
Appendix for
SparseBERT: Rethinking the Importance Analysis in Self-attention

A. Proof
A.1. Proof for Step 1

Lemma 2 (Lemma 8 (Yun et al., 2019)). For any f ∈
FCD, there exists a piece-wise constant function f̄ such
that dp(f, f̄) < ε/3.

Proof. f is uniformly continously since f is a continous
function on [0, 1]n×d, which implies:
∀ε > 0,∃ δ > 0, such that

∀X,Y , ||X − Y ||∞ < δ ⇒ ||f(X)− f(Y )||p < ε/3.

Then we split the compact domain [0, 1]n×d into a grid of
granularity δ, such that Gδ ∈ {0, δ, . . . , 1}. By defining the
following piece-wise constant function

f̄(X) =
∑

G∈Gδ

f(G) ∗ 1{X ∈ G+ [0, δ]n×d},

we have

||f(X)− f̄(X)||p = ||f(X)− f(G)||p < ε/3.

Thus,

dp(f, f̄) = (

∫
||f(X)− f̄(X)||ppdX)1/p < ε/3.

This proves the lemma.

A.2. Proof for Step 2

A.2.1. QUANTIZATION (FEED-FORWARD)

Lemma 3 (Lemma 5 (Yun et al., 2019)). Consider a quan-
tization mapping gentq :

gentq (t)

=

{
kδ if kδ ≤ t < (k + 1)δ, k ∈ [1 : 1/δ − 1],

−δ−nd otherwise.

There exists a function gq composed of d/δ + d token-wise
feed-forward layers with r = 1 and piece-wise linear func-
tions (at most three pieces), such that the quantization is
performed on each entry of the input.

We first quantize the input X to their corresponding grid
Gδ by quantization function gq .

A.2.2. CONTEXUAL MAPPING (SELF-ATTENTION)

This is the main difference between ours and previous works,
where self-attention without diag-attention adds additional
constraints to the attention matrix. We will illustrate the
definition of contextual mapping first and then prove Trans-
former blocks without diag-attention can also reach contex-
tual mapping.

Definition 1. (Contextual Mapping) For a set Gδ ∈ Rn×d,
a contextual mapping is a function mapping q : Gδ → Rn
satisfying:

• For anyG ∈ Gδ , all entries in q(G) are distinct.

• For any G1,G2 ∈ Gδ (G1 6= G2), all entries of
q(G1) and q(G2) are distinct.

Lemma 4. There exists a function gc composed of δ−d +
1 self-attention layers without diag-attention, such that
q(G) := gc(G)u satisfies the contextual mapping defini-
tion.

Proof. Consider the function ψ, which can be implemented
by a self-attention without diag-attention:

ψ(Z; b)i = σH [(Zi,:u− b)(Zj 6=i,:u)>]Zj 6=i,:ue
(1)>

=

{
(maxj 6=iZj,:u)e(1)> if Zi,:u > b,

(minj 6=iZj,:u)e(1)> if Zi,:u < b,

where e(1) = [1, 0, . . . , 0] ∈ Rd and u ∈ Rd is an auxiliary
vector, which will be selected later.

We can contrust a self-attention layer without diag-attention
that consists of two such heads Ψ(Z; b1, b2) = ψ(Z; b1)−
ψ(Z; b2), such that

Ψ(Z; b1, b2)i,1

=

{
maxj 6=iZj,:u− minj 6=iZj,:u if b1 < Zi,:u < b2,

0 otherwise.

Thus, if we define a self-attention layer without diag-
attention of the form Z → Z + δ−dΨ(Z; b1, b2), then
selective shift operation is performed.

Next, we select u = (1, δ−1, δ−2, . . . , δ−d+1) and the fol-
lowing holds:
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• If Zi,j 6= −δ−nd for all j, then Zi,:u ∈ [0 : δ :
δ−d+1−δ]. And the mapping fromZ ∈ {0, δ, . . . , 1−
δ}d to [0 : δ : δ−d+1 − δ] is a bijective mapping.

• If Zi,j = −δ−nd for some j, then Zi,:u ≤ −δ−nd +
δ−d+1 − δ < 0.

Thus, the mapping Zi,: → Zi,:u is a bijective mapping
for {0, δ, . . . , 1 − δ}d. We define li = Zi,:u and assume
l1 < l2 < · · · < ln without loss of generality.

For each l ∈ [0 : δ : δ−d+1 − δ], we choose b1 = l −
δ/2, b2 = l + δ/2 and use δ−d self-atteniton layers without
diag-attention. Only one row will be in the range (b1, b2)
each time and no other row will be affected. After above
operation, li becomes l̃i for better clarification.

For n rows, there are total n phases for column updating.
After each i phases, we will maintain the following ordering:

li+1 < li+2 < · · · < ln < l̃1 < l̃2 < · · · < l̃i.

Base Step When i = 0, it’s the trivial case as

l1 < l2 < · · · < ln.

When i = 1, we have maxj 6=1 lj = ln and minj 6=1 lj = l2.
l̃1 = δ−d(ln − l2) + l1.

l̃1 − ln = δ−d(ln − l2) + (l1 − ln)

> δ−d(δ)− (δ−d+1 − δ)
= δ−d+1 − δ−d+1 + δ

= δ > 0.

Inductive Step When 1 < i < n, we have maxj 6=i lj =

l̃i−1 and minj 6=i lj = li+1. Thus, l̃i = δ−d(l̃i−1−li+1)+li.
By expansion, we have:

l̃i = (ln − l2)δ−id +

i−1∑
j=1

(lj − lj+2)δ−(i−j)d + li.

l̃i − l̃i−1 = (ln − l2)(δ−id − δ−(i−1)d)

+

i−2∑
j=1

(lj − lj+2)(δ−(i−j)d − δ−(i−j−1)d)

+ δ−d(li−1 − li+1) + li − li−1

= (δ−d − 1)[(ln − l2)δ−(i−1)d +

i−2∑
j=1

(lj − lj+2)δ−(i−j−1)d]

+ δ−d(li−1 − li+1) + li − li−1

> (δ−d − 1)[δ · δ−(i−1)d +

i−2∑
j=1

(δ − δ−d+1)δ−(i−j−1)d]

− δ−d(δ−d+1 − δ) + δ

= (δ−d − 1)δ[δ−(i−1)d +

i−2∑
j=1

(1− δ−d)δ−(i−j−1)d]

− δ−d(δ−d+1 − δ) + δ

= (δ−d − 1)δ · δ−d − δ−d(δ−d+1 − δ) + δ

= δ > 0.

Therefore, l̃i > l̃i−1 holds and the ordering after operation
on row i is:

li+1 < li+2 < · · · < ln < l̃1 < l̃2 < · · · < l̃i.

When i = n, we have maxj 6=i lj = l̃n−1 and minj 6=i lj =

l̃1, resulting in l̃n = δ−d(l̃n−1 − l̃1) + ln. Similarly,

l̃n − l̃n−1 = (ln − l2)(δ−nd − δ−(n−1)d)

+

n−2∑
j=1

(lj − lj+2)(δ−(n−j)d − δ−(n−j−1)d)

− δ−2d(ln − l2) + δ−d(ln−1 − l1) + ln − ln−1
= (ln − l2)(δ−nd − δ−(n−1)d − δ−2d)

+
n−2∑
j=1

(lj − lj+2)(δ−(n−j)d − δ−(n−j−1)d)

+ δ−d(ln−1 − l1) + ln − ln−1
> (δ)(δ−nd − δ−(n−1)d − δ−2d)

+

n−2∑
j=1

(δ − δ−d+1)(δ−(n−j)d − δ−(n−j−1)d)

+ δ−d(δ) + δ

= δ > 0.

The last inequation holds when δ−nd−δ−(n−1)d−δ−2d > 0,
which is correct for n > 2 and small enough δ.
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After n operations, we have l̃1 < l̃2 < · · · < l̃n. Note that:

l̃n = (ln − l2)δ−nd +

n−2∑
j=1

(lj − lj+2)δ−(n−j)d

− (ln − l2)δ−2d + (ln−1 − l1)δ−d + ln

< (δ−d+1 − δ)δ−nd + (δ−d+1 − δ)δ−d + (δ−d+1 − δ)
= δ(δ−d − 1)(δ−nd + δ−d + 1),

thus l̃i has the upper bound (denoted as ∆h).

To ensure that all tokens are distinct, we will add two addi-
tional layers of the form Z → Z + (∆h/δ)ψ(Z; 0).

First Global Shift Since 0 < l̃1 < l̃2 < · · · < l̃n < ∆h,
the additional layer adds (∆h/δ)(maxj 6=iZj,:u)e(1)> for
each i. Thus,

l̃+i =

{
l̃i + (∆h/δ)l̃n if i 6= n,

l̃n + (∆h/δ)l̃n−1 if i = n.

For any i, j 6= n, we have l̃+i < l̃+j if i < j. Note that:

l̃+1 − l̃+n = (∆h/δ)(l̃n − l̃n−1) + l̃1 − l̃n
> (∆h/δ) · δ −∆h

> 0,

the order after first global shift is

l̃+n < l̃+1 < l̃+2 < · · · < l̃+n−1.

Second Global Shift At the second global shift, we have

l̃++
i =

{
l̃+i + (∆h/δ)l̃

+
n−1 if i 6= n− 1,

l̃+n−1 + (∆h/δ)l̃
+
n−2 if i = n− 1.

By expansion, l̃++
i has a more clear form as follows.

l̃++
i

=


l̃n−1 + (∆h/δ)(l̃n−2 + l̃n) + (∆h/δ)

2 l̃n if i = n− 1,

l̃n + 2(∆h/δ)l̃n−1 + (∆h/δ)
2 l̃n if i = n,

l̃i + (∆h/δ)(l̃n−1 + l̃n) + (∆h/δ)
2 l̃n otherwise.

The output of the second global shift is our gc (i.e., l̃++
i =

gc(G)i,:u). Finally, we verify two properties of contextual
mapping in Definition 1.

• For anyG ∈ Gδ , we have gc(G)i,:u mod (∆h/δ) =

l̃i. All entries of q(G)u are distinct because l̃i is dis-
tinct with each other.

• For any G1,G2 ∈ Gδ (G1 6= G2), each entry of
gc(Gi)u lies in the interval [(∆h/δ)

2 l̃n, (∆h/δ)
2(l̃n+

δ)). Since l̃n is the unique identity for the inputG, all
entries of q(G1) and q(G2) are distinct.

Therefore, gc(G) satisfies the definition of contextual map-
ping.

A.2.3. VALUE MAPPING (FEED-FORWARD)

Lemma 5 (Lemma 7 (Yun et al., 2019)). There exists a
function gv composed of n(1/δ)dn token-wise feed-forward
layers with r = 1 and piece-wise linear functions (at most
three pieces), such that gv is defined by a token-wise function
gtknv ,

gv(Z) = [gtknv (Z1) . . . gtknv (Zn)],

where

gtknv (Zi) = gtknv (gc(G)i) = f(Gi).

Therefore, we have ḡ(X) = gv ◦ gc ◦ gq(X) = f̄(X)
expect for a set has measureO(δd) (Yun et al., 2019), which
implies that dp(f̄ , ḡ) ≤ O(δd/p).

A.3. Proof for Step 3

Lemma 6 (Lemma 9 (Yun et al., 2019)). For each modi-
fied Transformer blocks ḡ ∈ T̄ 2,1,1, there exists the Trans-
former without diag-attention blocks g ∈ T 2,1,4 such that
dp(ḡ, g) ≤ ε/3.

Since the modification is only the softmax function and
ReLU activation function (not related with the self-attention
matrix A), the lemma still holds.

By Summarizing the above three steps, we have:

dp(f, g) ≤ dp(f, f̄)+dp(f̄ , ḡ)+dp(ḡ, g) ≤ 2ε/3+O(δd/p).

With enough small δ, we have dp(f, g) ≤ ε. Thus, Trans-
formers without diag-attention are also universal approxi-
mators.
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B. Data Set
B.1. MNLI

The Multi-Genre Natural Language Inference (Williams
et al., 2018) is a crowdsourced ternary classification task.
Given a premise sentence and a hypothesis sentence, the tar-
get is to predict whether the last sentence is an [entailment],
[contradiction], or [neutral] relationships with respect to the
first one.

B.2. QQP

The Quora Question Pairs (Chen et al., 2018) is a binary
classification task. Given two questions on Quora, the tar-
get is to determine whether these two asked questions are
semantically equivalent or not.

B.3. QNLI

The Question Natural Language Inference (Wang et al.,
2018b) is a binary classification task derived from the Stan-
ford Question Answering Dataset (Rajpurkar et al., 2016).
Given sentence pairs (question, sentence), the target is to
predict whether the last sentence contains the correct answer
to the question.

B.4. SST-2

The Stanford Sentiment Treebank (Socher et al., 2013) is
a binary sentiment classification task for a single sentence.
All sentences are extracted from movie reviews with human
annotations of their sentiment.

B.5. CoLA

The Corpus of Linguistic Acceptability (Warstadt et al.,
2019) is a binary classification task consisting of English
acceptability judgments extracted from books and journal
articles. Given a single sentence, the target is to determine
whether the sentence is linguistically acceptable or not.

B.6. STS-B

The Semantic Textual Similarity Benchmark (Cer et al.,
2017) is a regression task for predicting the similarity score

(from 1 to 5) between a given sentence pair, whose sentence
pairs are drawn from news headlines and other sources.

B.7. MRPC

The Microsoft Research Paraphrase Corpus (Dolan & Brock-
ett, 2005) is a binary classification task. Given a sentence
pair extracted from online news sources, the target is to
determine whether the sentences in the pair are semantically
equivalent.
B.8. RTE

The Recognizing Textual Entailment (Bentivogli et al.,
2009) is a binary entailment classification task similar to
MNLI, where [neutral] and [contradiction] relationships are
classified into [not entailment].

B.9. SWAG

The Situations with Adversarial Generations (Zellers et al.,
2018) is a multiple-choice task consisting of 113K questions
about grounded situations. Given a source sentence, the task
is to select the most possible one among four choices for
sentence continuity.

B.10. SQuAD v1.1

The Stanford Question Answering Dataset (SQuAD v1.1)
(Rajpurkar et al., 2016) is a large-scale question and answer
task consisting of 100K question and answer pairs from
more than 500 articles. Given a passage and the question
from Wikipedia, the goal is to determine the start and the
end token of the answer text.

B.11. SQuAD v2.0

The SQuAD v2.0 task (Rajpurkar et al., 2018) is the ex-
tension of above SQuAD v1.1, which contains the 100K
questions in SQuAD v1.1 and 50K unanswerable questions.
The existence of unanswerable question makes this task
more realistic and challenging.

C. Implementation Details
The hyper-parameters of various downstream tasks are
shown in Table 5.

Table 5. Hyper-parameters for different downstream tasks.
GLUE SWAG SQuAD v1.1 SQuAD v2.0

Batch size 32 16 32 48
Weight decay [0.1, 0.01] [0.1, 0.01] [0.1, 0.01] [0.1, 0.01]
Warmup proportion 0.1 0.1 0.1 0.1
Learning rate decay linear linear linear linear
Training Epochs 3 3 3 2
Learning rate [2e-5, 1e-5, 1.5e-5, 3e-5, 4e-5, 5e-5]


