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A. Lemma
Given any mapping θ′ : S → {0, 1},

E
D∼πb

[ρ{θ′(τ
(1))] = 1 (1)

Proof. From the definition of the OSIRIS weight,

E
D∼πb

[ρ{θ′(τ
(1))] = E

D∼πb

[ T∏
t=1

[πe(at | st)
πb(at | st)

]1−θ′(st)]
(2)

=

∫ [ T∏
t=1

[πe(at | st)
πb(at | st)

]1−θ′(st)
πb(at | st)P (st+1 | st, at)P (s1)

]
dτ (3)

=

∫ [ T∏
t=1

πe(at | st)1−θ′(st)πb(at | st)θ
′(st)P (st+1 | st, at)P (s1)

]
dτ (4)

= 1 (5)

where we use the joint distribution of trajectories generated from πb (3) and cancel terms (4). Finally, θ′(st) ∈ {0, 1} selects
either πe or πb as the integrand, both of which integrate to 1 by definition, so the full joint distribution also integrates to 1
(5).

Notice that if we did not assume θ′ is given, then we should assume that θ′ is calculated using D \ τ (1). Otherwise, θ′ would
have statistical dependence with the transitions in trajectory τ (1), which could not be resolved in (3).

B. Derivations of Sources of IS Variance
B.1. Variance due to Long Trajectory Length

Proposition 1. For any subsets T1 ( T2 ⊆ {1, . . . , T}, if πe 6= πb, and ρ1(τ), . . . , ρT (τ) are mutually independent, then

Var
τ∼πb

[ ∏
t∈T1

ρt(τ) | s1, . . . , sT
]
< Var
τ∼πb

[ ∏
t∈T2

ρt(τ) | s1, . . . , sT
]

(6)

Proof. We first consider the variance of the product of general mutually independent random variables X1, . . . , XN :

Var
[ N∏
n=1

Xn

]
= E

[ N∏
n=1

X2
n

]
− E

[ N∏
n=1

Xn

]2
(7)

=

N∏
n=1

E
[
X2
n

]
−

N∏
n=1

E
[
Xn

]2
(8)

=

N∏
n=1

(
E
[
X2
n

]
− E

[
Xn

]2
+ E

[
Xn

]2)− N∏
n=1

E
[
Xn

]2
(9)

=

N∏
n=1

(
Var

[
Xn

]
+ E

[
Xn

]2)− N∏
n=1

E
[
Xn

]2
(10)
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where we use the definition of variance (7), use the assumption that the variables are independent (8), introduce the same
term (9), and reuse the definition of variance (10).

Using this fact, the inequality is equivalent to∏
t∈T1

(
Var
τ∼πb

[πe(at | st)
πb(at | st) | s1, . . . , sT

]
+ E
τ∼πb

[πe(at | st)
πb(at | st) | s1, . . . , sT

]2)− ∏
t∈T1

E
τ∼πb

[πe(at | st)
πb(at | st) | s1, . . . , sT

]2
<
∏
t∈T2

(
Var
τ∼πb

[πe(at | st)
πb(at | st) | s1, . . . , sT

]
+ E
τ∼πb

[πe(at | st)
πb(at | st) | s1, . . . , sT

]2)− ∏
t∈T2

E
τ∼πb

[πe(at | st)
πb(at | st) | s1, . . . , sT

]2
(11)

We apply Equation 1:∏
t∈T1

(
Var
τ∼πb

[πe(at | st)
πb(at | st) | s1, . . . , sT

]
+ 1
)
− 1 <

∏
t∈T2

(
Var
τ∼πb

[πe(at | st)
πb(at | st) | s1, . . . , sT

]
+ 1
)
− 1 (12)

In general, variance is greater than or equal to zero; here the variance is strictly greater than zero because πe(at | st)
πb(at | st) is not

constant because we assume πe 6= πb. Altogether, because LHS is the product of fewer variances > 0, we have that LHS <
RHS.

B.2. Relationship between Trajectory Length and IS Weight

Proposition 2. For any subsets T1 ( T2 ⊆ {1, . . . , T}, if πe 6= πb, then

E
τ∼πb

[
log

∏
t∈T1

ρt(τ)
]
> E
τ∼πb

[
log

∏
t∈T2

ρt(τ)
]

(13)

Proof. Using the identity for the log of a product and linearity of expectation, the inequality is equivalent to∑
t∈T1

E
τ∼πb

[
log πe(at | st)

πb(at | st)
]
>
∑
t∈T2

E
τ∼πb

[
log πe(at | st)

πb(at | st)
]

(14)

By Jensen’s inequality, for each individual expectation in the sum, E
τ∼πb

[
log πe(at | st)

πb(at | st)
]
≤ log E

τ∼πb

[πe(at | st)
πb(at | st)

]
= 0 where

we also use Equation 1 ( E
τ∼πb

[πe(at | st)
πb(at | st)

]
= 1). Equality holds only if πe(a | s)

πb(a | s) is constant, which is not true because we

assume πe 6= πb. Thus, because the LHS is the sum of fewer expectations < 0, we have the strict inequality that LHS >
RHS.

C. Derivations for the General OSIRIS Estimator
C.1. Variance

Theorem 1. Given any mapping θ′ : S → {0, 1}, the variance of the OSIRIS estimator is:

Var
D∼πb

[V̂ πe

OSIRIS(D; θ′)] = Var
D∼πb

[V̂ πe

IS (D)]

+
1

|D| E
D∼πb

[V̂ πe

IS (τ (1))]2 − 1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1); θ′)]2 (15a)

− 1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1); θ′)2] Var
D∼πb

[ρ{θ′(τ
(1))] (15b)

− 1

|D|
Cov
D∼πb

[V̂ πe

OSIRIS(τ (1); θ′)2, ρ{θ′(τ
(1))2] (15c)

Proof.

Var
D∼πb

[V̂ πe

OSIRIS(D)]− Var
D∼πb

[V̂ πe

IS (D)]
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= E
D∼πb

[V̂ πe

OSIRIS(D)2]− E
D∼πb

[V̂ πe

IS (D)2]− E
D∼πb

[V̂ πe

OSIRIS(D)]2 + E
D∼πb

[V̂ πe

IS (D)]2 (16)

=
1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))2]− 1

|D| E
D∼πb

[V̂ πe

IS (τ (1))2]− 1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))]2 +
1

|D| E
D∼πb

[V̂ πe

IS (τ (1))]2

(17)

=
1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))2]− 1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))2ρ{θ′(τ
(1))2]

− 1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))]2 +
1

|D| E
D∼πb

[V̂ πe

IS (τ (1))]2 (18)

=
1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))2]− 1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))2] E
D∼πb

[ρ{θ′(τ
(1))2]

− 1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))]2 +
1

|D| E
D∼πb

[V̂ πe

IS (τ (1))]2 − 1

|D|
Cov
D∼πb

[V̂ πe

OSIRIS(τ (1))2, ρ{θ′(τ
(1))2] (19)

=
1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))2] E
D∼πb

[ρ{θ′(τ
(1))]2 − 1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))2] E
D∼πb

[ρ{θ′(τ
(1))2]

− 1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))]2 +
1

|D| E
D∼πb

[V̂ πe

IS (τ (1))]2 − 1

|D|
Cov
D∼πb

[V̂ πe

OSIRIS(τ (1))2, ρ{θ′(τ
(1))2] (20)

=
1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))2]
(

E
D∼πb

[ρ{θ′(τ
(1))]2 − E

D∼πb

[ρ{θ′(τ
(1))2]

)
− 1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))]2 +
1

|D| E
D∼πb

[V̂ πe

IS (τ (1))]2 − 1

|D|
Cov
D∼πb

[V̂ πe

OSIRIS(τ (1))2, ρ{θ′(τ
(1))2] (21)

= − 1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))2] Var
D∼πb

[ρ{θ′(τ
(1))]

− 1

|D| E
D∼πb

[V̂ πe

OSIRIS(τ (1))]2 +
1

|D| E
D∼πb

[V̂ πe

IS (τ (1))]2 − 1

|D|
Cov
D∼πb

[V̂ πe

OSIRIS(τ (1))2, ρ{θ′(τ
(1))2] (22)

where we use the definition of variance (16), linearity of expectation (17), the relationship between IS and OSIRIS (18), the
definition of covariance (19), Equation 1 (20), factor terms (21), and the definition of variance again (22).

C.2. Bias

Theorem 2. Given any mapping θ′ : S → {0, 1}, the mean of the OSIRIS estimator is:

E
D∼πb

[V̂ πe

OSIRIS(D; θ′)] = V πe − Cov
D∼πb

[V̂ πe

OSIRIS(τ (1); θ′), ρ{θ′(τ
(1))] (23)

Proof. From the fact that the IS estimator is unbiased:

V πe = E
D∼πb

[V̂IS(D)] = E
D∼πb

[V̂ πe

IS (τ (1))] (24)

= E
D∼πb

[V̂ πe

OSIRIS(τ (1); θ′) · ρ{θ′(τ (1))] (25)

= E
D∼πb

[V̂ πe

OSIRIS(τ (1); θ′)] E
D∼πb

[ρ{θ′(τ
(1))] + Cov

D∼πb

[V̂ πe

OSIRIS(τ (1); θ′), ρ{θ′(τ
(1))] (26)

= E
D∼πb

[V̂ πe

OSIRIS(τ (1); θ′)] + Cov
D∼πb

[V̂ πe

OSIRIS(τ (1); θ′), ρ{θ′(τ
(1))] (27)

where we use the assumption that trajectories are sampled i.i.d. (24), the relationship between IS and OSIRIS (25), the
definition of covariance (26), and then Equation 1 (27).

C.3. Decomposition of the Covariance Term

We can decompose the covariance involving the product of likelihood ratios into a sum of covariances involving individual
likelihood ratios. We use the notation ρ{1:` to indicate the product of the 1st to `th irrelevant likelihood ratios.

Cov
D∼πb

[V̂OSIRIS(τ (1); θ′), ρ{OSIRIS(τ (1); θ′)]
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= E
D∼πb

[V̂OSIRIS(τ (1); θ′)ρ{OSIRIS(τ (1); θ′)]− E
D∼πb

[V̂OSIRIS(τ (1); θ′)] E
D∼πb

[ρ{OSIRIS(τ (1); θ′)] (28)

= E
D∼πb

[V̂OSIRIS(τ (1); θ′)ρ{OSIRIS(τ (1); θ′)]− E
D∼πb

[V̂OSIRIS(τ (1); θ′)] (29)

= E
D∼πb

[V̂OSIRIS(τ (1); θ′)ρ{1:`−1(τ (1); θ′)] E
D∼πb

[ρ{` (τ
(1); θ′)]− E

D∼πb

[V̂OSIRIS(τ (1); θ′)]

+ Cov
D∼πb

[V̂OSIRIS(τ (1); θ′)ρ{1:`−1(τ (1); θ′), ρ{` (τ
(1); θ′)] (30)

= E
D∼πb

[V̂OSIRIS(τ (1); θ′)ρ{1:`−1(τ (1); θ′)]− E
D∼πb

[V̂OSIRIS(τ (1); θ′)]

+ Cov
D∼πb

[V̂OSIRIS(τ (1); θ′)ρ{1:`−1(τ (1); θ′), ρ{` (τ
(1); θ′)] (31)

= E
D∼πb

[V̂OSIRIS(τ (1); θ′)]− E
D∼πb

[V̂OSIRIS(τ (1); θ′)]

+ Cov
D∼πb

[V̂OSIRIS(τ (1); θ′)ρ{1:`−1(τ (1); θ′), ρ{` (τ
(1); θ′)]

+ Cov
D∼πb

[V̂OSIRIS(τ (1); θ′)ρ{1:`−2(τ (1); θ′), ρ{`−1(τ (1); θ′)]

+ · · · (32)

where we use the definition of covariance (28), Equation 1 (29), the definition of covariance again (30), Equation 1 again
(31), and repeat (32). Eventually, the E

D∼πb

[V̂OSIRIS(τ (1); θ′)] will cancel, leaving us with the sum of individual covariances.

D. Derivations for the OSIRIS Estimator using State Relevance
D.1. Composite Policy π′e
Lemma 1. Let π′e be a composite policy:

π′e(a | s; θ) ≡

{
πe(a | s) if θ(s) = 1 (relevant)
πb(a | s) if θ(s) = 0 (irrelevant)

. (33)

Then the policy values of πe and π′e are equal:
V πe = V π

′
e . (34)

Proof. First, we will recall some notation. The state-action value function under policy πe is

Qπe(s, a) ≡ E
τ∼πe

[gt:T (τ) | st = s, at = a], (35)

and the state value function under policy πe is then

V πe(s) ≡ E
a∼πe(· | s)

[
Qπe(s, a)

]
. (36)

Now, for any state s,
V πe(s) = E

a∼πe(· | s)

[
Qπe(s, a)

]
= E
a∼π′e(· | s)

[
Qπe(s, a)

]
(37)

because if θ(s) = 0, then we can replace πe in the expectation with anything because, by definition of state irrelevance,
Qπe(s, a) is constant with respect to a. Otherwise, if θ(s) = 1, then π′e is simply equivalent to πe by definition of the
composite policy. By applying this logic with the recursive Bellman equation V πe(s) = Ea∼πe(· | s)

[
Es′∼P (· | s,a)

[
R(s, a)+

γV πe(s′)
]]

, we conclude that for any state s,

V πe(s) = V π
′
e(s). (38)

We take an expectation over the initial state distribution,

E
s1∼P (s1)

[
V πe(s1)

]
= E
s1∼P (s1)

[
V π
′
e(s1)

]
, (39)
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which is equivalent to
V πe = V π

′
e . (40)

D.2. Bias using θ

Theorem 3. Given the true relevance mapping θ, the mean of the OSIRIS estimator is

E
D∼πb

[V̂ πe

OSIRIS(D; θ)] = V πe (41)

Proof. The key idea here is that the likelihood ratio omission procedure in OSIRIS is equivalent to pretending π′e is the
evaluation policy.

E
D∼πb

[
V̂ πe

OSIRIS(D; θ)
]

(42)

= E
τ∼πb

[
V̂ πe

OSIRIS(τ ; θ)
]

(43)

= E
τ∼πb

[
g(τ)

T∏
t=1

[πe(at | st)
πb(at | st)

]θ(st)]
(44)

=

∫
g(τ)

T∏
t=1

[πe(at | st)
πb(at | st)

]θ(st)
πb(at | st)P (st+1 | st, at)P (s1) dτ (45)

=

∫
g(τ)

T∏
t=1

[
πe(at | st)

]θ(st)[
πb(at | st)

]1−θ(st)
P (st+1 | st, at)P (s1) dτ (46)

=

∫
g(τ)

T∏
t=1

π′e(at | st)P (st+1 | st, at)P (s1) dτ (47)

= E
τ∼π′e

[g(τ)] = V π
′
e = V πe (48)

where we use the assumption that trajectories are sampled i.i.d. (43), the definition of the OSIRIS estimator (44), the
definition of the expectation (45), cancellation of terms (46), and the definition of the composite policy π′e (47). Finally, we
clean up by reintroducing the expectation, using Lemma 1, and recovering the definition of the true policy value (48).

Note that if state s is truly relevant but was omitted by OSIRIS, then bias would be introduced from Equation 37:∣∣∣ E
a∼πb

[Qπe(s, a)]− E
a∼πe

[Qπe(s, a)]
∣∣∣ 6= 0 (49)

However, if state s is truly irrelevant but was kept by OSIRIS, then there would be no effect on bias because Equation 37
still holds because πe in the expectation can be replaced with anything.

D.3. Consistency using θ̂

Theorem 4. If |A| = 2 and α > 0, then as |D| → ∞

E
D∼πb

[V̂ πe

OSIRIS(D; θ̂( · ;D))] = V πe (50)

Proof. Welch’s two-sample t-test is consistent, which means that for all s ∈ S where θ(s) = 1, the test will give θ̂(s) = 1

as |D| → ∞. The binary classification of actions when calculating θ̂ has no effect on this fact because the action space is
already assumed to be binary. Thus, as |D| → ∞, all relevant likelihood ratios will be kept by OSIRIS, so in this limit, the
estimator will be unbiased (Appendix D.2).
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D.4. Step-Wise OSIRIS

Theorem 5. Let state s ∈ S be irrelevant to the reward ∆t-steps away if

E
τ∼πe

[rt+∆t | st = s, at = a] = constant, ∀a ∈ A. (51)

Otherwise, s is relevant to the reward ∆t-steps away. Using this condition, we define θ∆t : S → {0, 1} where θ∆t(s) = 0 if
s is irrelevant to the reward ∆t-steps away, and otherwise θ∆t(s) = 1. Then

V̂ πe

step-wise
OSIRIS

(D; θ∆t) ≡
1

|D|
∑
τ∈D

T∑
t′=1

(
γt
′−1rt′

T∏
t=1

[
ρt(τ)

]θt′−t(st)
)

(52)

is an unbiased estimator of V πe .

Proof. This proof is analogous to Sections D.1 and D.2 where we use a composite policy

π′e(a | s; θ∆t) ≡

{
πe(a | s) if θ∆t(s) = 1 (relevant)
πb(a | s) if θ∆t(s) = 0 (irrelevant)

. (53)

We will first prove the lemma in Equation 56 and next prove that the step-wise OSIRIS estimator is equivalent to pretending
π′e is the evaluation policy.

First, the expected reward at each individual time step t′ is

E
τ∼πe

[
R(st′ , at′)

]
= E
st∼P (st)

[
E

at∼πe(at | st)

[
E

τ∼πe

[
R(st′ , at′) | st, at

]]]
(54)

= E
st∼P (st)

[
E

at∼π′e(at | st)

[
E

τ∼πe

[
R(st′ , at′) | st, at

]]]
(55)

where we use the law of total expectation by introducing P (st) as the stationary state distribution. Then we introduce the
composite policy defined in Equation 53 because π′e is equivalent to πe except in states that are irrelevant (to the reward
(t′ − t)-steps away) where, by definition, we can replace πe in the expectation with anything. Recursively applying this
logic, we find that

E
τ∼πe

[
R(st′ , at′)

]
= E
τ∼π′e

[
R(st′ , at′)

]
(56)

Now, we will use this fact to show the step-wise OSIRIS estimator is unbiased:

E
D∼πb

[
V̂ πe

step-wise
OSIRIS

(D; θ∆t)
]

(57)

= E
τ∼πb

[
V̂ πe

step-wise
OSIRIS

(τ ; θ∆t)
]

(58)

= E
τ∼πb

[ T∑
t′=1

γt
′−1rt′

T∏
t=1

[πe(at | st)
πb(at | st)

]θt′−t(st)
]

(59)

=

T∑
t′=1

γt
′−1 E

τ∼πb

[
rt′

T∏
t=1

[πe(at | st)
πb(at | st)

]θt′−t(st)
]

(60)

=

T∑
t′=1

γt
′−1

∫
rt′

T∏
t=1

[πe(at | st)
πb(at | st)

]θt′−t(st)

πb(at | st)P (st+1 | st, at)P (s1) dτ (61)

=

T∑
t′=1

γt
′−1

∫
rt′

T∏
t=1

[
πe(at | st)

]θt′−t(st)
[
πb(at | st)

]1−θt′−t(st)P (st+1 | st, at)P (s1) dτ (62)

=

T∑
t′=1

γt
′−1

∫
rt′

T∏
t=1

π′e(at | st)P (st+1 | st, at)P (s1) dτ (63)



Supplementary Materials: State Relevance for Off-Policy Evaluation

=

T∑
t′=1

γt
′−1 E

τ∼π′e
[rt′ ] =

T∑
t′=1

γt
′−1 E

τ∼πe

[rt′ ] = V πe (64)

where we use the assumption that trajectories are sampled i.i.d. (58), the definition of the step-wise OSIRIS estimator (59),
linearity of expectation (60), the definition of the expectation (61), cancellation of terms (62), and the definition of the
composite policy π′e (63). Finally, we clean up by reintroducing the expectation, using Equation 56, and recovering the
definition of the true policy value (64).

E. Environment Descriptions
All reported results are aggregated over 200 independent trials with discount factor γ = 1.

E.1. Gridworlds

−5
0
+5

Re
wa

rdstart

end

end

end

end end end end end end end end end end end end

Figure 1: Environment and policies for Gridworld experiments.

The Gridworld environment and policies are shown in Figure 1. From each state, the agent takes the action indicated by the
large arrow with probability 1 − ε and takes a random action with probability ε. The evaluation policy has ε = 0.1, and
the behavior policy has ε = 0.5. Rewards are given for entering the indicated states. The data size is |D| = 25. These
parameters describe the Dilly-Dallying Gridworld. The Express Gridworld variant is identical except that the behavior
policy has ε = 0.2 only in the corridor states (blue arrows in Figure 1).

E.2. Lunar Lander

Lunar Lander is a popular deterministic benchmark environment in OpenAI gym with an 8-dimensional continuous state
space and 4 discrete actions (Brockman et al., 2016). The goal is to safely land on the ground by firing engines that push
the agent left, right, or up. The reward from each transition is related to the agent’s distance from the target landing site
with small penalties for firing engines; around 100-140 is accumulated for a typical landing. A successful landing earns an
additional +100 whereas a crash earns −100, and both events end the trajectory. Or the trajectory is automatically ended
after 1000 steps.

We used ε-greedy behavior and evaluation policies based on an optimal policy learned by DQN (Mnih et al., 2013). The
behavior policy takes a random action with probability ε = 0.1, and the evaluation policy does so with probability ε = 0.05.
The data size is |D| = 50.

Calculating θ̂(s;D) requires a discrete state space, so only for this step of the OSIRIS algorithm, we discretized the state
space by creating three linearly spaced bins per state dimension. In each trial D, this procedure resulted in about 200 discrete
states that were represented at least once.

E.3. Cart Pole

Cart Pole is another deterministic benchmark environment in OpenAI gym. It has a 4-dimensional continuous state space
and 2 discrete actions (Barto et al., 1983; Brockman et al., 2016). The goal is to apply leftward or rightward force to the
bottom (the cart) of an inverted pendulum (the pole) to keep it balanced upright. The agent gets +1 reward for each transition
until the the pole falls, which ends the trajectory.

The behavior and evaluation policies and the discrete state space were obtained as described for Lunar Lander, but the
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Table 1: Comparison of mean squared errors for alternative implementations of OSIRIS state relevance implementation.

ALGORITHM 1 gτ -BINARY A SMIRNOV NN AS Q̂πe ON-
POLICYOSIRIS OSIRWIS OSIRIS OSIRWIS OSIRIS OSIRWIS OSIRIS OSIRWIS

DILLY-
DALLYING
GRIDWORLD

MEAN 1.3 1.1 0.5 0.4 0.5 0.5 0.9 0.0 4.3
STD 2.0 1.8 1.7 1.8 1.7 1.8 5.3 2.4 0.6
RMSE 3.6 3.7 4.2 4.3 4.1 4.2 6.3 4.9 0.6

EXPRESS
GRIDWORLD

MEAN 0.7 0.8 0.7 0.9 0.5 0.6 0.7 0.3 4.3
STD 1.2 1.3 1.3 1.5 1.3 1.4 2.9 2.1 0.6
RMSE 3.8 3.7 3.8 3.7 4.0 4.0 4.6 4.5 0.6

CART POLE
MEAN 1068.9 759.7 970.0 622.3 582.0 640.7 608.2 608.2 1503.6
STD 3961.8 318.5 5337.1 381.8 619.0 308.3 97.6 97.6 244.8
RMSE 3985.5 809.2 5363.7 960.4 1110.2 916.3 900.7 900.7 244.8

LUNAR
LANDER

MEAN 244.6 234.8 241.2 259.7 286.9 248.9 222.9 249.4 245.3
STD 55.3 23.5 230.3 13.5 171.7 16.3 62.0 14.4 6.8
RMSE 55.3 25.7 230.3 19.7 176.6 16.7 65.9 15.0 6.8

policies here used ε = 0.25 and ε = 0.2, respectively. The data size is |D| = 50. In each trial D, about 16 discrete states
were represented at least once.

F. Extended Results
F.1. Alternative Implementations

To demonstrate the extent to which our analysis is robust to specific implementation choices, here we present empirical
results for other possible implementations (Table 1).

The Algorithm 1 implementation refers to the procedure presented in the main text with Welch’s two-sample t-test. We also
tried using Smirnov’s non-parametric test (Hodges, 1958) where we increased the significance level to α = 0.2.

These two-sample statistical tests require that we binarize the action space and discretize the state space. First, in the main
text, we proposed binarizing the actions based on their likelihood ratios. Here, we also tried assigning action classes based
on whether they led to above- or below-average trajectory returns, which is the g(τ)-Binary A implementation. Finally,
we also tried directly regressing Q̂πe with a neural network model. This NN as Q̂πe implementation can certainly handle
continuous states and it can handle action spaces |A| > 2. The model had one 32-dimensional hidden layer. For each trial
(i.e. sample of D), it was trained to minimize the Huber loss for 500 epochs, each looking at a minibatch of 128 transitions.
We use the trained Q̂πe to calculate θ̂(s) for a given s. First, we calculate the standard deviation of Q̂πe(s, a) for all a ∈ A.
We normalize this by dividing by the mean of Q̂πe(s, a) for all a ∈ A. This value gives us a sense of how much the Qπe

value function varies for different actions taken from the same state. If the value is greater than α = 0.4, then we output
θ̂(s) = 1 (relevant), and otherwise, θ̂(s) = 0 (irrelevant).

In Table 2, we also provide empirical results for the OSIRIS estimator using an “oracle” state relevance mapping where
θ̂(s) = 0 (irrelevant) for all s in the Gridworld corridor, and otherwise θ̂(s) = 1 (relevant). These results represent a
practical bound on the accuracy improvement from likelihood ratio omission. As such, they also give a rough picture of
the amount of variance contributed from estimating θ̂ vs noise inherent to the data or variance contributed by OSIRIS’s
manipulating trajectory lengths (which is expected to be small).

F.2. Express Gridworld

See Figures 2, 3, and 4a for empirical results in the Express Gridworld environment. This figures show the same qualitative
trends as reported in the main text for the Dilly-Dallying Gridworld. Figure 4a shows OSIRIS was more likely to label
corridor states are relevant in Express Gridworld than Dilly-Dallying Gridworld, which is expected because there are fewer
visits to the corridor states, so there is likely more noise being picked up by the statistical test.
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Table 2: Mean squared errors for OSIRIS using an “oracle” state relevance mapping.

ORACLE
OSIRIS OSIRWIS

DILLY-
DALLYING
GRIDWORLD

MEAN 3.1 3.4
STD 1.9 1.2
RMSE 2.3 1.5

EXPRESS
GRIDWORLD

MEAN 2.9 2.9
STD 3.1 1.8
RMSE 3.4 2.3
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Figure 2: Express Gridworld. Distributions of OSIRWIS estimates showing estimator consistency. Dots represent means,
error bars represent standard deviations, and horizontal line represents the mean of the on-policy MC estimator. Colors
indicate α values, where α = 1 is equivalent to ordinary WIS.

F.3. Estimated State Relevance

We show the estimated state relevance over all state dimensions in Cart Pole (Figure 4b) and Lunar Lander (Figure 4c).
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Figure 3: Express Gridworld. Scatter plots show correlation between OSIRIS weights and effective trajectory lengths∑T
t=1 θ̂(st). Boxplots show variance reduction of OSIRIS weights by shortening and evening of the effective trajectory

lengths. Colors indicate α values, where α = 1 is equivalent to ordinary IS.
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(b) Cart Pole
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(c) Lunar Lander

Figure 4: Mean of estimated state relevance θ̂(s) from visits to the indicated states is represented by color (a) or on the y
axis (b, c). States identified as relevant (i.e. θ̂(s) = 1) are key decision points where trajectory outcome is sensitive to action
taken.


