
Localized Perceptron for Label-Optimal Learning of Halfspaces with Adversarial Noise

A. Proof Details
From now on, we always implicitly require that Assumption 1 and Assumption 2 hold if not specified. Since the INITIALIZE
algorithm also depends on REFINE, we will start our analysis with the latter.

First of all, we recall a few important notations. Given w ∈ Rd, the sampling region for the unlabeled example is a band,
which is given by

Xŵ,b := {x ∈ Rd : 0 < ŵ · x ≤ b}, where ŵ :=
w

‖w‖
. (4)

We denoted by DX|ŵ,b the distribution of DX conditioned on x ∈ Xŵ,b, and by Dŵ,b the distribution of D conditioned on
x ∈ Xŵ,b.

Recall that given w ∈ Rd and x ∼ DX|ŵ,b, our prediction ŷ = sign(w · x) = 1 and we set the gradient in REFINE as

g = x · 1{y=−1},

where y is the label returned by the adversary. Also recall that we defined the potential function

fu,b(w) = Ex∼DX|ŵ,b
[
|u · x| · 1{u·x<0}

]
.

Finally, we note that the capital letters C and K, and their subscript variants such as C1 and K1, are used to denote absolute
constants whose values may differ from appearance to appearance. However, we reserve c0, c1, and c2 > 0 for specific
absolute constants: c0 is a sufficiently small constant such that the noise rate ν ≤ c0ε, c1 and c2 are specified in Lemma 28
and Lemma 29 respectively.

A.1. Analysis of REFINE

Intuitively, since we are performing gradient descent, we would hope that the negative gradient has a nontrivial correlation
with the underlying halfspace u. The following lemma formalizes the intuition.

Lemma 13. Given w ∈ Rd with ‖w − u‖ ≤ r and b > 0, let g = x · 1{y=−1} where (x, y) ∼ Dŵ,b. If the noise rate
ν ≤ c0b for some absolute constant c0 > 0, then

E
[
u · (−g)

]
≥ fu,b(w)−

√
c0c1
c2
· (b+ r),

where the expectation is taken over the random draw of (x, y).

Proof. By the definition of g, it follows that

E
[
u · (−g)

]
= E

[
−(u · x) · 1{y=−1}

]
. (5)

As we can rewrite the indicator function 1{y=−1} in an equivalent form as follows:

1{y=−1} = 1{u·x<0} + 1{u·x>0,y=−1} − 1{y=1,u·x<0}, (6)

(5) can be written as

E
[
u · (−g)

]
= E

[
−(u · x) · 1{u·x<0}

]
︸ ︷︷ ︸

E1

+E
[
−(u · x) ·

(
1{u·x>0,y=−1} − 1{y=1,u·x<0}

)]
︸ ︷︷ ︸

E2

.

First, we argue that E1 = fu,b(w). In fact, when u · x ≥ 0, E1 = 0 = fu,b(w); when u · x < 0, E1 = E[|u · x|] = fu,b(w).

Let us now consider the term E2, whose absolute value can be bounded by

|E2| ≤ E
[
|u · x| · 1{sign(u·x)6=y}

]
≤
√

E
[
(u · x)2

]
· E
[
1{sign(u·x)6=y}

]
.
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By Lemma 28, E
[
(u · x)2

]
≤ c1(b2 + r2). On the other side, from the definition of ν-adversarial noise, we have

E
[
1{sign(u·x) 6=y}

]
= Pr(x,y)∼Dŵ,b(y 6= sign(u · x)) ≤

Pr(x,y)∼D(y 6= sign(u · x))

Prx∼DX (x ∈ Xŵ,b)
≤ ν

c2 · b
.

In the first inequality of the above expression, we use the fact that for an event A, Pr(x,y)∼Dŵ,b(A) = Pr(x,y)∼D(A | x ∈
Xŵ,b) ≤

Pr(x,y)∼D(A)

Prx∼DX (x∈Xŵ,b) . In the second inequality, we use Lemma 29 to bound the denominator from below.

Therefore,

|E2| ≤
√
c1(b2 + r2) · ν

c2 · b
≤
√
c0c1
c2

(b2 + r2) ≤
√
c0c1
c2
· (b+ r).

Now combining the above estimate and that of E1, we prove the lemma.

Lemma 14. There exists an absolute constant C > 0 such that the following holds. Suppose the algorithm REFINE is run
with initialization w0, step size α > 0, bandwidth b > 0, convex constraint set K, regularizer Φ(w) = 1

2(p−1)‖w − w0‖2p,
number of iterations T , where the following are satisfied:

1. ‖w0 − u‖1 ≤ ρ;

2. w0 ∈ K and u ∈ K;

3. for all w ∈ K, ‖w − u‖ ≤ r.

Then, with probability 1− δ,

C · 1

T

T∑
t=1

fu,b(wt−1) ≤ (b+ r)

(√
log(1/δ)√

T
+

log(1/δ)

T
+ C

√
c0c1
c2

)
+
ρ2 log d

αT
+ α · log2 Td

bδ
.

Proof. By standard analysis of online mirror descent (see, e.g. Theorem 6.8 of Orabona (2019)), we have

α

T∑
t=1

wt−1 · gt − α
T∑
t=1

u · gt ≤ BΦ(u,w0) +

T∑
t=1

‖αgt‖2q .

Since wt−1 · gt = wt−1 · xt · 1{yt=−1} and xt is such that ŵt−1 · xt > 0, we have wt−1 · gt ≥ 0 for all t. Using this
observation and dividing both sides by α, we obtain

T∑
t=1

u · (−gt) ≤
BΦ(u,w0)

α
+ α

T∑
t=1

‖gt‖2q . (7)

We first present upper bounds for the right-hand side. In particular, note that

BΦ(u,w0) =
1

2(p− 1)
‖u− w0‖2p ≤

ln(8d)− 1

2
ρ2 ≤ ρ2 ln(8d)

2
, (8)

where in the first inequality we use the fact that for any p > 1,‖u− w0‖p ≤ ‖u− w0‖1.

For the `q-norm of gt, denote g(j)
t the jth coordinate of gt. We have

‖gt‖q =
( d∑
j=1

∣∣∣g(j)
t

∣∣∣q)1/q

≤ (d ‖gt‖q∞)1/q ≤ 2 ‖gt‖∞ ≤ 2 ‖xt‖∞ , (9)

where the first inequality makes use of the definition of `∞-norm, the second inequality applies the setting q = ln(8d), and
the last step follows from the setting of gt. On the other side, it is known that for any xt ∼ DX|ŵt−1,b, with probability
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1− δ
2T , we have ‖xt‖∞ ≤ K1 · log Td

bδ for some absolute constant K1 > 0; see Lemma 30. Hence, the union bound implies
that with probability 1− δ

2 , max1≤t≤T ‖xt‖∞ ≤ K · log Td
bδ , which further gives

max
1≤t≤T

‖gt‖q ≤ 2K1 · log
Td

bδ
. (10)

Now we consider a lower bound of
∑T
t=1 u · (−gt). Define the filtration Ft := σ(w0, x1, y1, w1, . . . , xt−1, yt−1, wt), and

denote by Et−1[·] the expectation over (xt, yt) ∼ Dŵt−1,b conditioning on the past filtration Ft−1; likewise for Prt−1(·).

By existing tail bound of one-dimensional isotropic log-concave distributions in the band Xŵt−1,b (see, e.g. Lemma 3.3 of
Awasthi et al. (2017)), and the fact that ‖u− ŵt−1‖ ≤ 2 ‖u− wt−1‖ ≤ 2r, we have

Prt−1

(
|u · xt| ≥ a

)
≤ K exp

(
−K ′ · a

2r + b

)
,

for some constants K,K ′ > 0, implying that

Prt−1

( ∣∣u · (−gt)∣∣ ≥ a) ≤ K exp
(
−K ′ · a

2r + b

)
.

Now applying Lemma 31 with Zt = u · (−gt) therein gives that with probability 1− δ
2 ,∣∣∣∣∣∣

T∑
t=1

u · (−gt)− Et−1[u · (−gt)]

∣∣∣∣∣∣ ≤ K2(b+ r)

(√
T log

1

δ
+ log

1

δ

)
. (11)

The above concentration of martingales, in allusion to Lemma 13, gives

T∑
t=1

u · (−gt) ≥
T∑
t=1

fu,b(wt−1)− T ·
√
c0c1
c2
· (b+ r)−K2(b+ r)

(√
T log

1

δ
+ log

1

δ

)
. (12)

Combining (7), (8), (10), and (12), we obtain

C · 1

T

T∑
t=1

fu,b(wt−1) ≤ (b+ r)

(√
log(1/δ′)√

T
+

log(1/δ′)

T
+ C

√
c0c1
c2

)

+
ρ2 log d

αT
+ α · log2 Td

bδ

for some absolute constant C > 0.

The following proposition is an immediate result of Lemma 14 by specifying the involved hyper-parameters and showing
that u stays in the convex constraint set K.

Proposition 15. Suppose that the adversarial noise rate ν ≤ c0ε for some sufficiently small absolute constant c0 > 0.
Consider running the REFINE algorithm with step size α = Θ̃

(
θ · log−2 d

δθ

)
, bandwidth b = Θ(θ), convex constraint

set K = {w ∈ Rd : ‖w − w0‖ ≤ θ, ‖w‖ ≤ 1}, regularizer Φ(w) = 1
2(p−1)‖w − w0‖2p, number of iterations T =

Õ(s log d · log2 d
δθ ). If the initial iterate w0 is such that ‖w0‖ = 1, ‖w0‖0 ≤ s, and ‖w0 − u‖ ≤ θ for some θ ≤ π

16 , then
with probability 1− δ,

1

T

T∑
t=1

fu,b(wt−1) ≤ θ

50 · 34 · 233
.

Proof. We will first verify that the premises of Lemma 14 are satisfied. First of all, it is easy to see that ‖w0 − u‖1 ≤√
‖w0 − u‖0 · ‖w0 − u‖ ≤

√
2s · θ. Hence we can choose ρ =

√
2s · θ in Lemma 14. Next, we have ‖u− w0‖ ≤ θ in

view of our condition on w0, which together with the fact that ‖u‖ = 1 implies u ∈ K. Last, for all w ∈ K, by triangle
inequality ‖w − u‖ ≤ ‖w − w0‖+ ‖w0 − u‖ ≤ 2θ. Hence we can choose r = 2θ in Lemma 14.
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Now with ρ =
√

2s · θ and r = 2θ, Lemma 14 indicates that with probability 1− δ,

C · 1

T

T∑
t=1

fu,b(wt−1) ≤ (b+ 2θ)

(√
log(1/δ)√

T
+

log(1/δ)

T
+ C

√
c0c1
c2

)
+
θ2 · 2s log d

αT
+ α · log2 Td

bδ
.

We need each term on the right-hand side is upper bounded by C·θ
3·50·34·233 . First, we choose b = Θ(θ). Then for the first

term, it suffices to choose T ≥ log(1/δ) and set c0 to be a sufficiently small absolute constant (this is possible since C, c1,
and c2 are all fixed absolute constants). The second and the last terms require αT ≥ Ω(θ · s log d) and α · log2 Td

bδ = O(θ)

respectively. The latter implies α = O(θ · log−2 Td
bδ ), thus combining it with the former we need

θ · s log d

T
≤ θ · log−2 Td

bδ
.

This can be satisfied if we choose T = Õ(s log d · log2 d
δθ ). Finally, we have α = Θ̃(θ · log−2 d

δθ ).

Remark 16. In the above proof, we note that C
√

c0c1
c2

is an extra term introduced by the adversarial noise model. It is

important to observe that c0 is chosen as a very small absolute constant. Thus the noise tolerance still reads as ν = Ω(ε).
The term C

√
c0c1
c2

does not appear in the bounded noise analysis though; see Lemma 8 of Zhang et al. (2020).

Lemma 17. Let θ ∈ [0, π16 ] be a given scalar. Let w0, . . . wT−1 be a sequence of vectors such that for all 1 ≤ t ≤ T ,
‖wt−1 − u‖ ≤ 2θ and ‖wt−1‖ ≤ 1. Further assume that 1

T

∑T
t=1 fu,b(wt−1) ≤ θ

50·34·233 . Let w̄ = 1
T

∑T
t=1 wt−1 and

v = Hs(w̄)

‖Hs(w̄)‖ . Then θ(v, u) ≤ θ
2 .

Proof. Define the index set S =
{
t ∈ [T ] : fu,b(wt−1) ≥ θ

5·34·221

}
. It is easy to show that |S|T ≤

1
10·212 as otherwise

the average of fu,b(wt−1) will exceed the assumed upper bound. Therefore, |S̄|T ≥ 1 − 1
10·212 . For all t ∈ S̄ we have

fu,b(wt−1) ≤ θ
50·34·221 ; by Lemma 26, we have θ(wt−1, u) ≤ θ

5 for these t.

Now consider θ(wt−1, u) for t ∈ S. As we showed in the proof of Proposition 15, we have ‖wt−1 − u‖ ≤ 2θ. Since
‖u‖ = 1 and ‖wt−1‖ ≤ 1, we use the basic fact that θ(wt−1, u) ≤ π ‖wt−1 − u‖ < 8θ.

Now we translate these bounds on the angles to those of the cosine distance, and obtain

1

T

T∑
t=1

cos θ(wt−1, u) ≥ cos
θ

5
·
(

1− 1

20 · 212

)
+ cos(8θ) · 1

20 · 212

≥

(
1− θ2

50

)(
1− 1

20 · 212

)
+

(
1− (8θ)2

2

)
1

20 · 212

≥ 1− 1

5

(
θ

32

)2

≥ cos
θ

32
.

where in the second inequality we use the fact cos θ ≥ 1− θ2

2 for any θ ∈ [0, π], and in the last inequality we use the fact
that cos θ ≤ 1− θ2

5 .

The above inequality, in combination with Lemma 32 yields the following guarantee for w̄ = 1
T

∑T
t=1 wt−1:

cos θ(w̄, u) ≥ 1

T

T∑
t=1

cos θ(wt−1, u) ≥ cos
θ

32
.

Finally, we use Lemma 33 to show that θ(v, u) ≤ π ‖v − u‖ ≤ 4π ‖w̄ − u‖ ≤ 16 · θ(w̄, u) ≤ θ
2 , which concludes the

proof.

Theorem 18 (Restatement of Theorem 12). Suppose that the adversarial noise rate ν ≤ c0ε for some sufficiently small
absolute constant c0 > 0. Consider running the REFINE algorithm with step size α = Θ̃

(
θ · log−2 d

δ′θ

)
, bandwidth
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b = Θ(θ), convex constraint set K = {w ∈ Rd : ‖w − w0‖ ≤ θ, ‖w‖ ≤ 1}, regularizer Φ(w) = 1
2(p−1)‖w − w0‖2p,

number of iterations T = Õ(s log d·log2 d
δ′θ ). If the initial iteratew0 is such that ‖w0‖ = 1, ‖w0‖0 ≤ s, and ‖w0 − u‖ ≤ θ

for some θ ≤ π
16 , then the output of the REFINE algorithm, w̃, satisfies θ(w̃, u) ≤ θ

2 with probability 1− δ′. In addition, the
label complexity of REFINE is T , and the sample complexity is O(T/b+ T log T

δ ).

Proof. The result of θ(w̃, u) ≤ θ
2 follows from combining Proposition 15 and Lemma 17. In particular, all the required

conditions in Proposition 15 are assumed here. The condition ‖wt−1 − u‖ appearing in Lemma 17 can easily be verified by
observing ‖wt−1 − w0‖ ≤ θ and ‖w0 − u‖ ≤ θ.

The label complexity bound is exactly T since REFINE runs in T iterations and requests one label per iteration. Since the
marginal distribution is assumed to be isotropic log-concave, Lemma 29 shows that Prxt∼DX (xt ∈ Xŵt−1,b) ≥ c2b for
some absolute constant c2 > 0. Thus, by Chernoff bound, we need to call EX for O(b−1 + log T

δ ) times in order to obtain
one xt with probability 1− δ

2T . Thus, by union bound over the T iterations in REFINE, with probability 1− δ
2 , the total

number of calls to EX is O(T/b+ T log T
δ ).

A.2. Analysis of INITIALIZE

In this subsection, we use E[·] denote the expectation E(x,y)∼D[·] and likewise for Pr(·).

Lemma 19. Suppose that ν ≤ 1
4 . Then E[y(u · x)] ≥ 1

9·217 .

Proof. We have

E[y(u · x)] = E[y(u · x) | y = sign(u · x)] · Pr(y = sign(u · x))

+ E[y(u · x) | y 6= sign(u · x)] · Pr(y 6= sign(u · x))

≥ E[|u · x|] · (1− ν)− E[|u · x|] · ν
= (1− 2ν)E[|u · x|].

Since u · x is an isotropic log-concave random variable in R, its density function is lower bounded by 2−16 when
|u · x| ≤ 1

9 in view of Lemma 29. Thus E[|u · x|] ≥ 1
9·216 . On the other side, we assumed ν ≤ 1

4 . Together, we obtain
E[y(u · x)] ≥ 1

9·217 .

Lemma 20. Let m = O(log 1
δ ) and let (x1, y1), . . . , (xm, ym) be m i.i.d. samples drawn from D. Then with probability

1− δ,

wavg · u ≥
1

9 · 218
,

where wavg := 1
m

∑m
i=1 yixi.

Proof. First, Lemma 29 shows that u · x is isotropic log-concave, and hence y(u · x) is a (32, 16)-subexponential random
variable by Lemma 34 of Zhang et al. (2020). Therefore, the standard concentration bound implies that there is an absolute
constant K1 > 0, such that if m = O(log 1

δ ), with probability 1− δ
2 ,∣∣∣∣∣∣ 1

m

m∑
i=1

yi(u · xi)− E[y(u · x)]

∣∣∣∣∣∣ ≤ K1

(√
log(1/δ)

m
+

log(1/δ)

m

)
≤ 1

9 · 218
.

This in allusion to Lemma 19 gives 1
m

∑m
i=1 yi(u · xi) ≥

1
9·218 , namely

wavg · u ≥
1

9 · 218
,

which is the desired lower bound.

Lemma 21. Let s̃ ≤ d be a positive integer, and set m = O(s̃ log d
δ ). Let (x1, y1), . . . , (xm, ym) be m i.i.d. samples drawn

from D. Then with probability 1− δ,

w] · u ≥ 1

9 · 220
.
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Proof. Denote w′ = Hs̃(wavg). Using Lemma 17 of Zhang et al. (2020) we know that with probability 1− δ
2 ,
∥∥w′∥∥ ≤ 2.

From the choice of m and Lemma 20, we have wavg · u ≥ 1
9·218 with probability 1− δ

2 . We hence condition on both events
happening.

Now Lemma 16 of Zhang et al. (2020) implies that

∣∣w′ · u− wavg · u
∣∣ ≤√s

s̃

∥∥w′∥∥ ≤ 2

√
s

s̃
.

Therefore,

w′ · u ≥ wavg · u− 2

√
s

s̃
≥ 1

9 · 218
− 2

√
s

s̃
.

Now taking s̃ = 81 · 240s gives us w′ · u ≥ 1
9·219 . Finally, by algebra

w] · u =
1

‖w′‖
(w′ · u) ≥ 1

2
· 1

9 · 219
=

1

9 · 220
.

The proof is complete.

Proposition 22. Suppose that the adversarial noise rate ν ≤ c0ε for some sufficiently small absolute constant c0 > 0. Let
ζ = 1

9·220 . Consider running the INITIALIZE algorithm with step size α = Θ̃
(

log−2 d
δ

)
, bandwidth b = Θ(1), convex

constraint set K = {w ∈ Rd : ‖w‖ ≤ 1, w] · w ≥ ζ}, regularizer Φ(w) = 1
2(p−1)‖w − w0‖2p, number of iterations

T = Õ(s log d · log2 d
δ ), where w0 is an arbitrary point in K ∩ {w ∈ Rd : ‖w‖1 ≤

√
s} that can be found in polynomial

time. Then with probability 1− δ,
1

T

T∑
t=1

fu,b(wt−1) ≤ ζ

20 · 34 · 233
.

Proof. We will first verify that the premises of Lemma 14 are satisfied. First of all, it is easy to see that ‖w0 − u‖1 ≤ 2
√
s.

Hence we can choose ρ = 2
√
s in Lemma 14. Next, we have ‖u‖ = 1, which together with Lemma 21 implies u ∈ K with

probability 1− δ
2 . Last, for all w ∈ K, by triangle inequality ‖w − u‖ ≤ ‖w‖+ ‖u‖ ≤ 2. Hence we can choose r = 2 in

Lemma 14.

Now with ρ =
√
s and r = 2, Lemma 14 indicates that with probability 1− δ

2 ,

C · 1

T

T∑
t=1

fu,b(wt−1) ≤ (b+ 2)

(√
log(1/δ)√

T
+

log(1/δ)

T
+ C

√
c0c1
c2

)
+
s log d

αT
+ α · log2 Td

bδ
.

We need each term on the right-hand side is upper bounded by C·ζ
20·35·233 . First, we choose b = Θ(1). Then for the first

term, it suffices to choose T ≥ log(1/δ) and set c0 to be a sufficiently small absolute constant (this is possible since C, c1,
and c2 are all fixed absolute constants). The second and the last terms require αT ≥ Ω(s log d) and α · log2 Td

bδ = O(1)

respectively. The latter implies α = O(log−2 Td
bδ ), thus combining it with the former we need

s log d

T
≤ · log−2 Td

bδ
.

This can be satisfied if we choose T = Õ(s log d · log2 d
δ ), which results in α = Θ̃(log−2 d

δ ).

Lemma 23. Set b = 1
81·222 and let ζ = 1

9·220 . Let w0, . . . wT−1 be a sequence of vectors such that for all 1 ≤ t ≤ T ,
‖wt−1‖ ≤ 1. Further assume that 1

T

∑T
t=1 fu,b(wt−1) ≤ ζ

20·34·233 . Let w̄ = 1
T

∑T
t=1 wt−1 and v = Hs(w̄)

‖Hs(w̄)‖ . Then

θ(v, u) ≤ π
8 .

Proof. In light of Lemma 21, we know that u ∈ K. Also, our choices of b and ζ implies that b ≤ ζ
36 . Define S = {1 ≤ t ≤

T : fu,b(wt−1) ≥ ζ
34·221 }. Then by the second part of Lemma 26, for all t ∈ S̄, we have θ(wt−1, u) < ζ. For all t ∈ S, we

have a trivial estimate of θ(wt−1, u) ∈ [0, π].
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Next we bound the size of S. Using the condition 1
T

∑T
t=1 fu,b(wt−1) ≤ ζ

20·34·233 , it is possible to show that |S|T ≤
1

20·212

and thus |S̄|T ≥ 1− 1
20·212 .

Now we translate these bounds on the angles to those of the cosine distance, and obtain

1

T

T∑
t=1

cos θ(wt−1, u) ≥ cos ζ ·
(

1− 1

20 · 212

)
+ (cosπ) · 1

20 · 212

≥ 1− 1

5

(
π

128

)2

≥ cos
π

128
.

where in the last inequality we use the fact that cos θ ≤ 1− θ2

5 .

The above inequality, in combination with Lemma 32 yields the following guarantee for w̄ = 1
T

∑T
t=1 wt−1:

cos θ(w̄, u) ≥ 1

T

T∑
t=1

cos θ(wt−1, u) ≥ cos
π

128
.

Finally, we use Lemma 33 to show that θ(v, u) ≤ π ‖v − u‖ ≤ 4π ‖w̄ − u‖ ≤ 16 · θ(w̄, u) ≤ π
8 , which concludes the

proof.

Theorem 24 (Restatement of Theorem 11). Suppose that the adversarial noise rate ν ≤ c0ε for some sufficiently small
absolute constant c0 > 0. Let ζ = 1

9·220 . Consider running the INITIALIZE algorithm with step size α = Θ̃
(

log−2 d
δ

)
,

bandwidth b = Θ(1), convex constraint set K = {w ∈ Rd : ‖w‖ ≤ 1, w] ·w ≥ ζ}, regularizer Φ(w) = 1
2(p−1)‖w − w0‖2p,

number of iterations T = Õ(s log d · log2 d
δ ), where w0 is an arbitrary point in K ∩ {w ∈ Rd : ‖w‖1 ≤

√
s} that can be

found in polynomial time. Then with probability 1− δ, the output of INITIALIZE, v0, is such that θ(v0, u) ≤ π
8 .

Proof. This is an immediate result by combining Proposition 22 and Lemma 23.

B. The Structure of fu,b(w)
Our definition of the potential function fu,b(w) slightly differs from that of Zhang et al. (2020): in this work, the
expectation is taken over D conditioned on {x ∈ Rd : 0 < w · x ≤ b} while in Zhang et al. (2020) it is conditioned on
{x ∈ Rd : −b ≤ w · x ≤ b}. It can be seen that our function value is always less than that of Zhang et al. (2020). However,
we note that the difference in sampling region does not lead to significant difference in the structure of the potential function.
In particular, we are still able to show that under certain conditions, fu,b(w) serves as an upper bound of θ(w, u) – a crucial
observation made in Zhang et al. (2020).

Lemma 25. Let w and u be two unit vectors. Suppose b ∈
[
0, π72

]
. We have

1. If θ(w, u) ∈ [36b, π2 ], then fu,b(w) ≥ θ(w,u)
34·221 .

2. If θ(w, u) ∈ [π2 , π − 36b], then fu,b(w) ≥ π−θ(w,u)
34·221 .

Proof. The proof of the first part follows closely from [Lemma 22, Part 1] of Zhang et al. (2020). In particular, for the region

R1 :=

{
x ∈ Rd : w · x ∈ [0, b], u · x ∈

[
− sin θ(w, u)

18
,− sin θ(w, u)

36

]}
,

their analysis shows that

Prx∼DX (x ∈ R1) ≥ b

9 · 218
. (13)
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To see why it completes the proof of the first part, observe that

Ex∼DX
[
|u · x| · 1{0≤w·x≤b} · 1{u·x<0}

]
≥ Ex∼DX

[
|u · x| · 1{x∈R1}

]
≥ sin θ(w, u)

36
· Ex∼DX

[
1{x∈R1}

]
≥ θ(w, u)

72
· Prx∼DX (x ∈ R1) ≥ θ(w, u) · b

34 · 221
,

where the first inequality uses the fact that R1 is a subset of both sets
{
x ∈ Rd : w · x ∈ [0, b]

}
and

{
x ∈ Rd : u · x < 0

}
;

the second inequality uses the fact that for all x in R1, |u · x| ≥ sin θ(w,u)
36 ; the third inequality uses the elementary fact that

sinφ ≥ φ
2 for any angle φ ∈ [0, π2 ].

As Prx∼DX
(
w · x ∈ [0, b]

)
≤ b by Lemma 29, we have

fu,b(w) =
Ex∼DX

[
|u · x| · 1{0≤w·x≤b} · 1{u·x<0}

]
Prx∼DX

(
w · x ∈ [0, b]

) ≥ θ(w, u) · b
34 · 221

· 1

b
=
θ(w, u)

34 · 221
.

This completes the proof of the first part.

For the second part, we will define φ = π − θ(w, u) and consider

R2 :=

{
x ∈ Rd : w · x ∈ [0, b], u · x ∈

[
− sinφ

18
,− sinφ

36

]}
.

Similar to the region R1, we have Prx∼DX (x ∈ R2) ≥ b
9·218 . Hence, using the same induction with the proof of first part,

we have fu,b(w) ≥ φ
34·221 = π−θ(w,u)

34·221 .

The following lemma connects the potential function fu,b(w) to the angle θ(w, u).

Lemma 26. Let w and u be two unit vectors. We have the following:

1. Suppose θ ∈ [0, π2 ] is given. Set b ≤ θ
5·36 . If fu,b(w) ≤ θ

5·34·221 , then θ(w, u) ≤ θ
5 .

2. Let w] ∈ Rd be a unit vector with w] · u ≥ ζ for some ζ ∈ (0, 1). Set b ≤ ζ
36 . If w is in K := {w ∈ Rd : ‖w‖ ≤

1, w · w] ≥ ζ} and fu,b(w) < ζ
34·221 , then θ(w, u) < ζ.

Proof. The first part was already set out in Claim 10 of Zhang et al. (2020). For the second part, first, we show that it
is impossible for θ(w, u) ≥ π

2 . Assume for contradiction that this holds. By Lemma 27, for all w in K, we have that
θ(w, u) ≤ π − ζ. By the choice of b, we know that 36b ≤ ζ, hence θ(w, u) ≤ π − 36b. Now using the second part of
Lemma 25, we have

fu,b(w) ≥ π − θ(w, u)

34 · 221
≥ ζ

34 · 221
, (14)

which contradicts with the premise that fu,b(w) < ζ
34·221 .

Therefore, θ(w, u) ∈ [0, π2 ]. We now conduct a case analysis. If θ(w, u) ≤ 36b, then by the definition of b, we automatically
have θ(w, u) < ζ. Otherwise, θ(w, u) ∈ [36b, π2 ]. In this case, the first part of Lemma 25 implies

fu,b(w) ≥ θ(w, u)

34 · 221
.

This inequality, in conjunction with the condition that fu,b(w) < ζ
34·221 , implies that θ(w, u) ≤ ζ. In summary, in both

cases, we have θ(w, u) ≤ ζ. This completes the proof.

Lemma 27 (Lemma 19 of Zhang et al. (2020)). Let w] ∈ Rd be a unit vector, and ζ ∈ (0, 1). For any two vectors w and v
in the set K = {w ∈ Rd : ‖w‖ ≤ 1, w · w] ≥ ζ}, it holds that θ(w, v) ≤ π − ζ.
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C. Useful Lemmas
We collect a few useful results that are frequently invoked in our analysis.

Lemma 28 (Lemma 3.4 of Awasthi et al. (2017)). There is an absolute constant c1 > 0 such that the following holds. Let
DX be an isotropic log-concave distribution. Fix w ∈ Rd. For all v with ‖v − w‖ ≤ r, Ex∼DX|ŵ,b [(v · x)2] ≤ c1(b2 + r2).

Lemma 29 (Lovász & Vempala (2007)). There exists an absolute constants c2, c3 > 0 such that the following holds. Let
DX be an isotropic log-concave distribution over Rd.

1. Given any unit vector w, w · x is isotropic log-concave if x is drawn from DX .

2. Given any unit vector w ∈ Rd, c2b ≤ Prx∼DX (w · x ∈ [0, b]) ≤ b.

3. If d = 1 or d = 2, for all x ∈ Rd with ‖x‖ ≤ 1
9 , the density function p(x) ≥ 2−16.

Lemma 30 (Lemma 16 of Shen & Zhang (2021)). There exists an absolute constant c3 > 0 such that the following holds
for all isotropic log-concave distributions DX . Let S be a set of i.i.d. instances drawn from DX|ŵ,b. Then

PrS∼Dn
X|ŵ,b

(
max
x∈S
‖x‖∞ ≥ c3 log

|S| d
bδ

)
≤ δ.

Lemma 31 (Lemma 36 of Zhang et al. (2020)). Suppose {Zt}Tt=1 is sequence of random variables adapted to filtration
{Ft}Tt=1. Denote by Prt−1(·) and Et−1[·] the probability and expectation conditioned on Ft−1, respectively. For every Zt,
suppose that Prt−1(|Zt| > a) ≤ C exp

(
− a
σ

)
for some absolute constant C ≥ 1. Then, with probability 1− δ,∣∣∣∣∣∣

T∑
t=1

Zt − Et−1[Zt]

∣∣∣∣∣∣ ≤ 16σ(lnC + 1)

(√
2T ln

2

δ
+ ln

2

δ

)
.

Lemma 32 (Lemma 24 of Zhang et al. (2020)). Suppose we have a sequence of unit vectors w0, . . . , wT−1. Let w̄ =
1
T

∑T
t=1 wt−1 be their average. Suppose 1

T

∑T
t=1 cos θ(wt−1, u) ≥ 0. Then, cos θ(w̄, u) ≥ 1

T

∑T
t=1 cos θ(wt−1, u).

Lemma 33. Let w and v be two vectors in Rd. The following holds:

1. If v is a unit vector, then ‖ŵ − v‖ ≤ 2 ‖w − v‖.

2. If v is s-sparse, then
∥∥Hs(w)− v

∥∥ ≤ 2 ‖w − v‖.

3. If v is a unit vector, then θ(w, v) ≤ π ‖w − v‖; if w is a unit vector as well, then we further have ‖w − v‖ ≤ θ(w, v).

Proof. The first two parts are known expansion error of `2-normalization and hard thresholding, respectively. The proof can
be found in, e.g. Shen & Li (2018) (which also presents a sharp bound for the second part). The last part can be derived by
fundamental algebra.


