
Learning Intra-Batch Connections for Deep Metric Learning

Jenny Seidenschwarz 1 Ismail Elezi 1 Laura Leal-Taixé 1

Abstract

The goal of metric learning is to learn a function
that maps samples to a lower-dimensional space
where similar samples lie closer than dissimilar
ones. Particularly, deep metric learning utilizes
neural networks to learn such a mapping. Most
approaches rely on losses that only take the re-
lations between pairs or triplets of samples into
account, which either belong to the same class or
two different classes. However, these methods do
not explore the embedding space in its entirety. To
this end, we propose an approach based on mes-
sage passing networks that takes all the relations
in a mini-batch into account. We refine embed-
ding vectors by exchanging messages among all
samples in a given batch allowing the training pro-
cess to be aware of its overall structure. Since not
all samples are equally important to predict a de-
cision boundary, we use an attention mechanism
during message passing to allow samples to weigh
the importance of each neighbor accordingly. We
achieve state-of-the-art results on clustering and
image retrieval on the CUB-200-2011, Cars196,
Stanford Online Products, and In-Shop Clothes
datasets. To facilitate further research, we make
available the code and the models at https:
//github.com/dvl-tum/intra_batch.

1. Introduction
Metric learning is a widely popular technique that constructs
task-specific distance metrics by learning the similarity or
dissimilarity between samples. It is often used for object
retrieval and clustering by training a deep neural network to
learn a mapping function from the original samples into a
new, more compact, embedding space. In that embedding
space, samples coming from the same class should be closer
than samples coming from different classes.

1Department of Computer Science, Technical University of Mu-
nich, Munich, Germany. Correspondence to: Jenny Seidenschwarz
<j.seidenschwarz@tum.de>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

To learn the mapping function, current approaches utilize
siamese networks (Bromley et al., 1994), typically trained
using loss functions that measure distances between pairs
of samples of the same class (positive) or different classes
(negative). Contrastive loss (Bromley et al., 1994) mini-
mizes the distance of the feature embeddings for a positive
pair, and maximizes their distance otherwise. Triplet loss
(Schultz & Joachims, 2003; Weinberger & Saul, 2009) takes
a triplet of images and pushes the embedding distance be-
tween an anchor and a positive sample to be smaller than
the distance between the same anchor and a negative sample
by a given margin. While the number of possible image
pairs and triplets in a dataset of size n is O(n2) and O(n3),
respectively, the vast majority of these pairs (or triplets)
are not informative and do not contribute to the loss. This
leads to slow convergence and possible overfitting when
the pairs (triplets) are not appropriately sampled. Perhaps
more worryingly, because these losses are focused on pairs
(triplets), they are unable to consider the global structure
of the dataset resulting in lower clustering and retrieval
performance. To compensate for these drawbacks, several
works resort to training tricks like intelligent sampling (Ge
et al., 2018; Manmatha et al., 2017), multi-task learning
(Zhang et al., 2016), or hard-negative mining (Schroff et al.,
2015; Xuan et al., 2020a). Recently, researchers started
exploring the global structure of the embedding space by
utilizing rank-based (Çakir et al., 2019; He et al., 2018a;
Revaud et al., 2019) or contextual classification loss func-
tions (Çakir et al., 2019; Elezi et al., 2020; He et al., 2018a;
Revaud et al., 2019; Sohn, 2016; Song et al., 2016; Zheng
et al., 2019). The Group Loss (Elezi et al., 2020) explicitly
considers the global structure of a mini-batch and refines
class membership scores based on feature similarity. How-
ever, the global structure is captured using a handcrafted rule
instead of learning, hence its refinement procedure cannot
be adapted depending on the samples in the mini-batch.

1.1. Contributions

In this work, we propose a fully learnable module that takes
the global structure into account by refining the embedding
feature vector of each sample based on all intra-batch re-
lations. To do so, we utilize message passing networks
(MPNs) (Gilmer et al., 2017). MPNs allow the samples
in a mini-batch to communicate with each other, and to

https://github.com/dvl-tum/intra_batch
https://github.com/dvl-tum/intra_batch


Learning Intra-Batch Connections for Deep Metric Learning

Figure 1. Overview of our proposed approach. Given a mini-batch consisting of N classes, each of them having P images, we initialize the
embedding vectors using a backbone CNN. We then construct a fully connected graph that refines their initial embeddings by performing
K message-passing steps. After each step, the embeddings of the images coming from the same class become more similar to each other
and more dissimilar to the embeddings coming from images that belong to different classes. Finally, we apply Cross-Entropy loss and we
backpropagate the gradients to update the network.

refine their feature representation based on the informa-
tion taken from their neighbors. More precisely, we use
a convolutional neural network (CNN) to generate feature
embeddings. We then construct a fully connected graph
where each node is represented by the embedding of its
corresponding sample. In this graph, a series of message
passing steps are performed to update the node embeddings.
Not all samples are equally important to predict decision
boundaries, hence, we allow each sample to weigh the im-
portance of neighboring samples by using a dot-product
self-attention mechanism to compute aggregation weights
for the message passing steps.

To draw a parallelism with the triplet loss, our MPN for-
mulation would allow samples to choose their own triplets
which are best to make a prediction on the decision bound-
ary. Unlike the triplet loss though, we are not limited to
triplets, as each sample can choose to attend over all other
samples in the mini-batch. By training the CNN and MPN
in an end-to-end manner, we can directly use our CNN
backbone embeddings during inference to perform image
retrieval and clustering. While this reaches state-of-the-art
results without adding any computational overhead, we also
show how to further boost the performance by using the
trained MPN at test time, constructing the batches based on
k-reciprocal nearest neighbor sampling (Zhong et al., 2017).

Our contribution in this work is three-fold:

• We propose an approach for deep metric learning that
computes sample embeddings by taking into account
all intra-batch relations. By leveraging message pass-
ing networks, our method can be trained end-to-end.

• We perform a comprehensive robustness analysis show-
ing the stability of our module with respect to the
choice of hyperparameters.

• We present state-of-the-art results on CUB-200-2011
(Wah et al., 2011), Cars196 (Krause et al., 2013), Stan-
ford online Products (Song et al., 2016) and In-Shop
Clothes (Liu et al., 2016) datasets.

2. Related Work
Metric Learning Losses. Siamese neural networks were
first proposed for representation learning in (Bromley et al.,
1994). The main idea is to use a CNN to extract a feature
representation from an image and using that representation,
or embedding, to compare it to other images. In (Chopra
et al., 2005), the contrastive loss was introduced to train
such a network for face verification. The loss minimizes the
distance between the embeddings of image pairs coming
from the same class and maximizes the distance between
image pairs coming from different classes. In parallel, re-
searchers working on convex optimization developed the
triplet loss (Schultz & Joachims, 2003; Weinberger & Saul,
2009) which was later combined with the expressive power
of CNNs, further improving the solutions on face verifica-
tion (Schroff et al., 2015). Triplet loss extends contrastive
loss by using a triplet of samples consisting of an anchor, a
positive, and a negative sample, where the loss is defined
to make the distance between the anchor and the positive
smaller than the distance between the anchor and the nega-
tive, up to a margin. The concept was later generalized to
N-Pair loss (Sohn, 2016), where an anchor and a positive
sample are compared to N −1 negative samples at the same



Learning Intra-Batch Connections for Deep Metric Learning

time. In recent years, different approaches based on opti-
mizing other qualities than the distance, such as clustering
(Law et al., 2017; McDaid et al., 2011) or angular distance
(Wang et al., 2017), have shown to reach good results.

Sampling and Ensembles. Since computing the loss of
all possible triplets is computationally infeasible even for
moderately-sized datasets and, furthermore, based on the
knowledge that the majority of them are not informative
(Schroff et al., 2015), more researchers have given atten-
tion to intelligent sampling. The work of (Manmatha et al.,
2017) showed conclusive evidence that the design of smart
sampling strategies is as important as the design of efficient
loss functions. In (Ge et al., 2018), the authors propose
a hierarchical version of triplet loss that embeds the sam-
pling during the training process. More recent techniques
continue this line of research by developing new sampling
strategies (Duan et al., 2019; Xuan et al., 2020a;b) while
others introduce new loss functions (Wang et al., 2019a;
Xu et al., 2019). In parallel, other researchers investigated
the usage of ensembles for deep metric learning, unsurpris-
ingly finding out that ensembles outperform single networks
trained on the same loss (Kim et al., 2018; Opitz et al., 2017;
Sanakoyeu et al., 2019; Xuan et al., 2018; Yuan et al., 2017).

Global Metric Learning Losses. Most of the mentioned
losses do not consider the global structure of the mini-batch.
The work of (Movshovitz-Attias et al., 2017) proposes to
optimize the triplet loss on a space of triplets different from
the one of the original samples, consisting of an anchor data
point and similar and dissimilar learned proxy data points.
These proxies approximate the original data points so that
a triplet loss over the proxies is a tight upper bound of the
loss over the original samples. The introduction of proxies
adds additional contextual knowledge that shows to signif-
icantly improve triplet loss. The results of this approach
were significantly improved by using training tricks (Teh
et al., 2020) or generalizing the concept of proxy triplets to
multiple proxy anchors (Kim et al., 2020; Zhu et al., 2020).
In (Duan et al., 2018) the authors generate negative samples
in an adversarial manner, while in (Lin et al., 2018) a deep
variational metric learning framework was proposed to ex-
plicitly model the intra-class variance and disentangle the
intra-class invariance. In the work of (Wang et al., 2019b),
a non-proxy contextual loss function was developed. The
authors propose a loss function based on a ranking distance
that considers all the samples in the mini-batch

Classification Losses for Metric Learning. A recent line
of work (Zhai & Wu, 2019; Zheng et al., 2019) is showing
that a carefully designed classification loss function can ri-
val, if not outperform, triplet-based functions in metric learn-
ing. This has already been shown for multiple tasks such as
hashing (binary-embedding) (He et al., 2018a), landmark
detection (He et al., 2018b; Revaud et al., 2019), few-shot

learning (Çakir et al., 2019), and person re-identification
(Alemu et al., 2019; Zhao et al., 2019). In metric learning,
SoftTriple loss (Qian et al., 2019) develops a classification
loss where each class is represented by K centers. In the
same classification spirit, the Group Loss (Elezi et al., 2020)
replaces the softmax function with a contextual module that
considers all the samples in the mini-batch at the same time.

Message Passing Networks. Recent works on message
passing networks (Gilmer et al., 2017) and graph neural net-
works (Battaglia et al., 2018; Kipf & Welling, 2017) have
been successfully applied to problems such as human action
recognition (Guo et al., 2018), visual question answering
(Narasimhan et al., 2018) or tracking (Brasó & Leal-Taixé,
2020). Given a graph with some initial features for nodes
and edges, the main idea behind these models is to embed
nodes and edges into representations that take into account
not only the node’s own features but also those of its neigh-
bors in the graph, as well as the graphs overall topology.
The attention-based Transformers (Vaswani et al., 2017;
Xu et al., 2015), which can be seen as message passing
networks, have revolutionized the field of natural language
processing, and within the computer vision, have shown
impressive results in object detection (Carion et al., 2020).

Closely related to message passing networks, (Elezi et al.,
2020) considered contextual information for metric learn-
ing based on the similarity (dissimilarity) between samples
coming from the same class (respectively from different
classes). However, they use a handcrafted rule as part of
their loss function that only considers the label preferences
(Elezi et al., 2018). In contrast, based on message passing
networks, we develop a novel learnable model, where each
sample uses learned attention scores to choose the impor-
tance of its neighbors, and based on this information, refines
its own feature representation.

3. Methodology
The goal of the message passing steps is to exchange infor-
mation between all samples in the mini-batch and to refine
the feature embeddings accordingly. Note that this approach
is very different from label-propagation methods as used
in (Elezi et al., 2020), where samples exchange informa-
tion only on their label preferences, information which only
implicitly affects the choice of their final feature vectors.

In our proposed method, each sample exchanges messages
with all the other samples in the mini-batch, regardless of
whether the samples belong to the same class or not. In
this way, our method considers both the intra-class and
inter-class relations between all samples in the mini-batch,
allowing our network to receive information about the over-
all structure of the mini-batch. We can use cross-entropy
loss to train our network since the information of the mini-



Learning Intra-Batch Connections for Deep Metric Learning

batch is already contained in the refined individual feature
embeddings.

3.1. Overview

In Figure 1, we show an overview of our proposed approach.
We compute feature vectors for each sample as follows:

1. Generate initial embedding feature vectors using a
CNN and construct a fully connected graph, where
each node represents a sample in the mini-batch.

2. Perform message-passing between nodes to refine
the initial embedding feature vectors by utilizing dot-
product self-attention.

3. Perform classification and optimize both the MPN and
the backbone CNN in an end-to-end fashion using
cross-entropy loss on the refined node feature vectors.

3.2. Feature Initialization and Graph Construction

The global structure of the embedding space is modeled by
a graph G = (V,E), where V represents the nodes, i.e., all
images in the training dataset, and E the edges connecting
them. An edge represents the importance of one image to
the other, expressed, for example, by their similarity. Dur-
ing training, we would ideally take the graph of the whole
dataset into account, but this is computationally infeasible.
Therefore, we construct mini-batches consisting of n ran-
domly sampled classes with p randomly chosen samples per
class. Each sample in the mini-batch is regarded as a node
in a mini-batch graph GB = (VB , EB). Unlike CNNs that
perform well on data with an underlying grid-like or Eu-
clidean structure (Bronstein et al., 2017), graphs have a non-
euclidean structure. Thus, to fully explore the graph-like
structure, we model the mini-batch relations using MPNs.

More precisely, we use a backbone CNN to compute the
initial embeddings f ∈ Rd for all samples in a mini-batch,
where d is their embedding dimension. To leverage all
relations in the batch, we utilize a fully connected graph,
where every node with initial node features h0

i = f is
connected to all the other nodes in the graph (see Figure 2
in the upper left corner).

3.3. Message Passing Network

In order to refine the initial feature vectors based on the
contextual information of the mini-batch, we use message
passing to exchange information between single nodes, i.e.,
between samples of the mini-batch. To this end, we uti-
lize MPNs with graph attention (Velickovic et al., 2018) for
deep metric learning. It should be noted that the following
formulation is equivalent to the Transformers architecture
(Vaswani et al., 2017), which can be seen as a fully con-
nected graph attention network (Velickovic et al., 2018).

Passing Messages. We apply L message passing steps suc-
cessively. In each step, we pass messages between all sam-
ples in a batch and obtain updated features hl+1

i of node i
at message passing step l+1 by aggregating the features hl

j

of all neighbouring nodes j ∈ Ni at message passing step l:

hl+1
i =

∑
j∈Ni

W lhl
j (1)

where W l is the corresponding weight matrix of message
passing step l. As we construct a fully connected graph, the
neighboring nodesNi consist of all nodes in the given batch,
thus each feature representation of an image is affected by
all the other images in the mini-batch.

Attention Weights on the Messages. Not all samples of a
mini-batch are equally informative to predict the decision
boundaries between classes. Hence, we add an attention
score α to every message passing step (see Figure 2 on Mes-
sage Passing) to allow each sample to weigh the importance
of the other samples in the mini-batch:

hl+1
i =

∑
j∈Ni

αl
ijW

lhl
j (2)

where αij is the attention score between node i and node j.
We utilize dot-product self-attention to compute the atten-
tion scores, leading to αij at step l defined as:

αl
ij =

W l
qh

l
i(W

l
kh

l
j)

T

√
d

(3)

where W l
q is the weight matrix corresponding to the receiv-

ing node and W l
k is the weight matrix corresponding to the

sending node on message passing step l. Furthermore, we
apply the softmax function to all in-going attention scores
(edges) of a given node i. To allow the MPN to learn a
diverse set of attention scores, we apply M dot product
self-attention heads in every message passing step and con-
catenate their results. To this end, instead of using single
weight matrices W l

q, W l
k and W l, we now use different

weight matrices W l,m
q ∈ R d

M×d, W l,m
k ∈ R d

M×d and
W l,m ∈ R d

M×d for each attention head:

hl+1
i = cat(

∑
j∈Ni

αl,1
ij W

l,1hl
j , ...,

∑
j∈Ni

αl,M
ij W l,Mhl

j)

(4)
where cat represents the concatenation.

Note, by using the attention-head specific weight matrices,
we reduce the dimension of all embeddings hl

j by 1
M so

that when we concatenate the embeddings generated by all
attention heads the resulting embedding hl+1

i has the same
dimension as the input embedding hl

i.



Learning Intra-Batch Connections for Deep Metric Learning

Figure 2. Left: To update the feature vectors in a message-passing step we first construct a fully connected graph and compute attention
scores between all samples in a batch. We then pass messages between nodes and weigh them with the corresponding attention scores.
During the aggregation step, we sum the weighted messages to get updated node features. Right: Visualization of development of attention
scores and feature vectors over two steps of message passing steps showing that feature vectors, as well as attention scores between
samples from the same class, get more and more similar.

Adding Skip Connections. We add a skip connection
around the attention block (He et al., 2016) and apply layer
normalization (Ba et al., 2016) given by:

f(hl+1
i ) = LayerNorm(hl+1

i + hl
i) (5)

where hl+1
i is the outcome of Equation 4. We then apply two

fully connected layers, followed by another skip connection
(He et al., 2016) and a layer normalization (Ba et al., 2016):

g(hl+1
i ) = LayerNorm(FF (f(hl+1

i )) + f(hl+1
i )) (6)

where FF represents the two linear layers. Finally, we
pass the outcome of Equation 6 to the next message passing
step. For illustrative purposes, in Figure 2, we show how
the attention scores and the feature vectors evolve over the
message passing steps. As can be seen, the feature vectors
of samples of the same class become more and more similar.
Similar to (Velickovic et al., 2018), we indirectly address
oversmoothing by applying node-wise attention scores αi,j

(Equation 3) during the feature aggregation step (Min et al.,
2020).

3.4. Optimization

We apply a fully connected layer on the refined features after
the last message passing step and then use cross-entropy
loss. Even if cross-entropy loss itself does not take into
account the relations between different samples, this infor-
mation is already present in the refined embeddings, thanks

to the message passing steps. As the MPN takes its initial
feature vectors from the backbone CNN, we add an auxil-
iary cross-entropy loss to the backbone CNN, to ensure a
sufficiently discriminative initialization. This loss is also
needed since at test time we do not use the MPN, as de-
scribed below. Both loss functions utilize label smoothing
and low temperature scaling (Teh et al., 2020; Zhai & Wu,
2019) to ensure generalized, but discriminative, decision
boundaries.

3.5. Inference

One disadvantage of using the MPN during inference is
that in order to generate an embedding vector for a sample,
we need to create a batch of samples to perform message
passing as we do during the training. However, using the
MPN during inference would be unfair to other methods
that directly perform retrieval on the CNN embedding since
we would be adding parameters, hence, expressive power,
to the model. Therefore, we perform all experiments by di-
rectly using the embedding feature vectors of the backbone
CNN unless stated differently. The intuition is that when
optimizing the CNN and MPN together in an end-to-end
fashion, the CNN features will have also improved with the
information of sample relations. In the ablation studies, we
show how the performance can be further improved with
a simple batch construction strategy at test time. For more
discussion on using MPN at test time, we refer the reader to
the supplementary material.



Learning Intra-Batch Connections for Deep Metric Learning

4. Experiments
In this section, we compare our proposed approach to state-
of-the-art deep metric learning approaches on four public
benchmarks. To underline the effectiveness of our approach,
we further present an extensive ablation study.

4.1. Implementation Details

We implement our method in PyTorch (Paszke et al., 2017)
library. Following other works (Brattoli et al., 2019; Çakir
et al., 2019; Manmatha et al., 2017; Sanakoyeu et al., 2019;
Teh et al., 2020; Xuan et al., 2020b; Zhai & Wu, 2019), we
present results using ResNet50 (He et al., 2016) pretrained
on ILSVRC 2012-CLS dataset (Russakovsky et al., 2015)
as backbone CNN. Like the majority of recent methods
(Ge et al., 2018; Kim et al., 2020; Park et al., 2019; Qian
et al., 2019; Wang et al., 2019a;b; Zhu et al., 2020), we use
embedding dimension of sizes 512 for all our experiments
and low temperature scaling for the softmax cross-entropy
loss function (Guo et al., 2017). Furthermore, we preprocess
the images following (Kim et al., 2020). We resize the
cropped image to 227×227, followed by applying a random
horizontal flip. During test time, we resize the images to
256 × 256 and take a center crop of size 227 × 227. We
train all networks for 70 epochs using RAdam optimizer
(Liu et al., 2020). To find all hyperparameters we perform
random search (Bergstra & Bengio, 2012). For mini-batch
construction, we first randomly sample a given number of
classes, followed by randomly sampling a given number of
images for each class as commonly done in metric learning
(Elezi et al., 2020; Schroff et al., 2015; Teh et al., 2020;
Zhai & Wu, 2019). We use small mini-batches of size
50-100 and provide an analysis on different numbers of
classes and samples on CUB-200-2011 and Cars196 in the
supplementary. Our forward pass takes 73% of time for the
backbone and the remaining for the MPN. All the training
is done in a single TitanX GPU, i.e., the method is memory
efficient.

4.2. Benchmark Datasets and Evaluation Metrics

Datasets: We conduct experiments on 4 publicly available
datasets using the conventional splitting protocols (Song
et al., 2016):

• CUB-200-2011 (Wah et al., 2011) consists of 200
classes of birds with each class containing 58 images
on average. For training, we use the first 100 classes
and for testing the remaining classes.

• Cars196 (Krause et al., 2013) contains 196 classes
representing different cars with each class containing
on average 82 images. We use the first 98 classes for
training and the remaining classes for testing.

• Stanford Online Products (SOP) (Song et al., 2016)

consists of 22,634 classes (5 images per class on av-
erage) of product images from ebay. We use 11, 318
classes for training and the remaining 11, 316 classes
for testing.

• In-Shop Clothes (Liu et al., 2016) contains 7, 982
classes of clothing items, with each class having 4
images on average. We use 3, 997 classes for training,
while the test set, containing 3, 985 classes, is split into
a query set and a gallery set.

Evaluation Metrics: For evaluation, we use the two com-
monly used evaluation metrics, Recall@K (R@K) (Jégou
et al., 2011) and Normalized Mutual Information (NMI)
(McDaid et al., 2011). The first one evaluates the retrieval
performance by computing the percentage of images whose
K nearest neighbors contain at least one sample of the same
class as the query image. To evaluate the clustering qual-
ity, we apply K-means clustering (MacQueen, 1967) on
the embedding feature vectors of all test samples, and com-
pute NMI based on this clustering. To be more specific,
NMI evaluates how much the knowledge about the ground
truth classes increases given the clustering obtained by the
K-means algorithm.

4.3. Comparison to state-of-the-art

Quantitative Results. In Table 1, we present the results
of our method and compare them with the results of other
approaches on CUB-200-2011 (Wah et al., 2011), Cars196
(Krause et al., 2013), and Stanford Online Products (Song
et al., 2016). On CUB-200-2011 dataset, our method
reaches 70.3 Recall@1, an improvement of 0.6 percent-
age points (pp) over the state-of-the-art Proxy Anchor (Kim
et al., 2020) using ResNet50 backbone. On the NMI metric,
we outperform the highest scoring method, DiVA (Milbich
et al., 2020) by 2.6pp. On Cars196, we reach 88.1 Recall@1,
an improvement of 0.4pp over Proxy Anchor (Kim et al.,
2020) with ResNet50 backbone. On the same dataset, we
reach 74.8 on the NMI score, 0.8pp higher than the previous
best-performing method, Normalized Softmax (Zhai & Wu,
2019). On Stanford Online Products dataset, our method
reaches 81.4 Recall@1 which is 1.3pp better than the previ-
ous best method, HORDE (Jacob et al., 2019). On the NMI
metric, our method reaches the highest score, outperforming
SoftTriple Loss (Qian et al., 2019) by 0.6pp.

Finally, we present the results of our method on the In-
Shop Clothes dataset in Table 2. Our method reaches 92.8
Recall@1, an improvement of 0.7pp over the previous best
method Proxy Anchor (Kim et al., 2020) with ResNet50
backbone. In summary, while in the past, different methods
(Proxy Anchor (Kim et al., 2020), ProxyNCA++ (Teh et al.,
2020), Normalized Softmax (Zhai & Wu, 2019), HORDE
(Jacob et al., 2019), SoftTriple Loss (Qian et al., 2019),



Learning Intra-Batch Connections for Deep Metric Learning

CUB-200-2011 CARS196 Stanford Online Products
Method BB R@1 R@2 R@4 R@8 NMI R@1 R@2 R@4 R@8 NMI R@1 R@10 R@100 NMI
Triplet64 (Schroff et al., 2015) CVPR15 G 42.5 55 66.4 77.2 55.3 51.5 63.8 73.5 82.4 53.4 66.7 82.4 91.9 89.5
Npairs64 (Sohn, 2016) NeurIPS16 G 51.9 64.3 74.9 83.2 60.2 68.9 78.9 85.8 90.9 62.7 66.4 82.9 92.1 87.9
Deep Spectral512 (Law et al., 2017) ICML17 BNI 53.2 66.1 76.7 85.2 59.2 73.1 82.2 89.0 93.0 64.3 67.6 83.7 93.3 89.4
Angular Loss512 (Wang et al., 2017) ICCV17 G 54.7 66.3 76 83.9 61.1 71.4 81.4 87.5 92.1 63.2 70.9 85.0 93.5 88.6
Proxy-NCA64 (Movshovitz-Attias et al., 2017) ICCV17 BNI 49.2 61.9 67.9 72.4 59.5 73.2 82.4 86.4 88.7 64.9 73.7 - - 90.6
Margin Loss128 (Manmatha et al., 2017) ICCV17 R50 63.6 74.4 83.1 90.0 69.0 79.6 86.5 91.9 95.1 69.1 72.7 86.2 93.8 90.7
Hierarchical triplet512 (Ge et al., 2018) ECCV18 BNI 57.1 68.8 78.7 86.5 - 81.4 88.0 92.7 95.7 - 74.8 88.3 94.8 -
ABE512 (Kim et al., 2018) ECCV18 G 60.6 71.5 79.8 87.4 - 85.2 90.5 94.0 96.1 - 76.3 88.4 94.8 -
Normalized Softmax512 (Zhai & Wu, 2019) BMVC19 R50 61.3 73.9 83.5 90.0 69.7 84.2 90.4 94.4 96.9 74.0 78.2 90.6 96.2 91.0
RLL-H512 (Wang et al., 2019b) CVPR19 BNI 57.4 69.7 79.2 86.9 63.6 74 83.6 90.1 94.1 65.4 76.1 89.1 95.4 89.7
Multi-similarity512 (Wang et al., 2019a) CVPR19 BNI 65.7 77.0 86.3 91.2 - 84.1 90.4 94.0 96.5 - 78.2 90.5 96.0 -
Relational Knowledge512 (Park et al., 2019) CVPR19 G 61.4 73.0 81.9 89.0 - 82.3 89.8 94.2 96.6 - 75.1 88.3 95.2 -
Divide and Conquer1028 (Sanakoyeu et al., 2019) CVPR19 R50 65.9 76.6 84.4 90.6 69.6 84.6 90.7 94.1 96.5 70.3 75.9 88.4 94.9 90.2
SoftTriple Loss512 (Qian et al., 2019) ICCV19 BNI 65.4 76.4 84.5 90.4 69.3 84.5 90.7 94.5 96.9 70.1 78.3 90.3 95.9 92.0
HORDE512 (Jacob et al., 2019) ICCV19 BNI 66.3 76.7 84.7 90.6 - 83.9 90.3 94.1 96.3 - 80.1 91.3 96.2 -
MIC128 (Brattoli et al., 2019) ICCV19 R50 66.1 76.8 85.6 - 69.7 82.6 89.1 93.2 - 68.4 77.2 89.4 95.6 90.0
Easy triplet mining512 (Xuan et al., 2020b) WACV20 R50 64.9 75.3 83.5 - - 82.7 89.3 93.0 - - 78.3 90.7 96.3 -
Group Loss1024 (Elezi et al., 2020) ECCV20 BNI 65.5 77.0 85.0 91.3 69.0 85.6 91.2 94.9 97.0 72.7 75.1 87.5 94.2 90.8
Proxy NCA++512 (Teh et al., 2020) ECCV20 R50 66.3 77.8 87.7 91.3 71.3 84.9 90.6 94.9 97.2 71.5 79.8 91.4 96.4 -
DiVA512 (Milbich et al., 2020) ECCV20 R50 69.2 79.3 - - 71.4 87.6 92.9 - - 72.2 79.6 - - 90.6
PADS128 (Roth et al., 2020) CVPR20 R50 67.3 78.0 85.9 - 69.9 83.5 89.7 93.8 - 68.8 76.5 89.0 95.4 89.9
Proxy Anchor512 (Kim et al., 2020) CVPR20 BNI 68.4 79.2 86.8 91.6 - 86.1 91.7 95.0 97.3 - 79.1 90.8 96.2 -
Proxy Anchor512 (Kim et al., 2020) CVPR20 R50 69.7 80.0 87.0 92.4 - 87.7 92.9 95.8 97.9 - 80.0 91.7 96.6 -
Proxy Few512 (Zhu et al., 2020) NeurIPS20 BNI 66.6 77.6 86.4 - 69.8 85.5 91.8 95.3 - 72.4 78.0 90.6 96.2 90.2
Ours512 R50 70.3 80.3 87.6 92.7 74.0 88.1 93.3 96.2 98.2 74.8 81.4 91.3 95.9 92.6

Table 1. Retrieval and Clustering performance on CUB-200-2011, CARS196 and Stanford Online Products datasets. Bold indicates
best, red second best, and blue third best results. The exponents attached to the method name indicates the embedding dimension.
BB=backbone, G=GoogLeNet, BNI=BN-Inception and R50=ResNet50.

Method BB R@1 R@10 R@20 R@40
FashionNet4096 (Liu et al., 2016) CVPR16 V 53.0 73.0 76.0 79.0
A-BIER512 (Opitz et al., 2020) PAMI20 G 83.1 95.1 96.9 97.8
ABE512 (Kim et al., 2018) ECCV18 G 87.3 96.7 97.9 98.5
Multi-similarity512 (Wang et al., 2019a) CVPR19 BNI 89.7 97.9 98.5 99.1
Learning to Rank512 (Çakir et al., 2019) R50 90.9 97.7 98.5 98.9
HORDE512 (Jacob et al., 2019) ICCV19 BNI 90.4 97.8 98.4 98.9
MIC128 (Brattoli et al., 2019) ICCV19 R50 88.2 97.0 98.0 98.8
Proxy NCA++512 (Teh et al., 2020) ECCV20 R50 90.4 98.1 98.8 99.2
Proxy Anchor512 (Kim et al., 2020) CVPR20 BNI 91.5 98.1 98.8 99.1
Proxy Anchor512 (Kim et al., 2020) CVPR20 R50 92.1 98.1 98.7 99.2
Ours512 R50 92.8 98.5 99.1 99.2

Table 2. Retrieval performance on In Shop Clothes.

DiVA (Milbich et al., 2020)) scored the highest in at-least
one metric, now our method reaches the best results in all
Recall@1 and NMI metrics across all four datasets.

Qualitative Results. In Figure 6, we present qualitative
results on the retrieval task for all four datasets. In all
cases, the query image is given on the left, with the four
nearest neighbors given on the right. Green boxes indicate
cases where the retrieved image is of the same class as the
query image, and red boxes indicate a different class. In
supplementary material, we provide qualitative evaluations
on the clustering performance using t-SNE (van der Maaten
& Hinton, 2012) visualization.

4.4. Ablation Studies and Robustness Analysis

In this section, we use the CUB-200-2011 (Wah et al., 2011)
and Cars196 (Krause et al., 2013) datasets to analyze the
robustness of our method and show the importance of our
design choices.

MPN Matters. To show the performance improvement
when using the MPN during training, we conduct experi-

ments by training the backbone CNN solely with the auxil-
iary loss, i.e., the cross-entropy loss on the backbone CNN,
and without MPN (see the first row in Table 3). For a fair
comparison, we use the same implementation details as for
the training with MPN. On CUB-200-2011, this leads to a
performance drop of 2.8pp in Recall@1 (to 67.5) and 4.2pp
in NMI (to 69.8). On Cars196, it leads to a more signifi-
cant performance drop of 3.9pp in Recall@1 (to 84.2) and
6.1pp in NMI (to 68.7), showing the benefit of our proposed
formulation.

To give an intuition of how the MPN evolves during the
training process, we use GradCam (Selvaraju et al., 2020) to
observe which neighbors a sample relies on when computing
the final class prediction after the MPN (Selvaraju et al.,
2020). To do so, we compare the predictions of an untrained
MPN to a trained one. As can be seen in the left part of
Figure 7, the untrained MPN takes information from nearly
all samples in the batch into account, where red, blue, and
green represent different classes. The trained MPN (left part
of Figure 7) only relies on the information of samples of
the same class. This suggests that using the MPN with self-
attention scores as edge weights enforces the embeddings
of negative and positive samples to become more dissimilar
and similar, respectively. In supplementary, we also provide
and compare visualizations of the embedding vectors of a
batch of samples after one epoch of training and of all test
samples after the whole training.

Number of Message Passing Steps and Attention Heads.
In Figure 3, we investigate the robustness of the algorithm
when we differ the number of message passing steps and



Learning Intra-Batch Connections for Deep Metric Learning

Figure 3. Relative difference to the best model
with respect to Recall@1 on CUB-200-2011.

Figure 4. Relative difference to the best
model with respect to Recall@1 on Cars196.

Figure 5. Performance for different embed-
ding dimensions on CUB-200-2011 and
Cars196.

Figure 6. Retrieval results on a set of images from CUB-200-2011
(top), Cars196 (second from top), Stanford Online Products (sec-
ond from bottom), and In-Shop Clothes (bottom) datasets using our
model. The most left column contains query images and the results
are ranked by distance. Green frames indicate that the retrieved
image is from the same class as the query image, while red frames
indicate that the retrieved image is from a different class.

attention heads of our MPN. On CUB-200-2011 dataset,
we reach the best results when we use a single message
passing step, containing two attention heads. We see that
increasing the number of message passing steps or the num-
ber of attention heads, for the most part, does not result in
a large drop in performance. The biggest drop in perfor-
mance happens when we use four message-passing steps,
each having sixteen attention heads. In Figure 4, we do a
similar robustness analysis for the Cars196 dataset. Unlike
CUB-200-2011, the method performs best using two layers
and eight attention heads. However, it again performs worst
using four message passing steps. This observation is in
line with (Velickovic et al., 2018), which also utilizes a few
message passing steps when applying graph attention.

Embedding Dimension. In Figure 5, we measure the per-
formance of the model as a function of the embedding size.
We observe that the performance of the network increases
on both datasets when we increase the size of the embedding
layer. This is unlike (Wang et al., 2019a), which reports a

Figure 7. Comparison of the embeddings of a given batch after one
epoch of training without and with MPN.

drop in performance when the size of the embedding layer
gets bigger than 512. While increasing the dimension of the
embedding layer results in even better performance, for fair-
ness with the other methods that do not use an embedding
size larger than 512, we avoid those comparisons.

Auxiliary Loss Function. Considering that in the default
scenario, we do not use the MPN during inference, we in-
vestigate the effect of adding the auxiliary loss function at
the top of the backbone CNN embedding layer. On CUB-
200-2011 dataset, we see that such a loss helps the network
improve by 2.2pp in Recall@1. Without the loss, the perfor-
mance of the network drops to 68.1 as shown in the second
row of Table 3. On the other hand, removing the auxiliary
loss function leads to a performance drop of only 0.9pp in
Recall@1 on Cars196 to 87.2. However, the NMI perfor-
mance drops by 2.7pp to 72.1 on Cars196 and 2.0pp on
CUB-200-2011.

Implicit Regularization. We further investigate the train-
ing behavior of our proposed approach on CUB-200-2011.
As already stated above, Group Loss (Elezi et al., 2020) also
utilized contextual classification, with the authors claim-
ing that it introduces implicit regularization and thus less
overfitting. However, their approach is based on a hand-
crafted label propagation rule, while ours takes into account
the contextual information in an end-to-end learnable way.



Learning Intra-Batch Connections for Deep Metric Learning

Therefore, we present the training behavior of our approach
and compare it to the behavior of the Group Loss (Elezi
et al., 2020). As can be seen in Figure 8, Group Loss (Elezi
et al., 2020) shows higher overfitting on the training data,
while our method is capable of better generalization on the
test dataset and has a smaller gap between training and
test performance. We argue that by taking into account the
global structure of the dataset in an end-to-end learnable
way, our approach is able to induce an even stronger implicit
regularization.

Figure 8. Performance on training and test data of CUB-200-2011
compared to Group Loss (Elezi et al., 2020).

Using MPN During Test Time. In Table 3, we analyze
the effect of applying message passing during inference
(see row four). On CUB-200-2011 dataset, we improve
by 0.5pp in Recall@1, and by 0.5pp on the NMI metric.
On Cars196 dataset, we also gain 0.5pp in Recall@1 by
using MPN during inference. More impressively, we gain
1.4pp in the NMI metric, putting our results 2.2pp higher
than Normalized Softmax (Zhai & Wu, 2019). We gain an
improvement in performance in all cases, at the cost of extra
parameters.

Note, our method does not require the usage of these ex-
tra parameters in inference. As we have shown, for a fair
comparison, our method reaches state-of-the-art results even
without using MPN during inference (see Tables 1 and 2).
We consider the usage of MPN during inference a perfor-
mance boost, but not a central part of our work.

CUB-200-2011 CARS196
Training Losses Test Time Embeddings R@1 NMI R@1 NMI
Cross-Entropy Backbone Embeddings 67.5 69.8 84.2 68.7
MPN Loss Backbone Embeddings 68.1 72.0 87.2 72.1
MPN Loss + Auxiliary Loss Backbone Embeddings 70.3 74.0 88.1 74.8
MPN Loss + Auxiliary Loss MPN Embeddings 70.8 74.5 88.6 76.2

Table 3. Performance of the network with and without MPN during
training and testing time. We achieved all results using embedding
dimension 512.

Ensembles. The Group Loss (Elezi et al., 2020) showed
that the performance of their method significantly improves
by using an ensemble at test time. The ensemble was built

by simply concatenating the features of k independently
trained networks. Similarly, we also conduct experiments
on ensembles using 2 and 5 networks, respectively, and
compare our ensemble with that of (Elezi et al., 2020).

CUB-200-2011 Cars196 Stanford Online Products In-Shop Clothes
R@1 NMI R@1 NMI R@1 NMI R@1

GL 65.5 69.0 85.6 72.7 75.7 91.1 -
Ours 70.3 74.0 88.1 74.8 81.4 92.6 92.8
GL 2 65.8 68.5 86.2 72.6 75.9 91.1 -
Ours 2 72.2 74.3 90.9 74.9 81.8 92.7 92.9
GL 5 66.9 70.0 88.0 74.2 76.3 91.1 -
Ours 5 73.1 74.4 91.5 75.4 82.1 92.8 93.4

Table 4. Performance of our ensembles and comparisons with the
ensemble models of (Elezi et al., 2020).

In Table 4, we present the results of our ensembles. We see
that when we use 2 networks, the performance increases by
1.9pp on CUB-200-2011, 3.0pp on Cars196, and 0.4pp on
Stanford Online Products. Similarly, the NMI score also
improves by 0.3pp on CUB-200-2011, 0.1pp on Cars196,
and 0.1pp on Stanford Online Products. Unfortunately, the
Recall@1 performance on In-Shop Clothes only improves
by 0.1pp. Using 5 networks, the performance increases
by 2.8pp on CUB-200-2011, 3.4pp on Cars196, 0.7pp on
Stanford Online Products, and 0.6pp on In-Shop Clothes
compared to using a single network. NMI on CUB-200-
2011 is improved by 0.4pp compared to a single network,
on Cars196 it increases by 0.6pp more and on Stanford
Online Products it increases by 0.6pp.

Compared to (Elezi et al., 2020), the performance increase
of our approach from one network to an ensemble is higher.
This is surprising, considering that our network starts from
a higher point, and has less room for improvement.

5. Conclusions

In this work, we propose a model that utilizes the power
of message passing networks for the task of deep metric
learning. Unlike classical metric learning methods, e.g.,
triplet loss, our model utilizes all the intra-batch relations in
the mini-batch to promote similar embeddings for images
coming from the same class, and dissimilar embeddings
for samples coming from different classes. Our model is
fully learnable, end-to-end trainable, and does not utilize any
handcrafted rules. Furthermore, our model achieves state-of-
the-art results while using the same number of parameters,
and compute time, during inference. In future work, we will
explore the applicability of our model for the tasks of semi-
supervised deep metric learning and deep metric learning in
the presence of only relative labels.

Acknowledgements. This research was partially funded by
the Humboldt Foundation through the Sofia Kovalevskaja
Award. We thank Guillem Brasó for useful discussions.



Learning Intra-Batch Connections for Deep Metric Learning

References
Alemu, L. T., Shah, M., and Pelillo, M. Deep constrained

dominant sets for person re-identification. In Interna-
tional Conference on Computer Vision (ICCV), 2019.

Ba, L. J., Kiros, J. R., and Hinton, G. E. Layer normalization.
CoRR, abs/1607.06450, 2016.

Battaglia, P. W., Hamrick, J. B., Bapst, V., Sanchez-
Gonzalez, A., Zambaldi, V. F., Malinowski, M., Tacchetti,
A., Raposo, D., Santoro, A., Faulkner, R., Gülçehre,
Ç., Song, H. F., Ballard, A. J., Gilmer, J., Dahl, G. E.,
Vaswani, A., Allen, K. R., Nash, C., Langston, V., Dyer,
C., Heess, N., Wierstra, D., Kohli, P., Botvinick, M.,
Vinyals, O., Li, Y., and Pascanu, R. Relational induc-
tive biases, deep learning, and graph networks. CoRR,
abs/1806.01261, 2018.

Bergstra, J. and Bengio, Y. Random search for hyper-
parameter optimization. Journal of Machine Learning
Research (JMLR), 13:281–305, 2012.

Brasó, G. and Leal-Taixé, L. Learning a neural solver for
multiple object tracking. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

Brattoli, B., Roth, K., and Ommer, B. MIC: mining in-
terclass characteristics for improved metric learning. In
International Conference on Computer Vision (ICCV),
2019.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah,
R. Signature verification using a” siamese” time delay
neural network. In Advances in Neural Information Pro-
cessing Systems (NIPS), 1994.

Bronstein, M. M., Bruna, J., LeCun, Y., Szlam, A., and Van-
dergheynst, P. Geometric deep learning: Going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Çakir, F., He, K., Xia, X., Kulis, B., and Sclaroff, S. Deep
metric learning to rank. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2019.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In European Conference on Computer Vi-
sion (ECCV), 2020.

Chopra, S., Hadsell, R., and LeCun, Y. Learning a similarity
metric discriminatively, with application to face verifi-
cation. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2005.

Duan, Y., Zheng, W., Lin, X., Lu, J., and Zhou, J. Deep
adversarial metric learning. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2018.

Duan, Y., Chen, L., Lu, J., and Zhou, J. Deep embed-
ding learning with discriminative sampling policy. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Elezi, I., Torcinovich, A., Vascon, S., and Pelillo, M. Trans-
ductive label augmentation for improved deep network
learning. In International Conference on Pattern Recog-
nition (ICPR), 2018.

Elezi, I., Vascon, S., Torchinovich, A., Pelillo, M., and Leal-
Taixé, L. The group loss for deep metric learning. In
European Conference in Computer Vision (ECCV), 2020.

Ge, W., Huang, W., Dong, D., and Scott, M. R. Deep
metric learning with hierarchical triplet loss. In European
Conference in Computer Vision (ECCV), 2018.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International Conference on Machine Learning
(ICML), 2017.

Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. On
calibration of modern neural networks. In International
Conference on Machine Learning (ICML), 2017.

Guo, M., Chou, E., Huang, D., Song, S., Yeung, S., and Fei-
Fei, L. Neural graph matching networks for fewshot 3d
action recognition. In European Conference on Computer
Vision (ECCV), 2018.

He, K., Zhang, X., Ren, S., and ian Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2016.

He, K., Çakir, F., Bargal, S. A., and Sclaroff, S. Hashing as
tie-aware learning to rank. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2018a.

He, K., Lu, Y., and Sclaroff, S. Local descriptors optimized
for average precision. In Conference on Computer Vision
and Pattern Recognition, (CVPR), 2018b.

Jacob, P., Picard, D., Histace, A., and Klein, E. Metric
learning with HORDE: high-order regularizer for deep
embeddings. In International Conference on Computer
Vision (ICCV), 2019.

Jégou, H., Douze, M., and Schmid, C. Product quantization
for nearest neighbor search. IEEE Trans. Pattern Anal.
Mach. Intell. (tPAMI), 33(1):117–128, 2011.

Kim, S., Kim, D., Cho, M., and Kwak, S. Proxy anchor loss
for deep metric learning. In Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.



Learning Intra-Batch Connections for Deep Metric Learning

Kim, W., Goyal, B., Chawla, K., Lee, J., and Kwon, K.
Attention-based ensemble for deep metric learning. In
European Conference on Computer Vision (ECCV), 2018.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. In International
Conference on Learning Representations (ICLR), 2017.

Krause, J., Stark, M., Deng, J., and Fei-Fei, L. 3d object
representations for fine-grained categorization. In In-
ternational IEEE Workshop on 3D Representation and
Recognition, 2013.

Law, M. T., Urtasun, R., and Zemel, R. S. Deep spectral
clustering learning. In Proceedings of the 34th Interna-
tional Conference on Machine Learning (ICML), 2017.

Lin, X., Duan, Y., Dong, Q., Lu, J., and Zhou, J. Deep
variational metric learning. In European Conference in
Computer Vision (ECCV), 2018.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and
Han, J. On the variance of the adaptive learning rate
and beyond. In International Conference on Learning
Representations (ICLR), 2020.

Liu, Z., Luo, P., Qiu, S., Wang, X., and Tang, X. Deepfash-
ion: Powering robust clothes recognition and retrieval
with rich annotations. In Conference on Computer Vision
and Pattern Recognition, (CVPR), 2016.

MacQueen, J. Some methods for classification and analysis
of multivariate observations. In Proc. Fifth Berkeley Symp.
on Math. Statist. and Prob., Vol. 1, pp. 281–297, 1967.

Manmatha, R., Wu, C., Smola, A. J., and Krähenbühl, P.
Sampling matters in deep embedding learning. In Inter-
national Conference on Computer Vision (ICCV), 2017.

McDaid, A. F., Greene, D., and Hurley, N. J. Normalized
mutual information to evaluate overlapping community
finding algorithms. CoRR, abs/1110.2515, 2011.

Milbich, T., Roth, K., Bharadhwaj, H., Sinha, S., Bengio,
Y., Ommer, B., and Cohen, J. P. Diva: Diverse visual
feature aggregation for deep metric learning. In European
Conference in Computer Vision (ECCV), 2020.

Min, Y., Wenkel, F., and Wolf, G. Scattering GCN: over-
coming oversmoothness in graph convolutional networks.
In Advances in Neural Information Processing Systems
(NeurIPS), 2020.

Movshovitz-Attias, Y., Toshev, A., Leung, T. K., Ioffe, S.,
and Singh, S. No fuss distance metric learning using
proxies. In International Conference on Computer Vision
(ICCV), 2017.

Narasimhan, M., Lazebnik, S., and Schwing, A. G. Out
of the box: Reasoning with graph convolution nets for
factual visual question answering. In Advances in Neural
Information Processing Systems (NeurIPS), 2018.

Opitz, M., Waltner, G., Possegger, H., and Bischof, H. BIER
- boosting independent embeddings robustly. In Interna-
tional Conference on Computer Vision (ICCV), 2017.

Opitz, M., Waltner, G., Possegger, H., and Bischof, H. Deep
metric learning with BIER: boosting independent embed-
dings robustly. IEEE Trans. Pattern Anal. Mach. Intell.
(tPAMI), 42(2):276–290, 2020.

Park, W., Kim, D., Lu, Y., and Cho, M. Relational knowl-
edge distillation. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2019.

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer,
A. Automatic differentiation in pytorch. NIPS Workshops,
2017.

Qian, Q., Shang, L., Sun, B., Hu, J., Tacoma, T., Li, H.,
and Jin, R. Softtriple loss: Deep metric learning without
triplet sampling. In International Conference on Com-
puter Vision (ICCV), 2019.

Revaud, J., Almazán, J., Rezende, R. S., and de Souza,
C. R. Learning with average precision: Training image
retrieval with a listwise loss. In International Conference
on Computer Vision (ICCV), 2019.

Roth, K., Milbich, T., and Ommer, B. PADS: policy-adapted
sampling for visual similarity learning. In Conference on
Computer Vision and Pattern Recognition (CVPR), 2020.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M. S., Berg, A. C., and Li, F. Imagenet large scale visual
recognition challenge. Int. J. Comput. Vis. (IJCV), 115
(3):211–252, 2015.

Sanakoyeu, A., Tschernezki, V., Büchler, U., and Ommer,
B. Divide and conquer the embedding space for metric
learning. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2019.

Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A
unified embedding for face recognition and clustering. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

Schultz, M. and Joachims, T. Learning a distance metric
from relative comparisons. In Advances in Neural Infor-
mation Processing Systems (NIPS), 2003.



Learning Intra-Batch Connections for Deep Metric Learning

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. Grad-cam: Visual explanations
from deep networks via gradient-based localization. Int.
J. Comput. Vis. (IJCV), 128(2):336–359, 2020.

Sohn, K. Improved deep metric learning with multi-class
n-pair loss objective. In Advances in Neural Information
Processing Systems (NIPS), 2016.

Song, H. O., Xiang, Y., Jegelka, S., and Savarese, S. Deep
metric learning via lifted structured feature embedding. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Teh, E. W., DeVries, T., and Taylor, G. W. Proxynca++: Re-
visiting and revitalizing proxy neighborhood component
analysis. In European Conference on Computer Vision
(ECCV), 2020.

van der Maaten, L. and Hinton, G. E. Visualizing non-metric
similarities in multiple maps. Machine Learning, 87(1):
33–55, 2012.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems (NIPS), 2017.

Velickovic, P., Cucurull, G., Casanova, A., Romero, A.,
Liò, P., and Bengio, Y. Graph attention networks. In
International Conference on Learning Representations
(ICLR), 2018.

Wah, C., Branson, S., Welinder, P., Perona, P., and Belongie,
S. The Caltech-UCSD Birds-200-2011 Dataset. Tech-
nical Report CNS-TR-2011-001, California Institute of
Technology, 2011.

Wang, J., Zhou, F., Wen, S., Liu, X., and Lin, Y. Deep metric
learning with angular loss. In International Conference
on Computer Vision (ICCV), 2017.

Wang, X., Han, X., Huang, W., Dong, D., and Scott, M. R.
Multi-similarity loss with general pair weighting for deep
metric learning. In Conference on Computer Vision and
Pattern Recognition (CVPR), 2019a.

Wang, X., Hua, Y., Kodirov, E., Hu, G., Garnier, R., and
Robertson, N. M. Ranked list loss for deep metric learn-
ing. In Conference on Computer Vision and Pattern
Recognition (CVPR), 2019b.

Weinberger, K. Q. and Saul, L. K. Distance metric learning
for large margin nearest neighbor classification. Jour-
nal of Machine Learning Research (JMLR), 10:207–244,
2009.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A. C., Salakhut-
dinov, R., Zemel, R. S., and Bengio, Y. Show, attend and
tell: Neural image caption generation with visual atten-
tion. In International Conference on Machine Learning
(ICML), 2015.

Xu, X., Yang, Y., Deng, C., and Zheng, F. Deep asym-
metric metric learning via rich relationship mining. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2019.

Xuan, H., Souvenir, R., and Pless, R. Deep randomized
ensembles for metric learning. In European Conference
Computer Vision (ECCV), 2018.

Xuan, H., Stylianou, A., Liu, X., and Pless, R. Hard negative
examples are hard, but useful. In European Conference
in Computer Vision (ECCV), 2020a.

Xuan, H., Stylianou, A., and Pless, R. Improved embeddings
with easy positive triplet mining. In Winter Conference
on Applications of Computer Vision (WACV), 2020b.

Yuan, Y., Yang, K., and Zhang, C. Hard-aware deeply
cascaded embedding. In International Conference on
Computer Vision (ICCV), 2017.

Zhai, A. and Wu, H. Classification is a strong baseline for
deep metric learning. In British Machine Vision Confer-
ence (BMVC), 2019.

Zhang, X., Zhou, F., Lin, Y., and Zhang, S. Embedding
label structures for fine-grained feature representation. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

Zhao, K., Xu, J., and Cheng, M. Regularface: Deep face
recognition via exclusive regularization. In Conference
on Computer Vision and Pattern Recognition (CVPR),
2019.

Zheng, X., Ji, R., Sun, X., Zhang, B., Wu, Y., and Huang,
F. Towards optimal fine grained retrieval via decorrelated
centralized loss with normalize-scale layer. In Conference
on Artificial Intelligence (AAAI), 2019.

Zhong, Z., Zheng, L., Cao, D., and Li, S. Re-ranking
person re-identification with k-reciprocal encoding. In
Conference on Computer Vision and Pattern Recognition
(CVPR), 2017.

Zhu, Y., Yang, M., Deng, C., and Liu, W. Fewer is more:
A deep graph metric learning perspective using fewer
proxies. In Advances in Neural Information Processing
Systems (NeurIPS), 2020.


