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Abstract
Pixelizations of Platonic solids such as the cube
and icosahedron have been widely used to rep-
resent spherical data, from climate records to
Cosmic Microwave Background maps. Platonic
solids have well-known global symmetries. Once
we pixelize each face of the solid, each face also
possesses its own local symmetries in the form
of Euclidean isometries. One way to combine
these symmetries is through a hierarchy. How-
ever, this approach does not adequately model
the interplay between the two levels of symme-
try transformations. We show how to model this
interplay using ideas from group theory, iden-
tify the equivariant linear maps, and introduce
equivariant padding that respects these symme-
tries. Deep networks that use these maps as
their building blocks generalize gauge equivari-
ant CNNs on pixelized spheres. These deep net-
works achieve state-of-the-art results on seman-
tic segmentation for climate data and omnidirec-
tional image processing. Code is available at
https://git.io/JGiZA.

1. Introduction
Representing signals on the sphere is an important problem
across many domains; in geodesy and astronomy, discrete
maps assign scalars or vectors to each point on the surface
of the earth or points in the sky. To this end, various pixeliza-
tions or tilings of the sphere, often based on Platonic solids,
have been used. Here, each face of the solid is refined using
a triangular, hexagonal, or square grid and further recursive
refinements can bring the resulting polyhedron closer and
closer to a sphere, enabling an accurate projection from the
surface of a sphere; see Fig. 2.

Our objective is to enable deep learning on this representa-
tion of spherical signals. A useful learning bias when deal-
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Figure 1. We model the rotational symmetry of the sphere by com-
bining the rotational symmetry of a Platonic solid and isometries
of each of its face grids. The bottom row shows one such symmetry
transformation for scalar features on the quad sphere. The top row
shows the corresponding transformation for regular features. Note
that the 90○ rotation of the cube around the vertical axis also rolls
the feature grids on top, in addition to rotating them. We identify
the equivariant linear maps that make this diagram commute.

ing with structured data is to design equivariant models that
preserve the symmetries of the structure at hand; the equiv-
ariance constraint ensures that symmetry transformations
of the data result in the same symmetry transformations of
the representation. To this end, we first need to identify the
symmetries of pixelized spheres.

While Platonic solids have well-known symmetries (Cox-
eter, 1973), their pixelization does not simply extend these
symmetries. To appreciate this point it is useful to contrast
the situation with the pixelization of a circle using a polygon:
when using an m-gon, the cyclic group Cm approximates
the rotational symmetry of the circle, SO(2). By further
pixelizing and projecting each edge of the m-gon using 2
pixels, we get a regular 2m-gon, with a larger symmetry
group Cm < C2m < SO(2) – therefore in this case further
pixelization simply extends the symmetry. However, this
does not happen with the sphere and its symmetry group
SO(3) – that is, pixelized spheres are not homogeneous
spaces for any finite subgroup of SO(3).

https://git.io/JGiZA
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One solution to this problem proposed by Cohen et al.
(2019a) is to design deep models that are equivariant to
“local” symmetries of a pixelized sphere. However, the sym-
metry of the solid is ignored in gauge equivariant CNNs.
In fact, we show that under some assumptions, the gauge
equivariant model can be derived by assuming a two-level
hierarchy of symmetries (Wang et al., 2020), where the top-
level symmetry is the complete exchangeability of faces (or
local charts). A natural improvement is to use the symmetry
of the solid to dictate valid permutations of faces instead of
assuming complete exchangeability.

While the previous step is an improvement in modeling the
symmetry of pixelized spheres, we observe that a hierar-
chy is inadequate because it allows for rotation/reflection of
each face tiling independent of rotations/reflections of the
solid. This choice of symmetry is too relaxed because the
rotations/reflections of the solid completely dictate the rota-
tion/reflection of each face-tiling. Using the idea of block
systems from permutation group theory, we are able to en-
force inter-relations across different levels of the hierarchy,
composed of the solid and face tilings. After identifying
this symmetry transformation, we identify the family of
equivariant maps for different choices of Platonic solid. We
also introduce an equivariant padding procedure to further
improve the feed-forward layer.

The equivariant linear maps are used as a building block in
equivariant networks for pixelized spheres. Our empirical
study using different pixelizations of the sphere demon-
strates the effectiveness of our choice of approximation for
spherical symmetry, where we report state-of-the-art on pop-
ular benchmarks for omnidirectional semantic segmentation
and segmentation of extreme climate events.

2. Pixelizing the Sphere
To pixelize the sphere one could pixelize the faces of any
polyhedron with transitive faces – that is, any face is mapped
to any other face using a symmetry transformation (Popko,
2012). Such a polyhedron is called an isohedron. For ex-
ample, the Quadrilateralized Spherical Cube (quad sphere)
pixelizes the sphere by defining a square grid on a cube.
This pixelization was used in representing sky maps by
the COsmic Background Explorer (COBE) satellite. Alter-
natively, pixelization of the icosahedron using hexagonal
grids for similar applications in cosmology is studied in
Tegmark (1996). Today, a pixelization widely used to map
the sky is Hierarchical Equal Area isoLatitude Pixeliza-
tion (HEALPix), which pixelizes the faces of a rhombic
dodecahedron, an isohedron that is not a Platonic solid.

Platonic solids are more desirable as a model of the sphere
because they are the only convex isohedra that are face-
edge-vertex transitive – that is, not only can we move any

Figure 2. Iterative pixelization and projection for three Platonic
solids: in each iteration (left-to-right), the pixels are recursively
subdivided and projected onto the circumscribed sphere.

face to another face using symmetry transformations, but
we can also do this for edges and vertices. Similarly, there
are only three regular tilings of the plane with this property:
triangular, hexagonal, and square grids. Platonic solids give
a regular tiling of the sphere, and this tiling is further refined
by recursive subdivision and projection of each tile onto the
sphere; see Fig. 2. A large family of geodesic polyhedra use
a triangular tiling to pixelize some Platonic solids, includ-
ing the tetrahedron, octahedron, and icosahedron. In our
treatment, we assume that rotation/reflection symmetries of
each face match the rotation/reflection symmetries of the
tiling – e.g., square tiling is only used with a cube because
both the square face of the cube and square grid have 90○

rotational symmetries. We exclude the dodecahedron be-
cause its triangular face tiling does not have translational
symmetry.

3. Preliminaries
Let [v] = {1, . . . , v} denote the vertex set of a given Platonic
solid. Each face f ∈ [v]m of the solid is anm-gon identified
by its m vertices, and ∆ ⊂ [v]m is the set of all faces. The
action of the solid’s symmetry group H , a.k.a. polyhedral
group, on faces ∆ defines the permutation representation
π ∶ H → Sym(∆) that maps each group member to a
permutation of faces. Here Sym(∆) is the group of all
permutations of ∆. We use π(H) to make this dependence
explicit. Sometimes a subscript is used to identify the H-
set – for example, π∆(H) and π[v](H) define H action
on faces and vertices of the solid respectively. Since as a
permutation matrix �(h) ∶ R∣∆∣ → R∣∆∣ for h ∈ H is also
a linear map, we use a bold symbol in this case to make
the distinction. For the same reason, we use ∆ and R∣∆∣

interchangeably for the corresponding H-set.

3.1. Symmetries of the Face Tiling

Here, we focus on the symmetries of a single tiled face.
Each face has a regular tiling using a set Ω of tiles or pixels.
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This regular tiling has its own symmetries, composed of
2D translations τ(T ) < Sym(Ω), and rotations/reflections
κ(K) < Sym(Ω).1 When we consider rotational or chiral
symmetries K = Cm is the cyclic group, and when adding
reflections, we have K =Dm, the dihedral group.

When combining translations and rotations/reflections
one could simply perform translation followed by rota-
tion/reflection. However, since a similar form of a combina-
tion of two transformations appears later in the paper (when
we combine the rotations of the solid with translations on all
faces), in the following paragraph, we take a more formal
route to explain why the combination of rotation/reflection
and translation takes this simple form.

The rotation/reflection symmetries of the tiling define an
automorphism of translations a ∶K → Aut(T ) – e.g., hor-
izontal translation becomes vertical translation after a 90○

rotation. This automorphism defines the semi-direct product
U = K ⋊a T as the abstract symmetry of the tiling. The
action of members of this new group (k, t) = u ∈ U , on the
tiles Ω is a permutation group υ(U) < Sym(Ω)

�Ω(u) = (�(k)� (t)�(k−1))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

automorphism ak(t)

�(k) = �(k)� (t). (1)

In the group action above, the automorphism of transla-
tions is through conjugation by K, where K itself also
rotates/reflects the input. The end result becomes translation
followed by rotation/reflection, as promised.

The action above permutes individual pixels and therefore
assumes scalar features attached to each pixel. An alterna-
tive is to define vector features so that U action becomes reg-
ular. For this we attach a vector of length ∣K ∣ to each pixel,
and use the regular K action on itself �K ∶K → Sym(K)
to define U action on the Cartesian product K ×Ω

�K×Ω(k, t) = �K(k)⊗ (�Ω(k)� (t)) , (2)

where ⊗ is the tensor product. In words, U action on K ×Ω
translates and rotates/reflects the pixels Ω and at the same
time transforms the vectors or fibers K.

Example 1 (Quad Sphere). Full symmetries of the cube
is a subgroup of the orthogonal group H < O(3). The
corresponding rotations/reflections are represented by 3 × 3
rotation/reflection matrices that have ±1 entries with only
one non-zero per row and column. There are 23 choices

1One may argue that when the grid is projected to the sphere,
the translational symmetry of the grid disappears since the grid
is non-uniformly distorted. However, note that at the limit of
having an infinitely high-resolution grid, this approximation (for
small translations) becomes exact. Moreover, in a way, natural
images also correspond to the projection of the 3D world onto
a 2D grid, where we assume translational symmetry when using
planar convolution.

for the sign and 3! = 6 choices for the location of these
non-zeros, creating a group of size 6 × 8 = 48. Half of
these matrices have a determinant of one and therefore
correspond to rotational symmetries. For simplicity, in the
follow-up examples, we consider only these symmetries. The
resulting group is isomorphic to the symmetric group S4,
where each rotation corresponds to some permutation of the
four long diagonals of the cube. Now consider a d×d square
tiling of each face of the cube, i.e., ∣Ω(f)∣ = d2. In addition
to translational symmetry T = Cd × Cd, the cyclic group
K = C4 represents the rotational symmetry of the grid. U
action simply performs translation followed by rotation in
multiples of 90○.

3.2. Equivariant Linear Maps for Each Face

Given the permutation representations υK×Ω(U), a linear
map L ∶ R∣K×Ω∣ → R∣K×Ω∣ is U -equivariant if L�(u) =
�(u)L for all u ∈ U , or in other words2

L = �(u)L�(u)⊺ ∀u ∈ U.

Using a tensor product property3 we can rewrite this con-
straint as

vec(L) = �2(u)vec(L) ∀u ∈ U,

where �2(u) ≐ �(u) ⊗ �(u) is a permutation action of
u ∈ U on A =K ×Ω ×K ×Ω, the elements of the “weight
matrix” L. The orthogonal bases for which this condition
holds are ∣K ×Ω∣ × ∣K ×Ω∣ binary matrices L(1), . . . ,L(`)

that are simply identified by the orbits of υ2(U) action on
A (Wood & Shawe-Taylor, 1996; Ravanbakhsh et al., 2017).
The question of finding the linear bases is therefore the same
as that of finding the orbits of permutation groups. We can
use orbit finding algorithms from group theory with time
complexity that is linear in the number of input-outputs
(i.e., size of the matrix, or cardinality of A), and the size of
the generating set of the group, G∗ ⊆ G s.t. ⟨G∗⟩ = G (Hiß
et al., 2007). Algorithm 1 in the Appendix gives the pseudo-
code for finding the orbit of a given element a ∈ A. The fact
that orthogonal bases are binary means that U -equivariant
linear maps are parameter-sharing matrices, where each
basis identifies a set of tied parameters and its nonzero
elements correspond to an orbit of U action on A. We
have implemented this procedure for automated creation of
parameter-sharing matrices and made the code available.4

To increase the expressivity of the deep network that deploys
this kind of linear map, we may have multiple input and
output channels, and for each input-output channel pair, we
use a new set of parameters. An alternative characterization

2Since υ(u) is a permutation matrix, its inverse is equal to its
transpose.

3vec(ABC) = (C⊺
⊗A) vec(B)

4https://github.com/mshakerinava/AutoEquiv

https://github.com/mshakerinava/AutoEquiv
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Figure 3. The parameter-
sharing matrix for LU . This
linear map is equivariant to
circular translations and 90○

rotations of regular feature
vectors on a 3 × 3 grid. That
is, K = C4 and ∣Ω∣ = 3 × 3 = 9.
Note that this matrix is the
parameter-sharing equivalent of
having C4-steerable filters.

of equivariant linear maps is through group convolution,
where the semi-direct product construction of U leads to K-
steerable filters (Cohen & Welling, 2016; 2017). Fig. 3 gives
an example of equivariant linear bases (parameter-sharing)
for 3 × 3 square tiling on each face of a quad sphere.

4. Revisiting Gauge Equivariance
Cohen et al. (2019a) introduced gauge equivariant CNNs
and used it to build Icosahedral CNN; an equivariant net-
work for pixelization of the icosahedron. The idea is that a
manifold as a geometric object may lack a global symmetry,
and we can instead design models equivariant to the change
of local symmetry, or gauge. To establish the relationship
between their model and ours, in their language, we assume
each face to be a local chart5. The interaction between local
charts or faces is only through their overlap created by the
padding of each face from adjacent faces. If we ignore the
padding, their framework assumes an “independent” local
transformation within each chart – that is, their model is
equivariant to independent translation and rotation/reflection
within each face tiling. These independent transformations
are represented by the product group U1 × . . . ×U∣∆∣ acting
on the set of all tiles ∆×Ω, or ∆×K ×Ω in the case of reg-
ular features. Furthermore, since the “same” model applies
across charts, gauge equivariance assumes exchangeability
of these transformations. The resulting overall symmetry
group is, therefore, the wreath product

G = U ≀ Sym(∆) (3)

in which a member of the symmetric group s ∈ S∣∆∣ per-
mutes the transformations u1, . . . , u∣∆∣ ∈ U1 × . . . × U∣∆∣.
Therefore, G action on ∆×K ×Ω is given by the following

�gauge
∆×Ω(g) = (�∆(s)⊗ I∣K×Ω∣)

⎛
⎝⊕f∈∆

�K×Ω(uf)
⎞
⎠
, (4)

where g = (s, u1, . . . , u∣∆∣). Here, the direct sum represents
the independent transformation of each face by �(uf) of

5Note that Cohen et al. (2019a) use several adjacent faces to cre-
ate each chart and also associate the data with vertices rather than
tiles. Moreover, our construction here ignores their G-padding,
and we discuss padding later. Our variation on their model makes
some choices to help clarify what is missing in Icosahedral CNN.

Eq. (2), and the first term permutes the blocks in the direct
sum using �∆(s). Action for scalar features simply replaces
�K×Ω with �Ω.

4.1. Gauge Equivariant Linear Map

Previously we saw thatK⋊T = U -equivariant maps LU can
be expressed using parameter-sharing linear layers. In (Za-
heer et al., 2017) it is shown that Sym(∆)-equivariant maps
take a simple form LS(∆) = w1I∣∆∣ +w2(1∣∆∣1

⊺

∣∆∣
), where

Ic is the c × c identity matrix, and 1c = [1, . . . ,1]⊺ is a col-
umn vector of length c. Given these components, as shown
by (Wang et al., 2020), the equivariant map for the imprimi-
tive action of their wreath product, as defined by Eq. (4) has
the following form:

Lgauge
G = LS ⊗ (1∣K×Ω∣1

⊺

∣K×Ω∣
) + I∣∆∣ ⊗LU . (5)

In words, the resulting linear map applies the same LU to
each face tiling, and one additional operation pools over
the entire set of pixels, multiplies the result by a scalar,
and broadcasts back. If we ignore the single global pool-
broadcast operation, the result which simply applies an
identical equivariant map to each chart coincides with the
model of (Cohen et al., 2019a).

5. Combining Local and Global Symmetries
5.1. Strict Hierarchy of Symmetries

The symmetry group of Eq. (3) ignores the symmetries of
the solid H . However, adding H seems easy: by simply
replacing the representation σ∆(S) with π∆(H) in Eq. (4),
we get a smaller permutation group ρhierarchy(G) acting on
∆ × K × Ω. Intuitively, this permutation group includes
independent symmetry transformations of the tiling of each
face while allowing the faces to be permuted according to
the symmetries of the solid. The new permutation group is a
subgroup of the old group: ρhierarchy(G) < ρgauge(G), which
means that the corresponding G-equivariant map is less
constrained or more expressive. The newG-equivariant map
Lhierarchy
G simply replaces LS in Eq. (5) with LH . Parameter-

sharing layers equivariant to H-action on faces �(H) are
easily constructed for different solids; see Fig. 4.

While this approach is an improvement over the previous
model, it is still inaccurate in the sense that it allows ro-
tation/reflection of each face via κΩ(K) independently of
rotations/reflections of the solid through π∆(H). In princi-
ple, rotations/reflections of the solid completely determine
the rotations/reflections of face tilings for all faces. Next,
we find the symmetry transformation that respects this con-
straint and, by doing so, increase the expressivity of the
resulting equivariant map.
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Figure 4. As we saw in Example 1 the rotational symmetries of the cube are given byH � S4 . The action of this
group on the 6 faces is the permutation group� � ˆS4• . The parameter-sharing constraint for6 � 6 matricesLH is
shown in this �gure. The correspondingU ˜H � G-equivariant mapLhierarchy

G � LH a ‰1SK � 
 S1
—
SK � 
 SŽ� IS� Sa LU

assuming a3� 3 face grid is constructed in two steps: 1) subdividing each row and column ofLH into 3� 3� 4 � 28
parts, to get a216� 216matrix forLH a ‰1SK � 
 S1

—
SK � 
 SŽ; 2) replacing the purple diagonal blocks with the28� 28

parameter-sharing matrix of Fig. 3. This corresponds to the second termIS� Sa LU .

5.2. Interaction of Global and Local Symmetries

Previously we observed thatH action completely de�nes
rotations and re�ections of each face-tiling. Therefore our
task is to de�ne the pixelization symmetriesG solely in
terms ofH and translations of individual tilingsT (i.e., we
drop K ). Assuming independent translation within each
face, we get the product group

TS� S� T � : : : � T
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

S� Stimes

: (6)

To combine this symmetry with the polyhedral symmetry
H one should note thatH itself acts onTS� S– e.g., when
we rotate the cube, translations are permuted and rotated.
Geometrically, it is easy to see thatH action onTS� Sis an
automorphism – there is a bijection between translations
before and after rotating the solid. Letb � H � Aut ˆTS� S•
de�ne an automorphism ofTS� Sfor each rotation/re�ection
h >H of the solid. Then, the combined “abstract” symmetry
is thesemi-direct productconstructed usingb– that is,

G � H #b TS� S: (7)

Next, we de�ne this group's permutation action on regular
feature-�elds� � K � 
 – specialization to scalar �elds
is straightforward. To formalize this action, we need to
introduce two ideas: 1)system of blocksin permutation
groups; 2)�ags and their properties in Platonic solids.

5.2.1. SYSTEM OF BLOCKS

Consider� ˆG• @Symˆ� •, the permutation action of some
G on a set� . A block system is a partition of the set� into
blocksB1 < : : : < Bp such that the action ofG preserves
the block structure – that iŝg � B• 9 B is eitherg or B
itself, where the dot indicates the group action. This means
that for transitive sets we can identify the system of blocks
using a single blockB b � , and generate all the other blocks
throughG action.

Let Stab� ˆ � • @� ˆG• be thestabilizer subgroupfor � >� ;
this is the subset of permutations in� ˆG• that �x � . For the
setB b � , let Stab� ˆB• @� ˆG• denote theset stabilizer
subgroup –i.e., g�B � B for all g >Stab� ˆB•. Given� >� ,
there is a bijection between subgroups of� ˆG• that contain
Stab� ˆ � • and systems of blockB ? � (Dixon & Mortimer,
1996). In other words, any block systemB ? � can be
identi�ed with its set-stabilizerStab� ˆB• which contains
Stab� ˆ � • as a subgroup. Given a block systemB b � , we

can decompose the permutation matrices� ˆg• as

� ˆg• � ‰� � ~B ˆg• a ISBSŽŒ?
B

� B ˆg•‘ ; (8)

where � � ~B ˆg• permutes the blocks, and� B ˆg• >
Stab� ˆB•, permutes the elements inside the blockB. The
reader may notice that the expression above resembles the
wreath product action of Eq. (4). This is because the im-
primitive action of the wreath product is a way of creating
block systems in which one group permutes the blocks and
independent action of a second group permutes each inner
block –i.e., these groups act independently at the two levels
of the hierarchy. However, to account for the interrelation
between the global symmetry of the Platonic solid and the
rotation/re�ection symmetry of each face tiling, we need to
consider the system of blocks created byH action on�ags.

5.2.2. FLAGS AND REGULAR H -ACTION

Adjacent face-edge-vertex triples of polyhedra are called
�ags: � � ˜ˆ f; e; v • > � v� � E � � S ṽ• ` e ` f • ; where
E ` � v� 2 is the edgeset (Cromwell, 1999). An important
property of Platonic solids is that theirfull symmetrygroup
H has aregular action on �ags –i.e., a unique permuta-
tion in the permutation group� � ˆH • @Symˆ� • moves
one �ag to another. If we consider only therotational or
chiral symmetries, the group action is regular on adjacent
face-vertex pairs� chiral � ˜ˆ f; v • >� v� � � Sv >f • . Mov-
ing forward, we work with �ags, having in mind that our
treatment specializes to rotational symmetries by switching
to � chiral .

5.2.3.G-ACTION AND EQUIVARIANT MAP

Now we have all the ingredients to de�ne theG action,
for G of Eq. (7), on the regular features of the pixelized
sphere� � K � 
 . The subset of �ags associated with
a face� ˆ f • � ˜ˆ f; e; v • > � • ` � form a block sys-
tem underH action – that is rotations/re�ections of the
solid keep the �ags on the same face. Moreover, the set-
stabilizer subgroupStab� � ˆ � ˆ f •• that �xes a face, is iso-
morphic to rotation/re�ection symmetries of the face-tiling
Stab� � ˆ � ˆ f •• � K and so it has a regular action on fea-
turesK . Therefore, we can decomposeH action on� as
Eq. (8)

� � ˆh• � ‰� � ˆh• a ISK SŽ
’

”
?
f >�

� � ˆ f • ˆh•
“

•
; (9)




