiational Experiments
In Fig. 4, we compare two Gaussian mixture densities sampled with n = m = 10000 points in 2D. The two densities
considered are

fX(x) =
1

3

exp
�
(x� µ1)

T
⌃

�1
(x� µ1)

�
p

2⇡|⌃|
+

1

3

exp
�
(x� µ2)

T
⌃

�1
(x� µ2)

�
p

2⇡|⌃|
+

1

3

exp
�
(x� µ3)

T
⌃

�1
(x� µ3)

�
p

2⇡|⌃|

fY (x) =
1

2

exp
�
(x� ⌫1)T

⌃
�1

(x� ⌫1)
�

p
2⇡|⌃|

+
1

2

exp
�
(x� ⌫2)T

⌃
�1

(x� ⌫2)
�

p
2⇡|⌃|

where

µ1 = [0, 0], µ2 = [0, 1], µ3 = [1, 1], ⌫1 = [0.5, 0.5], ⌫2 = [�0.5, 0.5], ⌃ = 0.05⇥ Id2.

We show in Fig. 9 a plot of the two distributions considered. In Fig. 10, we consider the exact same setting as the one
presented in Fig. 4 but we increase the dimension of the problem. More precisely we consider two Gaussian mixture
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Figure 9. Plot of the Gaussian mixtures considered in Fig. 4.

densities samples with n = m = 10000 points in 10D where

µ1 = [0, . . . , 0], µ2 = [0, 1, 0, . . . , 0], µ3 = [1, 1, 0, . . . , 0],

⌫1 = [0.5, 0.5, 0, . . . , 0], ⌫2 = [�0.5, 0.5, 0, . . . , 0],

⌃ = 0.05⇥ Id10.

Similarly as in Fig. 4, we observe that LOT and LOT Quad provide similar results while LOT is faster. All kernel-based
methods fail to converge in this setting. Moreover we see that for small regularizations ", our method is able to approximate
faster than Sin the true OT thanks to the low-rank constraint. Note also that we observe again a difference between the
two entropic regularizations of the Sin objective and LOT objective. Indeed the range of " where Sin provides an efficient
approximation of the true OT is larger than the one of LOT. Indeed recall that for LOT, we regularize twice as we constraint
the nonnegative rank of the couplings and we add an entropic term to regularize the objective.

Figure 10. Comparison of the time-accuracy tradeoff for different methods for estimating the OT or its regularized version between two
mixture of gaussians in 10D.

In Fig. 3, we compare the time-accuracy tradeoff for different methods on a synthetic problem where we aim at estimating
either the OT or its regularized version between two gaussians in 2D. Here we consider the exact same setting but we
increase the dimension of the problem: d = 10. As in Fig. 3, our proposed method obtains an efficient approximation of the
OT or its regularized version for all rank r faster than other low-rank methods in the regime of small ". We also see that for
all low-rank methods, a rank of r = 500 is not enough in this setting to obtain the exact OT, but as the rank increases, the
approximation gets better.

H. Tight solution
Let X = (x1, . . . , xn), Y = (y1, . . . , ym), a, b 2 ⌃n, ⌃m be probability weights, and Z = (z1, . . . , zk) be points in
a set endowed with a cost c. We consider the network problem from sources X to target Y passing through Z. This
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Figure 11. In this experiment, we consider two Gaussian distributions evaluated on n = m = 5000 in 10D. The first one has a mean
of (1, . . . , 1)T 2 R10 and identity covariance matrix I10 while the other has 0 mean and covariance 0.1⇥ I10. The ground cost is the
squared Euclidean distance.

is equivalent to solving the regular n ⇥ m OT problem with cost matrix Cij = mink c(xi, zk) + c(zk, yj). We write
kij = argmink c(xi, zk) + c(zk, yj), D = [c(xi, zk)]ik and D0

= [c(zk, yj)]kj .
Lemma 1. Let P ?

be an optimal solution for the problem minP2U(a,b)hP, Ci. Write

g⇤
k =

X

i,j

Pij1k=kij , U
⇤
ik =

X

j

Pij1k=kij , V
⇤
kj =

X

i

Pij1k=kij

Then matrices U⇤
2 U(a, g⇤

), V ⇤
2 U(g⇤, b) and are respectively optimal for the OT problems with costs D and D0

respectively. Additionally, hP ?, Ci = hU⇤, Di+ hV ⇤, D0
i.

Proof. It is easy to check that U⇤
2 U(a, g⇤

), V ⇤
2 U(g⇤, b) and that we have:

hP ?, Ci = hU⇤, Di+ hV ⇤, D0
i

Moreover let U 2 U(a, g⇤
), V 2 U(g⇤, b), then we have

hP ?, Ci  hC, UD(1/g⇤
)V i =

X

k

1

g⇤
k

X

ij

CijUikVkj

=

X

k

1

g⇤
k

X

i,j

min
k0

(Dik0 + Dk0j)UikVkj



X

k

1

g⇤
k

X

i,j

(Dik + Dkj)UikVkj



X

k

1

g⇤
k

X

i,j

DikUikVkj +

X

i,j

DkjUikVkj



X

k

X

i

DikUik +

X

j

DkjVkj

= hU, Di+ hV, D0
i

Therefore for any U 2 U(a, g), V 2 U(g, b) we have

hU⇤, Di+ hV ⇤, D0
i  hU, Di+ hV, D0

i

from which follows the optimality of U⇤ and V ⇤.

Proposition 6. U⇤D(1/g⇤
)V ⇤

is optimal for the OT problem between X and Y with costs C.

Proof. Obviously U⇤D(1/g⇤
)V ⇤ has the right marginals. Moreover from the computation obtained in the proof of Lemma 1,

we have
hC, U⇤D(1/g⇤

)V ⇤
i  hU⇤, Di+ hV ⇤, D0

i = hP ?, Ci

from which follows the optimality of U⇤D(1/g⇤
)V ⇤.
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Figure 12. Here we consider the same setting as in Figure 10 where the cost functions is defined as c(x, y) = mink21,..,r kx� zkk+
kzk � yk and z1, . . . , zr 2 R10 are fixed anchors.

In the following experiment we aim at showing that our method is able to recover the exact true solution of Eq. (1) when
the optimal coupling admits a low nonnegative rank. Moreover we show that our algorithm is robust to the choice of the
initialization. Indeed in Figure 12, we plot both the histograms of the ratios to the LP solution of LOT costs and the `2
distance between the true optimal coupling and the coupling obtained by our algorithm for multiple random initializations.
We show that our method is able to recover consistenly the true optimal coupling.


