
Sample-Optimal PAC Learning of Halfspaces with Malicious Noise

A. Detailed Choices of Reserved Constants
The absolute constants c0, c1 and c2 are specified in Lemma 24, and c3 and c4 are specified in Lemma 25. c5 and c6 are
clarified in Section 3.1.1. The definition of c7 and c8 can be found in Lemma 26 and Lemma 27 respectively. The absolute
constant C1 acts as an upper bound of all bk’s, and by our choice in Section 3.1.1, C1 = c̄/16. The absolute constant C2 is
defined in Lemma 3. Other absolute constants, such as C3, C4 are not quite crucial to our analysis or algorithmic design.
Therefore, we do not track their definitions. The subscript variants of K, e.g. K1 and K2, are also absolute constants but
their values may change from appearance to appearance. We remark that the value of all these constants does not depend
on the underlying distribution D chosen by the adversary, but rather depends on the knowledge that D is a member of the
family of isotropic log-concave distributions.

B. Omitted Proofs in Section 2
We will frequently use the well-known Chernoff bound in our analysis. For convenience, we record it below.

Lemma 17 (Chernoff bound). Let Z1, Z2, . . . , Zn be n independent random variables that take value in {0, 1}. Let
Z =

∑n
i=1 Zi. For each Zi, suppose that Pr(Zi = 1) ≤ η. Then for any α ∈ [0, 1]

Pr
(
Z ≥ (1 + α)ηn

)
≤ e−

α2ηn
3 .

When Pr(Zi = 1) ≥ η, for any α ∈ [0, 1]

Pr
(
Z ≤ (1− α)ηn

)
≤ e−

α2ηn
2 .

B.1. Proof of Lemma 4

Proof. We note that (ρ+ − ρ−)2 ≤ 4(ρ+)2. In addition, this inequality is almost tight up to a constant factor since ρ− can
be as small as 0. To see this, observe that u ∈W and x is such that|u · x| ≤ b.

Thus, it remains to upper bound ρ+. Due to localized sampling, for any w ∈W we have

|w · x| ≤
∣∣(w − u) · x

∣∣+|u · x| ≤ ‖w − u‖2 · ‖x‖2 + b ≤ r · c7
√
d log

1

bδ
+ b, (5)

where the first step follows from the triangle inequality, the second step uses Cauchy-Schwarz inequality and the fact
x ∼ Du,b, and the last step applies Lemma 26. The lemma follows by noting that r = Θ(b).

B.2. Proof of Lemma 7

Proof. For any unit vector v, observe that w := rv + u is such that ‖w − u‖2 ≤ r. Hence,

E
[
(v · x)2

]
=

1

r2
E
[
(r · v · x)2

]
≤ 2

r2
E
[
((r · v + u) · x)2

]
+

2

r2
E
[
(u · x)2

]
≤ 2

r2
· C2(b2 + r2) +

2

r2
· b2

≤ 4C2(b2 + r2)

r2
,

where in the second step we use the basic inequality a2
1 ≤ 2(a1 − a2)2 + 2a2

2, and in the third step we apply Lemma 3. This
proves the first desired inequality.

Next, by Lemma 26 we have with probability 1− δ, ‖x‖2 ≤ c7
√
d log 1

bδ . Then for any unit vector v, we have

(v · x)2 ≤ ‖v‖22 · ‖x‖
2
2 ≤ c

2
7 · d log2 1

bδ
,

which implies the second desired inequality.
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B.3. Proof of Proposition 8

Proof. In Lemma 6, we set α = 1, Mi = xix
>
i where xi is the i-th instance in the set TC. Lemma 7 implies that

µmax ≤ 4C2(b2+r2)
r2 |TC| ≤ K ·|TC| for some constantK > 0 since r = Θ(b), and with probability 1−δ, Λ ≤ K1 ·d log2 |TC|

bδ
by union bound. By conditioning on these events and putting all pieces together, Lemma 6 asserts that with probability

1− d · ( e4 )

K
K1
· |TC|
d log2 |TC|

bδ ,

λmax

(∑
x∈S

xx>
)
≤ 2K ·|TC| . (6)

Equivalently, the above holds with probability 1− δ as long as|TC| ≥ K2d log2 |TC|
bδ · log d

δ for some constant K2 > 0.

B.4. Proof of Lemma 9

Proof. By Lemma 27
Prx∼D(x ∈ X) ≥ c8b.

This implies that

Prx∼EXxη(D,w∗)(x ∈ Xu,b and x is clean)

= Prx∼EXxη(D,w∗)(x ∈ Xu,b | x is clean) · Prx∼EXxη(D,w∗)(x is clean) ≥ c8b(1− η).

We want to ensure that by drawing N instances from EXx
η(D,w∗), with probability at least 1− δ, n out of them fall into the

band Xu,b. We apply the second inequality of Lemma 17 by letting Zi = 1{xi∈Xu,b and xi is clean} and α = 1/2, and obtain

Pr

(
|TC| ≤

c8b(1− η)

2
N

)
≤ exp

(
−c8b(1− η)N

8

)
,

where the probability is taken over the event that we make a number of N calls to EXx
η(D,w∗). Thus, when N ≥

8
c8b(1−η)

(
n+ ln 1

δ

)
, we are guaranteed that at least n samples from EXx

η(D,w∗) fall into the band Xu,b with probability
1− δ. The lemma follows by observing η < 1

2 .

B.5. Proof of Lemma 10

This is a simplified version of Lemma 30 of Shen & Zhang (2021).

Proof. We calculate the noise rate within the band Xk := {x : |wk−1 · x| ≤ bk} by Lemma 18:

Prx∼EXxη(D,w∗)(x is dirty | x ∈ Xu,b) ≤
2η

c8b
≤ 2η

c8ε
≤ 2c5

c8
≤ 1

8
,

where the second inequality applies the setting b ≥ ε, the third inequality is due to the condition η ≤ c5ε, and the last
inequality is due to the condition that c5 is assumed to be a sufficiently small constant. Now we apply the first inequality of
Lemma 17 by specifying Zi = 1{xi is dirty}, α = 1 therein, which gives

Pr

(
|TD| ≥

1

4
|T |
)
≤ exp

(
−|T |

24

)
,

where the probability is taken over the draw of T . The lemma follows by setting the right-hand side to δ and noting that
|TC| = |T | −|TD|.

Lemma 18. Assume η < 1
2 . We have

Prx∼EXxη(D,w∗)

(
x is dirty | x ∈ Xu,b

)
≤ 2η

c8b

where c8 was defined in Lemma 27.
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Proof. For an instance x, we use tagx = 1 to denote that x is drawn from D, and use tagx = −1 to denote that x is
adversarially generated.

We first calculate the probability that an instance returned by EXx
η(D,w∗) falls into the band Xu,b as follows:

Prx∼EXxη(D,w∗)

(
x ∈ Xu,b

)
= Prx∼EXxη(D,w∗)

(
x ∈ Xu,b and tagx = 1

)
+ Prx∼EXxη(D,w∗)

(
x ∈ Xu,b and tagx = −1

)
≥ Prx∼EXxη(D,w∗)

(
x ∈ Xu,b and tagx = 1

)
= Prx∼EXxη(D,w∗)

(
x ∈ Xu,b | tagx = 1

)
· Prx∼EXxη(D,w∗) (tagx = 1)

= Prx∼D
(
x ∈ Xu,b

)
· Prx∼EXxη(D,w∗) (tagx = 1)

ζ

≥ c8b · (1− η)

≥ 1

2
c8b,

where in the inequality ζ we applied Part 1 of Lemma 27. It is thus easy to see that

Prx∼EXxη(D,w∗)

(
tagx = −1 | x ∈ Xu,b

)
≤

Prx∼EXxη(D,w∗)

(
tagx = −1

)
Prx∼EXxη(D,w∗)

(
x ∈ Xu,b

) ≤ 2η

c8b
,

which is the desired result.

B.6. Rademacher analysis leads to suboptimal sample complexity for quadratic functions

To see why a general Rademacher analysis may not suffice, we can, for example, think of the quadratic function (w · x)2

as a composition of the functions φ(f) = f2 and fw(x) = w · x. Recall that we showed with high probability that
|w · x| ≤ O(b

√
d) (omitting logarithmic factors for convenience). Now, the gradient of φ(·) is 2w ·x which is upper bounded

by O(b
√
d) and the function value of φ(·) is upper bounded by O(b2d). For the Rademacher complexityRF of the class of

linear functions F := {fw(x) = w · x : w ∈ W} on TC = {x1, . . . , xn}, let V = {v ∈ Rd : ‖v‖2 ≤ 1 and note that for
any w ∈W , w = u+ rv. We have by definition

RF =
1

n
E sup
w∈W

n∑
i=1

σi(w · xi)

=
1

n
E sup
w∈W

w ·
n∑
i=1

σixi

≤ r

n
E sup
v∈V

v ·
n∑
i=1

σixi +
1

n
Eu ·

n∑
i=1

σixi

≤ r

n
E

∥∥∥∥∥∥
n∑
i=1

σixi

∥∥∥∥∥∥
2

≤ r

n
·
√
n max

1≤i≤n
‖xi‖2 ,

where the expectation is taken over the i.i.d. Rademacher variables σ1, . . . , σn. By Lemma 26, RF ≤ r√
n

√
d with high

probability. By the contraction lemma, the Rademacher complexity of the class of quadratic functions is O( brd√
n

), and thus
uniform concentration through Rademacher analysis requires O(d2) samples.

Similarly, a straightforward application of local Rademacher analysis (Bartlett et al., 2005) may not suffice as well. However,
our discussion here does not rule out the possibility that a more sophisticated exploration of these techniques would lead to
the desired sample complexity bound; we leave it as an open problem.
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C. Omitted Proofs in Section 3
We present a full proof of the results in Section 3. Observe that the malicious noise is a special case of the nasty noise; hence
this section can also be thought of as providing a complete proof for the results in Section 2.

To improve the transparency, we collect useful notations in Table 1.

Table 1. Summary of useful notations associated with the working set T at each phase k for learning with nasty noise.

Â′ labeled clean instance set obtained by drawing N instances from D and labeling them by w∗

A′ (clean) instance set obtained by hiding all the labels in Â′

Â labeled corrupted instance set obtained by replacing ηN samples in Â′

A (corrupted) instance set obtained by hiding all the labels in Â
AC set of clean instances in A
AD set of dirty instances in A, i.e. A\AC

AE set of clean instances erased from A′ by the adversary
T set of instances in A that satisfy|wk−1 · x| ≤ bk
TC set of clean instances in T
TD set of dirty instances in T , i.e. T\TC

T̂C unrevealed labeled set of TC

T̂E unrevealed labeled set of TE

C.1. Proof of Lemma 11

Proof. Since η ≤ c5ε and b ≥ ε, we have η ≤ c5b ≤ 1
2c8ξb where the second inequality follows from the fact that c5 is a

small constant and ξ ≥ Ω(1). Thus|AD| = ηN ≤ 1
2c8ξbN and|AC| = N −|AD| ≥ (1− 1

2c8ξb)N .

C.2. Proof of Lemma 12

Proof. We first show that the following two events hold simultaneously with probability 1− δk
24 :

E1 : |AC| ≥
(

1− 1

2
c8ξb

)
N and |AD| ≤

1

2
c8ξbN,

E2 : |TC| ≥
1

2
c8(1− ξ)bN and |TE| ≤

1

2
c8ξbN.

Observe that E1 holds with certainty due to Lemma 11.

To see why E2 holds with high probability, we recall that Part 1 of Lemma 27 shows that Prx∼D
(
x ∈ Xu,b

)
≥ c8b. For

each xi ∈ AC ∪ AE, define Zi = 1{xi∈Xu,b}. Since AC ∪ AE are i.i.d. draws from D, by applying the second part of
Lemma 17 with α = 1/2, we have

Pr

( N∑
i=1

Zi ≤
1

2
c8bN

)
≤ exp

(
−c8bN

8

)
.

This shows that

|TC|+|TE| ≥
1

2
c8bN

with probability 1 − δ provided that N ≥ 8
c8b

ln 1
δ . On the other side, we have |TE| ≤ |AE| = |AD| ≤ 1

2c8ξbN . Thus it
follows that|TC| ≥ 1

2c8(1− ξ)bN .

For Part 1, we have
|TC|
|TD|

≥ 1− ξ
ξ

, (7)
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where the inequality follows from E2 and the fact|TD| = |TE|. Therefore,

|TD|
|T |

=
1

1 +|TC| /|TD|
≤ ξ. (8)

Part 2 of the lemma simply follows E2.

C.3. Proof of Proposition 13

Proof. Since N ≥ d
b · polylog

(
(d, 1

δ

)
, we have by Part 2 that |TC ∪ TE| ≥ |TC| ≥ d · polylog

(
d, 1

δ

)
. Therefore, we can

directly apply Proposition 8 by thinking of TC therein as TC ∪ TE in the current proposition.

C.4. Proof of Theorem 14

Proof. We first show the existence of a feasible function q(x) to Algorithm 2. Consider the specific function q : T → [0, 1]
as follows: q(x) = 1 for all x ∈ TC and q(x) = 0 otherwise. We have

1

|T |
∑
x∈T

q(x) =
|TC|
|T |

= 1− |TD|
|T |
≥ 1− ξ,

in view of Part 1 of Lemma 12.

To show Part 3, we note that TC ∪ TE are i.i.d. draws from Du,b and Lemma 12 shows that |TC ∪ TE| ≥ Ω(bN). Therefore,
as far as N ≥ d

b · polylog (d), Theorem 5 implies that

1

|TC|+|TE|
∑

x∈TC∪TE

(w · x)2 ≤ c

2
(b2 + r2).

Since (w · x)2 is always non-negative, we have

1

|TC|
∑
x∈TC

(w · x)2 ≤ |TC|+|TE|
|TC|

· 1

|TC|+|TE|
∑

x∈TC∪TE

(w · x)2 ≤ |TC|+|TE|
|TC|

· c
2

(b2 + r2
k).

Part 2 of Lemma 12 shows that |TE| /|TC| ≤ ξ
1−ξ ≤ 1 since ξ ≤ 1

2 . Plugging this upper bound into the above inequality, we
obtain

1

|TC|
∑
x∈TC

(w · x)2 ≤ c(b2 + r2).

In a nutshell, our construction of q(x) ensures the feasibility to all constraints in Algorithm 2. By ellipsoid method we are
able to find a feasible solution in polynomial time.

C.5. Proof of Proposition 15

Let z =
√
b2 + r2. We will in fact prove a stronger result, i.e.,

`τ (w; T̂C ∪ T̂E) ≤ `τ (w; p ◦ T̂ ) + 2ξ

(
2 +

√
2K2 ·

z

τ

)
+
√

2K2ξ ·
z

τ
, (9)

`τ (w; p ◦ T̂ ) ≤ `τ (w; T̂C ∪ T̂E) + 2ξ +
√

4K2ξ ·
z

τ
. (10)

The claim in the proposition immediately follows since z/τ = Θ(1) and ξ can be chosen as an arbitrarily small constant.

Let {q(x)}x∈T be the output of Algorithm 2 under the nasty noise model. We extend the domain of q(x) from T to T ∪ TE

as follows: for any x ∈ T , the value q(x) remains unchanged; for any x ∈ TE, we set q(x) = 0. With this in mind, we can,
for the purpose of analysis, think of the probability mass function {p(x)}x∈T obtained in Algorithm 1 as over T ∪ TE, with
the value p(x) stays unchanged for x ∈ T and p(x) = 0 for all x ∈ TE.

Now with the extended probability mass function {p(x)}x∈T∪TE , we can prove the proposition.
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Proof. Let T̂C and T̂E be the labeled set of TC and TE that is correctly annotated by w∗ respectively. For any x in the
instance space, let yx be the label that the adversary is committed to. Recall that the empirical distribution {p(x)}x∈T∪TE

was defined as follows: p(x) = q(x)∑
x∈T q(x) for x ∈ T and p(x) = 0 for x ∈ TE. The reweighted hinge loss on T ∪ TE using

p(x) is given by

`τ (w; p ◦ T̂ ) =
1

|T ∪ TE|
∑

x∈T∪TE

p(x) ·max
{

0, 1− 1

τ
yxw · x

}
. (11)

The choice of N guarantees that Proposition 13, Lemma 12, and Theorem 14 hold simultaneously with probability 1− δ.
We thus have for all w ∈W

1

|TC ∪ TE|
∑

x∈TC∪TE

(w · x)2 ≤ K1z
2, (12)

|TD|
|T |
≤ ξ, (13)

1

|T |
∑
x∈T

q(x)(w · x)2 ≤ K2z
2. (14)

We now expand T to T ∪ TE for the last two inequalities. Indeed, from (13), it is easy to show that

|TD|
|T ∪ TE|

≤ |TD|
|T |
≤ ξ. (15)

Next, since we defined q(x) = 0 for all x ∈ TE, (14) implies that

1

|T ∪ TE|
∑

x∈T∪TE

q(x)(w · x)2 =
1

|T ∪ TE|
∑
x∈T

q(x)(w · x)2 ≤ 1

|T |
∑
x∈T

q(x)(w · x)2 ≤ K2z
2. (16)

The remaining steps are exactly same as Proposition 33 of Shen & Zhang (2021) since all the analyses therein rely only on
the conditions (12), (15) and (16). For completeness, we present the full proof here.

It follows from Eq. (15) and ξ ≤ 1/2 that

|T ∪ TE|
|TC ∪ TE|

≤ |T ∪ TE|
|TC|

=
|T ∪ TE|

|T ∪ TE| −|TD|
=

1

1−|TD| /|T ∪ TE|
≤ 1

1− ξ
≤ 2. (17)

In the following, we condition on the event that all these inequalities are satisfied.

Step 1. First we upper bound `τ (w; T̂C ∪ T̂E) by `τ (w; p ◦ T̂ ).

|TC ∪ TE| · `τ (w; T̂C ∪ T̂E) =
∑

x∈TC∪TE

`(w;x, yx)

=
∑

x∈T∪TE

[
q(x)`(w;x, yx) +

(
1{x∈TC∪TE} − q(x)

)
`(w;x, yx)

]
ζ1
≤

∑
x∈T∪TE

q(x)`(w;x, yx) +
∑

x∈TC∪TE

(1− q(x))`(w;x, yx)

ζ2
≤

∑
x∈T∪TE

q(x)`(w;x, yx) +
∑

x∈TC∪TE

(1− q(x))

(
1 +
|w · x|
τ

)
ζ3
≤

∑
x∈T∪TE

q(x)`(w;x, yx) + ξ|T ∪ TE|+
1

τ

∑
x∈TC∪TE

(1− q(x))|w · x|

ζ4
≤

∑
x∈T∪TE

q(x)`(w;x, yx) + ξ|T ∪ TE|+
1

τ

√ ∑
x∈TC∪TE

(1− q(x))2 ·
√ ∑
x∈TC∪TE

(w · x)2

ζ5
≤

∑
x∈T∪TE

q(x)`(w;x, yx) + ξ|T ∪ TE|+
1

τ

√
ξ|T ∪ TE| ·

√
K1|TC ∪ TE| · z, (18)
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where ζ1 follows from the simple fact that∑
x∈T∪TE

(
1{x∈TC∪TE} − q(x)

)
`(w;x, yx) =

∑
x∈TC∪TE

(1− q(x))`(w;x, yx) +
∑
x∈TD

(−q(x))`(w;x, yx)

≤
∑

x∈TC∪TE

(1− q(x))`(w;x, yx),

ζ2 explores the fact that the hinge loss is always upper bounded by 1 + |w·x|τ and that 1− q(x) ≥ 0, ζ3 follows from Part 2
of Theorem 14, ζ4 applies Cauchy-Schwarz inequality, and ζ5 uses Eq. (12).

In view of Eq. (17), we have |T∪TE|
|TC∪TE| ≤ 2. Continuing Eq. (18), we obtain

`τ (w; T̂C ∪ T̂E) ≤ 1

|TC ∪ TE|
∑

x∈T∪TE

q(x)`(w;x, yx) + 2ξ +
√

2K1ξ ·
z

τ

=

∑
x∈T∪TE

q(x)

|TC ∪ TE|
∑

x∈T∪TE

p(x)`(w;x, yx) + 2ξ +
√

2K1ξ ·
z

τ

= `τ (w; p ◦ T̂ ) +

(∑
x∈T∪TE

q(x)

|TC ∪ TE|
− 1

) ∑
x∈T∪TE

p(x)`(w;x, yx) + 2ξ +
√

2K1ξ ·
z

τ

≤ `τ (w; p ◦ T̂ ) +

(
|T ∪ TE|
|TC ∪ TE|

− 1

) ∑
x∈T∪TE

p(x)`(w;x, yx) + 2ξ +
√

2K1ξ ·
z

τ

≤ `τ (w; p ◦ T̂ ) + 2ξ
∑

x∈T∪TE

p(x)`(w;x, yx) + 2ξ +
√

2K1ξ ·
z

τ
, (19)

where in the last inequality we use the fact that|TE| = |TD| and T ∩ TE = ∅, and thus

|T ∪ TE|
|TC ∪ TE|

− 1 =
|T |+|TD|
|T |

− 1 =
|TD|
|T |
≤ ξ.

On the other hand, we have the following result which will be proved later on.

Claim 19.
∑
x∈T∪TE

p(x)`(w;x, yx) ≤ 1 +
√

2K2 · zτ .

Therefore, continuing Eq. (19) we have

`τ (w; T̂C ∪ T̂E) ≤ `τ (w; p ◦ T̂ ) + 2ξ

(
2 +

√
2K2 ·

z

τ

)
+
√

2K2ξ ·
z

τ
.

which proves the first inequality of the proposition.

Step 2. We move on to prove the second inequality of the theorem, i.e. using `τ (w; T̂C ∪ T̂E) to upper bound `τ (w; p ◦ T̂ ).
Let us denote by pD =

∑
x∈TD

p(x) the probability mass on dirty instances. Then

pD =

∑
x∈TD

q(x)∑
x∈T q(x)

≤ |TD|
(1− ξ)|T |

≤ ξ

1− ξ
≤ 2ξ, (20)

where the first inequality follows from q(x) ≤ 1 and Part 2 of Theorem 14, the second inequality follows from (13), and the
last inequality is by our choice ξ ≤ 1/2.

Note that by Part 2 of Theorem 14 and the choice ξ ≤ 1/2, we have∑
x∈T

q(x) ≥ (1− ξ)|T | ≥|T | /2
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Hence ∑
x∈T

p(x)(w · x)2 =
1∑

x∈T q(x)

∑
x∈T

q(x)(w · x)2

≤ 2

|T |
∑
x∈T

q(x)(w · x)2

≤ 2 ·K2z
2 (21)

where the last inequality holds because of (14). Thus,∑
x∈TD

p(x)`(w;x, yx) ≤
∑
x∈TD

p(x)

(
1 +
|w · x|
τ

)
= pD +

1

τ

∑
x∈TD

p(x)|w · x|

= pD +
1

τ

∑
x∈T

(
1{x∈TD}

√
p(x)

)
·
(√

p(x)|w · x|
)

≤ pD +
1

τ

√∑
x∈T

1{x∈TD}p(x) ·
√∑
x∈T

p(x)(w · x)2

(21)
≤ pD +

√
pD ·

√
2K2 ·

z

τ
.

With the result on hand, we bound `τ (w; p ◦ T̂ ) as follows:

`τ (w; p ◦ T̂ ) =
∑

x∈TC∪TE

p(x)`(w;x, yx) +
∑
x∈TD

p(x)`(w;x, yx)

≤
∑

x∈TC∪TE

`(w;x, yx) +
∑
x∈TD

p(x)`(w;x, yx)

= `τ (w; T̂C ∪ T̂E) +
∑
x∈TD

p(x)`(w;x, yx)

≤ `τ (w; T̂C ∪ T̂E) + pD +
√
pD ·

√
2K2 ·

z

τ
(20)
≤ `τ (w; T̂C ∪ T̂E) + 2ξ +

√
4K2ξ ·

z

τ
,

which proves the second inequality of the proposition.

This completes the proof.

Proof of Claim 19. Since `(w;x, yx) ≤ 1 + |w·x|τ , it follows that

∑
x∈T∪TE

p(x)`(w;x, yx) ≤
∑

x∈T∪TE

p(x)

(
1 +
|w · x|
τ

)
= 1 +

1

τ

∑
x∈T∪TE

p(x)|w · x|

≤ 1 +
1

τ

√ ∑
x∈T∪TE

p(x)(w · x)2

(21)
≤ 1 +

√
2K2 ·

z

τ
,

which completes the proof of Claim 19.
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C.6. Proof of Lemma 16

For any phase k, let Lτk(w) = Ex∼Dwk−1,bk

[
`τk(w;x, sign (w∗ · x))

]
.

Proof. Proposition 35 of Shen & Zhang (2021) showed that if |TC ∪ TE| ≥ d · polylog
(
d, 1

b ,
1
δ

)
, then by Rademacher

complexity of the hinge loss we have that with probability 1− δ
2

sup
w∈W

∣∣∣`τ (w; T̂C ∪ T̂E)− Ex∼Du,b [`τ (w;x, sign (w∗ · x))]
∣∣∣ ≤ κ. (22)

Combining the above with Proposition 15 gives that with probability 1− δ,

sup
w∈W

∣∣∣`τ (w; p ◦ T̂ )− Ex∼Du,b [`τ (w;x, sign (w∗ · x))]
∣∣∣ ≤ 2κ.

Namely, in any phase k ≤ K, if |TC ∪ TE| ≥ d · polylog
(
d, 1

bk
, 1
δk

)
, then with probability 1− δk,

sup
w∈Wk

∣∣`τk(w; p)− Lτk(w)
∣∣ ≤ 2κ. (23)

On the other hand, since the (rescaled) hinge loss is always an upper bound of the error rate, we have

errDwk−1,bk
(vk) ≤ Lk(vk)

ζ1
≤ `τk(vk; p) + 2κ

ζ2
≤ min
w∈Wk

`τk(w; p) + 3κ ≤ `τk(w∗; p) + 3κ
ζ3
≤ Lk(w∗) + 5κ

ζ4
≤ 6κ ≤ 8κ,

where we use the fact that vk ∈Wk in ζ1, use the optimality condition of vk in ζ2, use w∗ ∈Wk in ζ3, and use Lemma 20
in ζ4.

Lemma 20 (Lemma 3.7 in Awasthi et al. (2017)). Suppose Assumption 1 is satisfied. Then

Lτk(w∗) ≤ τk
c0 min{bk, 1/9}

.

In particular, by our choice of τk, it holds that
Lτk(w∗) ≤ κ.

Lemma 21. For any 1 ≤ k ≤ K, if w∗ ∈Wk, then with probability 1− δk, θ(vk, w∗) ≤ 2−k−8π.

Proof. For k = 1, by Lemma 16 with the facts that we actually sample from D and w∗ ∈ Rd =: W1, we immediately have

Prx∼D
(
sign (v1 · x) 6= sign (w∗ · x)

)
≤ 8κ.

Hence Part 4 of Lemma 24 indicates that

θ(v1, w
∗) ≤ 8c2κ = 16c2κ · 2−1. (24)

Now we consider 2 ≤ k ≤ K. Denote Xk = {x : |wk−1 · x| ≤ bk}, and X̄k = {x : |wk−1 · x| > bk}. We will show that
the error of vk on both Xk and X̄k is small, hence vk is a good approximation to w∗.

First, we consider the error on Xk, which is given by

Prx∼D
(
sign (vk · x) 6= sign (w∗ · x) , x ∈ Xk

)
= Prx∼D

(
sign (vk · x) 6= sign (w∗ · x) | x ∈ Xk

)
· Prx∼D(x ∈ Xk)

= errDwk−1,bk
(vk) · Prx∼D(x ∈ Xk)

≤ 8κ · 2bk = 16κbk, (25)

where the inequality is due to Lemma 16 and Lemma 24. Note that the inequality holds with probability 1− δk in view of
Lemma 16.
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Next we derive the error on X̄k. Note that Lemma 10 of Zhang (2018) states for any unit vector u, and any general vector v,
θ(v, u) ≤ π ‖v − u‖2. Hence,

θ(vk, w
∗) ≤ π ‖vk − w∗‖2 ≤ π(‖vk − wk−1‖2 + ‖w∗ − wk−1‖2) ≤ 2πrk,

where we use the condition that both vk and w∗ are in Wk.

Recall that we set rk = 2−k−6 < 1/4 in our algorithm and choose bk = c̄ · rk where c̄ ≥ 8π/c4, which allows us to apply
Lemma 25 and obtain

Prx∼D
(
sign (vk · x) 6= sign (w∗ · x) , x /∈ Xk

)
≤ c3 · 2πrk · exp

(
− c4c̄ · rk

2 · 2πrk

)
= 2−k · c3π

4
exp

(
−c4c̄

4π

)
.

This in allusion to (25) gives

errD(vk) ≤ 16κ · c̄ · rk + 2−k · c3π
4

exp

(
−c4c̄

4π

)
=

(
2κc̄+

c3π

4
exp

(
−c4c̄

4π

))
· 2−k.

Recall that we set κ = exp(−c̄). For convenience denote by f(c̄) the coefficient of 2−k in the above expression. By Part 4
of Lemma 24

θ(vk, w
∗) ≤ c2 errD(vk) ≤ c2f(c̄) · 2−k. (26)

Now let g(c̄) = c2f(c̄) + 16c2 exp(−c̄). By our choice of c̄, g(c̄) ≤ 2−8π. This ensures that for both (24) and (26),
θ(vk, w

∗) ≤ 2−k−8π for any k ≥ 1.

Lemma 22. For any 1 ≤ k ≤ K, if θ(vk, w∗) ≤ 2−k−8π, then w∗ ∈Wk+1.

Proof. We only need to show that ‖wk − w∗‖2 ≤ rk+1. Let v̂k = vk/ ‖vk‖2. By algebra ‖v̂k − w∗‖2 = 2 sin θ(vk,w
∗)

2 ≤
θ(vk, w

∗) ≤ 2−k−8π ≤ 2−k−6. Now we have

‖wk − w∗‖2 = ‖v̂k − w∗‖2 ≤ 2−k−6 = rk+1.

The proof is complete.

C.7. Proof of Theorem 2

Proof. We will prove the theorem with the following claim.

Claim 23. For any 1 ≤ k ≤ K, with probability at least 1−
∑k
i=1 δi, w

∗ is in Wk+1.

Based on the claim, we immediately have that with probability at least 1 −
∑K
k=1 δk ≥ 1 − δ, w∗ is in WK+1. By our

construction of WK+1, we have
‖w∗ − wK‖2 ≤ 2−K−5.

This, together with Part 4 of Lemma 24 and the fact that θ(w∗, wK) ≤ π ‖w∗ − wK‖2 (see Lemma 10 of Zhang (2018)),
implies

errD(wK) ≤ π

c1
· 2−K−5 = ε.

The sample complexity of the algorithm is given by

N :=

K∑
k=1

Nk =

K∑
k=1

d

bk
· polylog

(
d,

1

bk
,

1

δk

)
≤ d

ε
· polylog

(
d,

1

ε
,

1

δ

)
,

where we use the fact that bk ≥ K1ε for some constant K1 > 0 and K = O(log 1
ε ).
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For each phase k ≤ K, the number of calls to EXy equals the size of T . For the size of TC, by Lemma 24 we know that
the probability mass of the band Xk = {x : |wk−1 · x| ≤ bk} is at most 2bk, implying that |TC| ≤ O(bkNk) with high
probability in view of Chernoff bound. On the other hand, by Part 2 of Lemma 12 we have|TD| = |TE| ≤ O(bkNk) since
ξk = Θ(1) as indicated in Section 3.1.1. Therefore,|T | ≤ O(bkNk) and the label complexity m of the algorithm is given by

m ≤
K∑
k=1

bkNk = d · polylog

(
d,

1

ε
,

1

δ

)
.

It remains to prove Claim 23 by induction. First, for k = 1, W1 = {w : ‖w‖2 ≤ 1}. Therefore, w∗ ∈W1 with probability 1.
Now suppose that Claim 23 holds for some k ≥ 2, that is, there is an event Ek−1 that happens with probability 1−

∑k−1
i δi,

and on this event w∗ ∈Wk. By Lemma 21 we know that there is an event Fk that happens with probability 1− δk, on which
θ(vk, w

∗) ≤ 2−k−8π. This further implies that w∗ ∈Wk+1 in view of Lemma 22. Therefore, consider the event Ek−1∩Fk,
on which w∗ ∈Wk+1 with probability Pr(Ek−1) · Pr(Fk | Ek−1) = (1−

∑k−1
i δi)(1− δk) ≥ 1−

∑k
i=1 δi.

D. Properties of Isotropic Log-Concave Distributions
We record some useful properties of isotropic log-concave distributions.

Lemma 24. There are absolute constants c0, c1, c2 > 0, such that the following holds for all isotropic log-concave
distributions D ∈ D. Let fD be the density function. We have

1. Orthogonal projections of D onto subspaces of Rd are isotropic log-concave;

2. If d = 1, then Prx∼D(a ≤ x ≤ b) ≤|b− a|;

3. If d = 1, then fD(x) ≥ c0 for all x ∈ [−1/9, 1/9];

4. For any two vectors u, v ∈ Rd,

c1 · Prx∼D
(
sign (u · x) 6= sign (v · x)

)
≤ θ(u, v) ≤ c2 · Prx∼D

(
sign (u · x) 6= sign (v · x)

)
;

5. Prx∼D
(
‖x‖2 ≥ t

√
d
)
≤ exp(−t+ 1).

We remark that Parts 1, 2, 3, and 5 are due to Lovász & Vempala (2007), and Part 4 is from Vempala (2010); Balcan & Long
(2013).

The following lemma is implied by the proof of Theorem 21 of Balcan & Long (2013), which shows that if we choose a
proper band width b > 0, the error outside the band will be small. This observation is crucial for controlling the error over
the distribution D, and has been broadly recognized in the literature (Awasthi et al., 2017; Zhang, 2018).

Lemma 25 (Theorem 21 of Balcan & Long (2013)). There are absolute constants c3, c4 > 0 such that the following holds
for all isotropic log-concave distributionsD ∈ D. Let u and v be two unit vectors in Rd and assume that θ(u, v) = α < π/2.
Then for any b ≥ 4

c4
α, we have

Prx∼D(sign (u · x) 6= sign (v · x) and |v · x| ≥ b) ≤ c3α exp

(
−c4b

2α

)
.

Lemma 26. Suppose x is randomly drawn from Du,b. Then with probability 1− δ, ‖x‖2 ≤ c7
√
d log 1

bδ for some constant
c7 > 0.

Proof. Using Part 2 of Lemma 27, we have

Prx∼Du,b(‖x‖2 ≥ α) ≤ 1

c8b
Prx∼D(‖x‖2 ≥ α) ≤ e

c8b
exp

(
−α/
√
d
)
,

where we applied Part 5 of Lemma 24 in the last inequality. The lemma follows by setting the right-hand side to δ.
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Lemma 27. Let c8 = min
{

2c0,
2c0
9C1

, 1
C1

}
. Then for all isotropic log-concave distributions D ∈ D,

1. Prx∼D
(
|u · x| ≤ b

)
≥ c8 · b;

2. Prx∼Du,b(E) ≤ 1
c8b

Prx∼D(E) for any event E.

Proof. We first consider the case that u is a unit vector.

For the lower bound, Part 3 of Lemma 24 shows that the density function of the random variable u · x is lower bounded by
c0 when|u · x| ≤ 1/9. Thus

Prx∼D
(
|u · x| ≤ b

)
≥ Prx∼D

(
|u · x| ≤ min{b, 1/9}

)
≥ 2c0 min{b, 1/9} ≥ 2c0 min

{
1,

1

9C1

}
· b

where in the last inequality we use the condition b ≤ C1.

For any event E, we always have

Prx∼Du,b(E) ≤ Prx∼D(E)

Prx∼D(|u · x| ≤ b)
≤ 1

c8b
Prx∼D(E).

Now we consider the case that u is the zero vector and b = C1. Then Prx∼D
(
|u · x| ≤ b

)
= 1 ≥ c8 · b in view of the choice

c8. Thus Part 2 still follows. The proof is complete.


