Supplemental Material:
Equivariant message passing for the prediction of
tensorial properties and molecular spectra

A Data

A.1 Reference data for substituted ferrocene

Reference computations for substituted ferrocene were carried out with the
semi-empirical GFN2-xTB method[I] using the xtb package (https://github)
com/grimme-lab/xtb)). Training structures were generated by normal mode
sampling[2] at 300 K starting from the global minimum structure and randomly
rotating the cylopentadienyl (Cp) moieties relative to each other around the
Cp-Fe-Cp axis by angles uniformly sampled from [0, 27]. The rotational potential
energy profile was generated by sampling a full rotation around the Cp-Fe-Cp
axis using 1k steps, starting from the global minimum structure and keeping all
other degrees of freedom fixed at their equilibrium positions.

A.2 Reference data for infrared and Raman spectra

Electronic structure reference computations for aspirin were carried out at the
PBE0/def2-TZVP[3] 4] level of theory using the ORCA quantum chemistry
package [5]. SCF convergence was set to tight and integration grid levels
of 4 and 5 were employed during SCF iterations and the final computation
of properties, respectively. Computations were accelerated using the RIJK
approximation [6]. The reference data for aspirin was generated by selecting
20000 random configurations from the MD17 database [7] and recomputing
them at the above level of theory. Reference data for the ethanol molecule was
taken from reference [§], which employed the same level of theory bar the RIJK
approximation.

B Training details

All models were trained using the Adam optimizer [9]. The learning rate is
decayed by a factor of 0.5 if the validation loss plateaus, starting with the largest
learning rate that does not diverge in steps le-4, 5e-4, le-3, etc. We apply
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exponential smoothing with factor 0.9 to the validation loss to reduce the impact
of fluctuations which are particularly common when training with both energies
and forces. We use smaller batches for datasets where we train on both energies
and forces, since it is commonly observed that larger batch sizes converge to
larger errors in this setting.

Table 1: Training parameters for all experiments.

DATA SET BATCH SIZE LEARNING RATE DECAY PATIENCE STOPPING PATIENCE TouT [A]
QM9 100 5.107% 5 30 5.0
MD17 10 1-1072 50 150 5.0
FERROCENE 10 1-1073 10 30 2.5-4.0
SPECTRA 10 5.1074 15 50 2.7

C Computation of infrared and Raman spectra

All simulations were carried out with the molecular dynamics module imple-
mented in SchNetPack [10]. Classical molecular dynamics simulations for ethanol
and aspirin were carried out for 50 ps at a temperature of 300 K controlled
via Nose-Hoover chain [I1] thermostat with a chain length of 3 and time con-
stant of 100 fs. The first 10 ps of these trajectories were then discarded. Ring
polymer molecular dynamics using 64 replicas were performed using the same
simulation and equilibration periods and temperature, but employed a specially
adapted global Nose-Hoover chain as introduced in Ref. [12] for thermostatting
instead. The overall chain settings were kept the same as above. In all cases,
the velocity Verlet algorithm and a time step of 0.2 fs were used to integrate
the equations of motion. Infrared and Raman spectra were computed from the
time-autocorrelation functions of the dipole moment and polarizability time
derivatives (see Ref. [13]). All autocorrelation functions were computed with
the Wiener-Khinchin theorem [I4], using an autocorrelation depth of 2048 fs. A
Hann window function [15] and zero-padding were applied to the autocorrelation
functions in order to enhance the spectra. Raman spectra were calculated using
a laser frequency of 514 nm and temperature of 300 K.
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