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Abstract
Recent exploration methods have proven to be a
recipe for improving sample-efficiency in deep re-
inforcement learning (RL). However, efficient ex-
ploration in high-dimensional observation spaces
still remains a challenge. This paper presents Ran-
dom Encoders for Efficient Exploration (RE3), an
exploration method that utilizes state entropy as
an intrinsic reward. In order to estimate state en-
tropy in environments with high-dimensional ob-
servations, we utilize a k-nearest neighbor entropy
estimator in the low-dimensional representation
space of a convolutional encoder. In particular,
we find that the state entropy can be estimated in
a stable and compute-efficient manner by utiliz-
ing a randomly initialized encoder, which is fixed
throughout training. Our experiments show that
RE3 significantly improves the sample-efficiency
of both model-free and model-based RL methods
on locomotion and navigation tasks from Deep-
Mind Control Suite and MiniGrid benchmarks.
We also show that RE3 allows learning diverse be-
haviors without extrinsic rewards, effectively im-
proving sample-efficiency in downstream tasks.

1. Introduction
Exploration remains one of the main challenges of deep
reinforcement learning (RL) in complex environments with
high-dimensional observations. Many prior approaches to
incentivizing exploration introduce intrinsic rewards based
on a measure of state novelty. These include count-based
visitation bonuses (Bellemare et al., 2016; Tang et al., 2017;
Ostrovski et al., 2017) and prediction errors (Stadie et al.,
2015; Houthooft et al., 2016; Pathak et al., 2017; Burda
et al., 2019; Pathak et al., 2019; Sekar et al., 2020). By
introducing such novelty-based intrinsic rewards, these ap-
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proaches encourage agents to visit diverse states, but leave
unanswered the fundamental question of how to quantify
effective exploration in a principled way.

To address this limitation, Lee et al. (2019) and Hazan
et al. (2019) proposed that exploration methods should en-
courage uniform (i.e., maximum entropy) coverage of the
state space. For practical state entropy estimation with-
out learning density models, Mutti et al. (2021) estimate
state entropy by measuring distances between states and
their k-nearest neighbors. To extend this approach to high-
dimensional environments, recent works (Tao et al., 2020;
Badia et al., 2020; Liu & Abbeel, 2021) have proposed to
utilize the k-nearest neighbor state entropy estimator in a
low-dimensional latent representation space. The latent rep-
resentations are learned by auxiliary tasks such as dynamics
learning (Tao et al., 2020), inverse dynamics prediction (Ba-
dia et al., 2020), and contrastive learning (Liu & Abbeel,
2021). However, these methods still involve optimizing mul-
tiple objectives throughout RL training. Given the added
complexity (e.g., hyperparameter tuning), instability, and
computational overhead of optimizing auxiliary losses, it is
important to ask whether effective state entropy estimation is
possible without introducing additional learning procedures.

In this paper, we present RE3: Random Encoders for
Efficient Exploration, a simple, compute-efficient method
for exploration without introducing additional models or
representation learning. The key idea of RE3 is to utilize a
k-nearest neighbor state entropy estimator in the representa-
tion space of a randomly initialized encoder, which is fixed
throughout training. Our main hypothesis is that a randomly
initialized encoder can provide a meaningful representation
space for state entropy estimation by exploiting the strong
prior of convolutional architectures. Ulyanov et al. (2018)
and Caron et al. (2018) found that the structure alone of
deep convolutional networks is a powerful inductive bias
that allows relevant features to be extracted for tasks such as
image generation and classification. In our case, we find that
the representation space of a randomly initialized encoder
effectively captures information about similarity between
states, as shown in Figure 1. Based upon this observation,
we propose to maximize a state entropy estimate in the fixed
representation space of a randomly initialized encoder.
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We highlight the main contributions of this paper below:

• RE3 significantly improves the sample-efficiency of
both model-free and model-based RL methods on
widely used DeepMind Control Suite (Tassa et al.,
2020), MiniGrid (Chevalier-Boisvert et al., 2018), and
Atari (Bellemare et al., 2013) benchmarks.

• RE3 encourages exploration without introducing rep-
resentation learning or additional models, outperform-
ing state entropy maximization schemes that involve
representation learning and exploration methods that
introduce additional models for exploration (Pathak
et al., 2017; Burda et al., 2019).

• RE3 is compute-efficient because it does not require
gradient computations and updates for additional rep-
resentation learning, making it a scalable and practical
approach to exploration.

• RE3 allows learning diverse behaviors in environments
without extrinsic rewards; we further improve sample-
efficiency in downstream tasks by fine-tuning a policy
pre-trained with the RE3 objective.

2. Related Work
Exploration in reinforcement learning. Exploration al-
gorithms encourage the RL agent to visit a wide range
of states by injecting noise to the action space (Lillicrap
et al., 2016) or parameter space (Fortunato et al., 2018;
Plappert et al., 2018), maximizing the entropy of the action
space (Ziebart, 2010; Haarnoja et al., 2018), and setting di-
verse goals that guide exploration (Florensa et al., 2018; Nair
et al., 2018; Pong et al., 2020; Colas et al., 2019). Another
line of exploration algorithms introduce intrinsic rewards
proportional to prediction errors (Houthooft et al., 2016;
Pathak et al., 2017; Burda et al., 2019; Sekar et al., 2020),
and count-based state novelty (Bellemare et al., 2016; Tang
et al., 2017; Ostrovski et al., 2017). Our approach differs in
that we explicitly encourage the agent to uniformly visit all
states by maximizing the entropy of the state distribution,
instead of depending on metrics from additional models.

State entropy maximization. Most closely related to our
work are methods that maximize the entropy of state dis-
tributions. Hazan et al. (2019); Lee et al. (2019) proposed
to maximize state entropy estimated by approximating the
state density distribution. Instead of approximating complex
distributions, Mutti et al. (2021) proposed to maximize a
k-nearest neighbor state entropy estimate from on-policy
transitions. Recent works extend this method to environ-
ments with high-dimensional observations. Tao et al. (2020)
employ model-based RL techniques to build a represen-
tation space for the state entropy estimate that measures
similarity in dynamics, and Badia et al. (2020) proposed to
measure similarity in the representation space learned by
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Figure 1. Visualization of k-nearest neighbors of states found by
measuring distances in the representation space of a randomly
initialized encoder (Random Encoder) and ground-truth state space
(True State) on the Hopper environment from DeepMind Control
Suite (Tassa et al., 2020). We observe that the representation space
of a random encoder effectively captures information about the
similarity between states without any representation learning.

inverse dynamics prediction. The work closest to ours is
Liu & Abbeel (2021), which uses off-policy RL algorithms
to maximize the k-nearest neighbor state entropy estimate
in contrastive representation space (Srinivas et al., 2020) for
unsupervised pre-training. We instead explore the idea of
utilizing a fixed random encoder to obtain a stable entropy
estimate without any representation learning.

Random encoders. Random weights have been utilized
in neural networks since their beginnings, most notably
in a randomly initialized first layer (Gamba et al., 1961)
termed the Gamba perceptron by Minsky & Papert (1969).
Moreover, nice properties of random projections are com-
monly exploited for low-rank approximation (Vempala,
2005; Rahimi & Recht, 2007). These ideas have since been
extended to deep convolutional networks, where random
weights are surprisingly effective at image generation and
restoration (Ulyanov et al., 2018), image classification and
detection (Caron et al., 2018), and fast architecture search
(Saxe et al., 2011). In natural language processing, Wieting
& Kiela (2019) demonstrated that learned sentence embed-
dings show marginal performance gain over random embed-
dings. In the context of RL, Gaier & Ha (2019) showed that
competitive performance can be achieved by architecture
search over random weights without updating weights, and
Lee et al. (2020) utilized randomized convolutional neural
networks to improve the generalization of deep RL agents.
Building on these works, we show that random encoders
can also be useful for efficient exploration in environments
with high-dimensional observations.
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Figure 2. Illustration of our approach. The intrinsic reward for each observation is computed as the distance to its k-nearest neighbor,
measured between low-dimensional representations obtained from the fixed random encoder. The intrinsic reward is then combined with
extrinsic reward from the environment, if present. A separate RL encoder is introduced for a policy that maximizes expected reward.

3. Method
3.1. Preliminaries

We formulate a control task with high-dimensional obser-
vations as a partially observable Markov decision process
(POMDP; Sutton & Barto 2018; Kaelbling et al. 1998),
which is defined as a tuple (O,A, p, re, γ). Here, O is the
high-dimensional observation space, A is the action space,
p (o′|o≤t, at) is the transition dynamics, re : O ×A → R
is the reward function that maps the current observation and
action to a reward ret = re (o≤t, at), and γ ∈ [0, 1) is the
discount factor. By following common practice (Mnih et al.,
2015), we reformulate the POMDP as an MDP (Sutton &
Barto, 2018) by stacking consecutive observations into a
state st = {ot, ot−1, ot−2, ...}. For simplicity of notation,
we redefine the reward function as ret = re (st, at). The
goal of RL is to learn a policy π(at|st) that maximizes the
expected return defined as the total accumulated reward.

k-nearest neighbor entropy estimator. Let X be a ran-
dom variable with a probability density function p whose
support is a set X ⊂ Rq. Then its differential entropy is
given as H(X) = −Ex∼p(x)[log p(x)]. When the distribu-
tion p is not available, this quantity can be estimated given
N i.i.d realizations of {xi}Ni=1 (Beirlant et al., 1997). How-
ever, since it is difficult to estimate p with high-dimensional
data, particle-based k-nearest neighbors (k-NN) entropy
estimator (Singh et al., 2003) can be employed:

ĤkN (X) =
1

N

N∑
i=1

log
N · ||xi − xk-NN

i ||q2 · π̂
q
2

k · Γ( q2 + 1)
+ Ck (1)

∝ 1

N

N∑
i=1

log ||xi − xk-NN
i ||2, (2)

where xk-NN
i is the k-NN of xi within a set {xi}Ni=1, Ck =

log k−Ψ(k) a bias correction term, Ψ the digamma function,
Γ the gamma function, q the dimension of x, π̂ ≈ 3.14159,
and the transition from (1) to (2) always holds for q > 0.

3.2. Random Encoders for Efficient Exploration

We present Random Encoders for Efficient Exploration
(RE3), which encourages exploration in high-dimensional
observation spaces by maximizing state entropy. The key
idea of RE3 is k-nearest neighbor entropy estimation in
the low-dimensional representation space of a randomly
initialized encoder. To this end, we propose to compute
the distance between states in the representation space of a
random encoder fθ whose parameters θ are randomly ini-
tialized and fixed throughout training. The main motivation
arises from our observation that distances in the representa-
tion space of fθ are already useful for finding similar states
without any representation learning (see Figure 1).

State entropy estimate as intrinsic reward. To define
the intrinsic reward proportional to state entropy estimate
by utilizing (2), we follow the idea of Liu & Abbeel (2021)
that treats each transition as a particle, hence our intrinsic
reward is given as follows:

ri(si) := log(||yi − yk-NN
i ||2 + 1), (3)

where yi = fθ(si) is a fixed representation from a random
encoder and yk-NN

i is the k-nearest neighbor of yi within
a set of N representations {y1, y2, ..., yN}. Here, our intu-
ition is that measuring the distance between states in the
fixed representation space produces a more stable intrin-
sic reward as the distance between a given pair of states
does not change during training. To compute distances in
latent space in a compute-efficient manner, we propose to
additionally store low-dimensional representations y in the
replay buffer B during environment interactions. Therefore,
we avoid processing high-dimensional states through an
encoder for obtaining representations at every RL update.
Moreover, we can feasibly compute the distance of yi to all
entries y ∈ B, in contrast to existing approaches that utilize
on-policy samples (Mutti et al., 2021), or samples from a
minibatch (Liu & Abbeel, 2021). Our scheme enables stable,
precise entropy estimation in a compute-efficient manner.
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(a) Walker (b) Hopper (c) Quadruped (d) Cheetah (e) Cartpole (f) Pendulum
Figure 3. Image observations for visual control tasks from DeepMind Control Suite (Tassa et al., 2020) used in our experiments. The
high-dimensionality of these observations necessitates an efficient method for state entropy estimation.

The RE3 objective. We propose to utilize the intrinsic
reward ri for (a) online RL, where the agent solves target
tasks guided by extrinsic reward re from environments, and
(b) unsupervised pre-training, where the agent learns to
explore the high-dimensional observation space in the ab-
sence of extrinsic rewards, i.e., re = 0. This exploratory
policy from pre-training, in turn, can be used to improve
the sample-efficiency in downstream tasks by fine-tuning.
Formally, we introduce a policy πφ, parameterized by φ,

that maximizes the expected return Eπφ
[∑∞

j=0 γ
jrtotalj

]
,

where the total reward rtotalj is defined as:

rtotalj := re(sj , aj) + βt · ri(sj), (4)

where βt ≥ 0 is a hyperparameter that determines the trade-
off between exploration and exploitation at training timestep
t. We use the exponential decay schedule for βt throughout
training to encourage the agent to further focus on extrin-
sic reward from environments as training proceeds, i.e.,
βt = β0(1 − ρ)t, where ρ is a decay rate. While the pro-
posed intrinsic reward would converge to 0 as more similar
states are collected during training, we discover that decay-
ing βt empirically stabilizes the performance. We provide
the full procedure for RE3 with off-policy RL in Algorithm 1
and on-policy RL in Algorithm 2.

4. Experiments
We designed experiments to answer the following questions:

• Can RE3 improve the sample-efficiency of both model-
free and model-based RL algorithms (see Figure 4)?

• How does RE3 compare to state entropy maximization
schemes that involve representation learning (see Fig-
ure 5) and other exploration schemes that introduce
additional models for exploration (see Figure 6)?

• How compute-efficient is RE3 (see Figure 7)?

• Can RE3 further improve the sample-efficiency of off-
policy RL algorithms by unsupervised pre-training (see
Figure 8 and Figure 9)?

• Can RE3 also improve the sample-efficiency of on-
policy RL and off-policy RL in discrete control tasks
(see Figure 11 and Figure 13)?

Algorithm 1 RE3: Off-policy RL version

1: Initialize parameters of random encoder θ, policy φ
2: Initialize replay buffer B ← ∅
3: for each timestep t do
4: // COLLECT TRANSITIONS
5: Collect a transition τt = (st, at, st+1, r

e
t ) from the

interaction with the environment using policy πφ
6: Get a fixed representation yt = fθ(st)
7: B ← B ∪ {(τt, yt)}
8: // COMPUTE INTRINSIC REWARD
9: Sample random minibatch {(τj , yj)}Bj=1 ∼ B

10: for j = 1 to B do
11: Compute the distance ||yj − y||2 for all representa-

tions y ∈ B and find the k-nearest neighbor yk-NN
j

12: Compute rij ← log(||yj − yk-NN
j ||2 + 1)

13: Update βt ← β0(1− ρ)t

14: Let rtotalj ← rej + βt · rij
15: end for
16: // UPDATE POLICY
17: Update φ with transitions {(sj , aj , sj+1, r

total
j )}Bj=1

18: end for

4.1. DeepMind Control Suite Experiments

Setup. To evaluate the sample-efficiency of our method,
we compare to Dreamer (Hafner et al., 2020), a state-of-
the-art model-based RL method for visual control; and two
state-of-the-art model-free RL methods, RAD (Laskin et al.,
2020) and DrQ (Kostrikov et al., 2021). For comparison
with other exploration methods, we consider RND (Burda
et al., 2019) and ICM (Pathak et al., 2017) that introduce
additional models for exploration. For RE3 and baseline
exploration methods, we use RAD as the underlying model-
free RL algorithm. To further demonstrate the applicability
of RE3 to model-based RL algorithms, we also consider a
combination of Dreamer and RE3. For random encoders,
we use convolutional neural networks with the same archi-
tecture as underlying RL algorithms, but with randomly
initialized parameters fixed during the training. As for the
newly introduced hyperparameters, we use k = 3, β0 ∈
{0.05, 0.25}, and ρ ∈ {0.0, 0.00001, 0.000025}. We pro-
vide more details in Appendix A. Source code is available
at https://sites.google.com/view/re3-rl.

https://sites.google.com/view/re3-rl
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Figure 4. Performance on locomotion tasks from DeepMind Control Suite. RE3 consistently improves the sample-efficiency of RAD and
Dreamer. The solid line and shaded regions represent the mean and standard deviation, respectively, across five runs.
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Figure 5. We compare state entropy (SE) maximization with RE3 to state entropy maximization schemes that involve representation
learning. The solid line and shaded regions represent the mean and standard deviation, respectively, across five runs.

Comparative evaluation. Figure 4 shows that RE3 con-
sistently improves the sample-efficiency of RAD on var-
ious tasks. In particular, RAD + RE3 achieves average
episode return of 601.6 on Cheetah Run Sparse, where both
model-free RL methods RAD and DrQ fail to solve the task.
We emphasize that state entropy maximization with RE3
achieves such sample-efficiency with minimal cost due to
its simplicity and compute-efficiency. We also observe that
Dreamer + RE3 improves the sample-efficiency of Dreamer
on most tasks, which demonstrates the applicability of RE3
to both model-free and model-based RL algorithms.

Effects of representation learning. To better grasp how
RE3 improves sample-efficiency, we compare to state en-
tropy maximization schemes that involve representation
learning in Figure 5. Specifically, we consider a convolu-
tional encoder trained by contrastive learning (RAD + SE w/
Contrastive), inverse dynamics prediction (RAD + SE w/ In-

verse dynamics), and a ResNet-50 (He et al., 2016) encoder
pre-trained on ImageNet dataset (RAD + SE w/ ImageNet).
We found that our method (RAD + SE w/ Random) exhibits
better sample-efficiency than approaches that continually
update representations throughout training (RAD + SE w/
Contrastive, RAD + SE w/ Inverse dynamics). This demon-
strates that utilizing fixed representations helps improve
sample-efficiency by enabling stable state entropy estima-
tion throughout training. We also observe that our approach
outperforms RAD + SE w/ ImageNet, implying that it is not
necessarily beneficial to employ a pre-trained encoder, and
fixed random encoders can be effective for state entropy esti-
mation without having been trained on any data. We remark
that representations from the pre-trained ImageNet encoder
could not be useful for our setup, due to the different visual
characteristics of natural images in the ImageNet dataset
and image observations in our experiments (see Figure 3 for
examples of image observations).


