
Supplement to “Deeply-Debiased Off-Policy Interval Estimation"

Chengchun Shi * 1 Runzhe Wan * 2 Victor Chernozhukov 3 Rui Song 2

A. Technical Definitions and Proofs
A.1. Third-Order Q-Estimator

We detail the form of Q̂(3)
k . According to the definition, we have

Q̂
(3)
k =

1

|Ik|T (|Ik|T − 1)

∑
i1∈Ik,0≤t1<T
i2∈Ik,0≤t2<T
(i1,t1)6=(i2,t2)

D(i1,t1)
k D(i2,t2)

k Q̂k.

For any state-action pair (a, s), it follows that

Q̂
(3)
k (a, s) =

(1− γ)−1

|Ik|T (|Ik|T − 1)

∑
i1∈Ik,0≤t1<T
i2∈Ik,0≤t2<T
(i1,t1)6=(i2,t2)

τ̂k(Ai1,t1 , Si1,t1 , a, s){Ri1,t1 + γEa′∼π(·|Si1,t1+1)D
(i2,t2)
k Q̂k(a′, Si1,t1+1)

−D(i2,t2)
k Q̂k(Ai1,t1 , Si1,t1)}+

1

|Ik|T
∑

i2∈Ik,0≤t2<T
D(i2,t2)
k Q̂k(a, s).

The right-hand-side is equal to

Q̂k(a, s) +
(1− γ)−1

|Ik|T
∑

i∈Ik,0≤t<T
τ̂k(Ai,t, Si,t, a, s){Ri,t + γEa′∼π(·|Si,t+1)Q̂k(a′, Si,t+1)− Q̂k(Ai,t, Si,t)}

+
(1− γ)−2

|Ik|T (|Ik|T − 1)

∑
i1∈Ik,0≤t1<T
i2∈Ik,0≤t2<T
(i1,t1)6=(i2,t2)

τ̂k(Ai1,t1 , Si1,t1 , a, s){γEa′∼π(·|Si,t+1)τ̂k(Ai2,t2 , Si2,t2 , a
′, Si1,t1+1)

−τ̂k(Ai2,t2 , Si2,t2 , Ai1,t1 , Si1,t1) + (1− γ)τ̂k(Ai2,t2 , Si2,t2 , a, s)}{Ri2,t2 + γEa′∼π(·|Si2,t2+1)Q̂k(a′, Si2,t2+1)− Q̂k(Ai2,t2 , Si2,t2)}.

A.2. Definition of the L2-norm Convergence

A sequence of variables {Xn}n≥0 is said to converge in L2-norm to X if and only if E|Xn −X|2 → 0 as n→∞.

A Q-estimator Q̂ is said to converge in L2-norm to Qπ at a rate of (nT )−α if√
E(a,s)∼p∞E|Q̂(a, s)−Qπ(a, s)|2 = O{(nT )−α}.

Similarly, a conditional density ratio estimator τ̂ is said to converge in L2-norm to τπ at a rate of (nT )−α if√
E(a,s)∼p∞E(a∗,s∗)∼p∞E|τ̂(a, s, a∗, s∗)− τπ(a, s, a∗, s∗)|2 = O{(nT )−α}.

Finally, a marginalized density ratio estimator ω̂ is said to converge in L2-norm to ωπ at a rate of (nT )−α if√
E(a,s)∼p∞E|ω̂(a, s)− ωπ(a, s)|2 = O{(nT )−α}.



Deeply-Debiased Off-Policy Interval Estimation

A.3. Proof of Lemma 3

To simplify the presentation, in the proof we assume the data consist of independent tuples in Lemma 1. With weakly
dependent data, the aggregated bias will be upper bounded by the same order of magnitude (see the proof of Theorem 1 for
details).

We first study the bias of the Q-estimator. We will prove a slightly stronger result, showing that

E(a,s)∼p∞ |EQ̂
(m)
k (a, s)−Qπ(a, s)|2 = O{(nT )−2α1−2(m−1)α2}. (1)

We prove this assertion by induction. Consider the case where m = 2. By the doubly-robustness property, we have
Qπ(a, s) = E[Q̂k(a, s) + τ̂k(Ai,t, Si,t, a, s){Ri,t + Ea′∼π(·|Si,t+1)Q̂k(a′, Si,t+1)− Q̂k(Ai,t, Si,t)}]. It follows that

EQ̂(2)
k (a, s)−Qπ(a, s) = ED(i,t)

k Q̂k(a, s)−Qπ(a, s) = E{τ̂k(Ai,t, Si,t, a, s)− τπ(Ai,t, Si,t, a, s)}

×{Qπ(Ai,t, Si,t)− γEa′∼π(·|Si,t+1)Q
π(a′, Si,t+1) + γEa′∼π(·|Si,t+1)Q̂k(a′, Si,t+1)− Q̂k(Ai,t, Si,t)}.

(2)

By Cauchy-Schwarz inequality, E(a,s)∼p∞ |EQ̂(2)(a, s)−Qπ(a, s)|2 is upper bounded by

E(a,s)∼p∞E|τ̂k(Ai,t, Si,t, a, s)− τπ(Ai,t, Si,t, a, s)|2
{

2E|Q̂k(Ai,t, Si,t)−Qπ(Ai,t, Si,t)|2

+ 2Ea∼π(·|Si,t+1)E|Q̂k(a, Si,t+1)−Qπ(a, Si,t+1)|2
}
.

Under the convergence rate requirement, it is upper bounded by {(nT )−α1−α2}. This proves the assertion with m = 2.

Suppose the assertion holds with m = m0 ≥ 2. We aim to show it holds with m = m0 + 1. Similar to (2), since the data
tuples are i.i.d., we have

EQ̂(m0+1)
k (a, s)−Qπ(a, s) = ED(i,t)

k EQ̂(m0)
k (a, s)−Qπ(a, s) = E{τ̂k(Ai,t, Si,t, a, s)− τπ(Ai,t, Si,t, a, s)}×

[Qπ(Ai,t, Si,t)− γEa′∼π(·|Si,t+1)Q
π(a′, Si,t+1) + γEa′∼π(·|Si,t+1)E{Q̂

(m0)
k (a′, Si,t+1)|Si,t+1} − E{Q̂(m0)

k (Ai,t, Si,t)|Ai,t, Si,t}].

By Cauchy-Schwarz inequality, E(a,s)∼p∞ |EQ̂(m0+1)(a, s)−Qπ(a, s)|2 is upper bounded by

E(a,s)∼p∞E|τ̂k(Ai,t, Si,t, a, s)− τπ(Ai,t, Si,t, a, s)|2
[
2E|E{Q̂(m0)

k (Ai,t, Si,t)|Ai,t, Si,t} −Qπ(Ai,t, Si,t)|2

+ 2Ea∼π(·|Si,t+1)E|E{Q̂
(m0)
k (a, Si,t+1)|Si,t+1} −Qπ(a, Si,t+1)|2

]
.

(3)

The above bound is of the order O{(nT )−2α1+2m0α2}. The assertion is thus proven.

We next consider the bias of the resulting value. Since η(m)
TR is a simple average of {ψ(m)

i,t }i,t, it suffices to provide an upper

bound for ψ(m)
i,t for a given tuple (i, t) ∈ Ik. We decompose Q̂(m)

k into the sum of the following two parts:(
|Ik|T

(m− 1)

)−1 ∑
(il,tl)=(i,t) for some l

D(i1,t1)
k · · · D(im−1,tm−1)

k Q̂k

+

(
|Ik|T

(m− 1)

)−1 ∑
(il,tl)6=(i,t) for any l

D(i1,t1)
k · · · D(im−1,tm−1)

k Q̂k.

Since the functions Q̂k, τ̂k and the immediate rewards are uniformly bounded, the first term is upper bounded by

c(m− 1)

(
|Ik|T

(m− 1)

)−1(|Ik|T − 1

(m− 2)

)
=
c(m− 1)2

|Ik|T
= O(n−1T−1),

where c denotes some positive constant. Similarly, we can show the second term can be well-approximated by

Q̂
(m)
k,i,t = (m− 1)

(
|Ik|T − 1

(m− 2)

)−1 ∑
(il,tl)6=(i,t) for any l

D(i1,t1)
k · · · D(im−1,tm−1)

k Q̂k,
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with the approximation error upper bounded by O(n−1T−1).

Since ψ(m)
i,t is a linear function Q̂(m), we have maxi,t |ψ(m)

i,t − φ
(m)
i,t | = O(n−1T−1) where φ(m)

i,t is a version of ψ(m)
i,t with

Q̂(m) replaced with Q̂(m)
i,t . It suffices to show the bias maxi,t |Eφ(m)

i,t − ηπ| converges at a rate of (nT )−α1−(m−1)α2−α3 .
Since the tuples of indices (i, t), (i1, t1), · · · , (im, tm) are different, the corresponding data observations are independent.
This assertion can be proven in a similar manner as (1).

A.4. Proof of Theorem 1

For any k, let r1, r2, r3 denote the rate of convergence of Q̂k, τ̂k and ω̂k, respectively. These rates of convergence will
approach zero when the corresponding nuisance estimators are consistent.

In Part 1, we prove a version Lemma 3 holds under the exponential β-mixing condition in (A1) as well. Specifically, the
aggregated bias of the Q-estimator decays at a rate of O(r1r

(m−1)
2 ), and the bias of the corresponding value estimator decays

at a rate of O(r1r
(m−1)
2 r3). When one of the three estimated nuisance functions is consistent, the bias decays to zero.

In Part 2, we show the variance of the value estimator decays to zero. By Chebyshev’s inequality, this implies that our value
estimator is consistent. The proof is thus completed.

Part 1. To simplify the proof, we assume Ik contains a single element i. The bias is given by(
T

m− 1

)−1 ∑
t1<···<tm−1

(ED(i,t1)
k · · · D(i,tm−1)

k Q̂k −Qπ).

We next apply Berbee’s coupling lemma (see e.g., Lemma 4.1 in Dedecker & Louhichi, 2002) to bound the bias. Consider a
given ordered tuple (t1, t2, · · · , tm−1). Following the discussion below Lemma 4.1 in (Dedecker & Louhichi, 2002), we
can construct i.i.d. data tuples {(S0

i,tl
, A0

i,tl
, R0

i,tl
, S0
i,tl+1)}1≤l≤m−1 such that the event

(S0
i,tl
, A0

i,tl
, R0

i,tl
, S0
i,tl+1) = (Si,tl , Ai,tl , Ri,tl , Si,tl+1), ∀1 ≤ l ≤ m− 1,

holds with probability at least 1−
∑m−2
l=1 β(tl+1−tl−1) where β(·) denotes the β-mixing coefficients of {(St, At, Rt)}t≥0.

This allows us to decompose each of the individual bias |ED(i,t1)
k · · · D(i,tm−1)

k Q̂m −Qπ| into the following two terms

|ED(i,t1)
k · · · D(i,tm−1)

k Q̂k −Qπ|I{(S0
i,tl
, A0

i,tl
, R0

i,tl
, S0
i,tl+1) = (Si,tl , Ai,tl , Ri,tl , Si,tl+1), ∀1 ≤ l ≤ m− 1}

+|ED(i,t1)
k · · · D(i,tm−1)

k Q̂k −Qπ|I{(S0
i,tl
, A0

i,tl
, R0

i,tl
, S0
i,tl+1) 6= (Si,tl , Ai,tl , Ri,tl , Si,tl+1), ∃1 ≤ l ≤ m− 1}.

Based on Lemma 3, the first term can be upper bounded by O(T−α1−(m−1)α2). Under the boundedness property, the second
term is upper bounded by c{

∑m−2
l=1 β(tl+1 − tl − 1)} for some constant c > 0. Averaging over all possible combinations of

individual debiasing operators yields the following upper bound

O(T−α∗) + c

(
T

m− 1

)−1 ∑
t1<···<tm−1

m−2∑
l=1

β(tl+1 − tl − 1).

Under (A1), we have β(t) = O(ρt) for some 0 < ρ < 1 and any t ≥ 0. The second term is upper bounded by O(T−1).
This yields the upper bound O(T−α∗) when Ik consists of a single element. In general, we can show the bias is upper
bounded by O{(nT )−α∗}. Using similar arguments, we can show the bias of the value is upper bounded by O{(nT )−α}.
This completes the proof for Part 1.

Part 2. For 1 ≤ k ≤ K, let η̂(m)
TR,k = (nT/K)−1

∑
i∈Ik

∑T−1
t=0 ψ

(m)
i,t . By Cauchy-Schwarz inequality, it suffices to

show the Var(η̂(m)
TR,k) → 0 for each k. Using similar arguments in the proof of Lemma 3, we can show the difference

(nT/K)−1
∑
i∈Ik

∑T−1
t=0 (ψ

(m)
i,t − φ

(m)
i,t ) is upper bounded by O(n−1T−1). Consequently, it suffices to upper bound the

variance of η̂(m)
TR,k,U = (nT/K)−1

∑
i∈Ik

∑T−1
t=0 φ

(m)
i,t .

A key observation is that, conditional on the estimators Q̂k, τ̂k and ω̂k, η̂(m)
TR,k,U corresponds to an m-th order U-statistic.

Under the given conditions, the kernel function associated with the U-statistic is uniformly bounded. We first consider the
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variance of η̂(m)
TR,k,U conditional on the nuisance estimators. To simplify the proof, we similarly assume that Ik consists of a

single trajectory, as in Part 1. By definition, the conditional variance is given by(
m!

T !

)2 ∑
disjoint t1,··· ,tm
disjoint t′1,··· ,t

′
m

cov
(
E(a,s)∼(π,G)D

(i,t1)
k · · · D(i,tm−1)

k Q̂k(a, s) +
1

1− γ
ω̂k(Ai,tm , Si,tm){Ri,m

−γEa∼π(·|Si,m+1)D
(i,1)
k · · · D(i,m−1)

k Q̂k(a, Si,m+1) +D(i,1)
k · · · D(i,m−1)

k Q̂k(Ai,tm , Si,tm)},

E(a,s)∼(π,G)D
(i,t′1)
k · · · D(i,t′m−1)

k Q̂k(a, s) +
1

1− γ
ω̂k(Ai,t′m , Si,t′m){Ri,t′m − γ

×Ea∼π(·|Si,t′m+1)D
(i,1)
k · · · D(i,m−1)

k Q̂k(a, Si,t′m+1) +D(i,t′1)
k · · · D(i,t′m−1)

k Q̂k(Ai,t′m , Si,t′m)}
∣∣∣ Q̂k, τ̂k, ω̂k) ,

where E(a,s)∼(π,G) denotes the expectation by assuming s ∼ G and a ∼ π(·|s). Using similar arguments in Part 1, we
can show that the above conditional variance decays to zero. In addition, E(η̂

(m)
TR,k,U |Q̂k, τ̂k, ω̂k) is to converge to ηπ,

when one of the nuisance estimator is consistent. Under the given conditions, η̂(m)
TR,k,U is bounded. This further yields

that Var{E(η̂
(m)
TR,k,U |Q̂k, τ̂k, ω̂k)} → 0. Together with the fact that the conditional variance of η̂(m)

TR,k,U decays to zero, the

variance of η̂(m)
TR,k,U decays to zero. The proof is thus completed.

A.5. Proof of Theorem 2

In the proof of Theorem 1, we have shown that η̂(m)
TR,k − η̂

(m)
TR,k,U = O(n−1T−1). This in turn implies that η̂(m)

TR − η̂
(m)
TR,U =

O(n−1T−1) where η̂(m)
TR,U is a simple average of {η̂(m)

TR,k,U}k. It suffices to focus on η̂(m)
TR,U .

The rest of the proof is divided into three parts. We first define η̂(m),∗
TR,U as a version of η̂(m)

TR,U with the Q-, marginalized density

ratio and conditional density ratio estimators replaced by their oracle values, and prove that
√
nT (η̂

(m),∗
TR,U − ηπ)

d→ N(0, σ2).

We next show that the difference η̂(m),∗
TR,U − η̂

(m)
TR,U + Eη̂(m)

TR,U − ηπ is op{(nT )−1/2}. The assertion thus follows from an

application of Slutsky’s theorem. Finally, in Part 3, we present the variance decomposition formula for Var(η̂(m),∗
TR,U ).

Part 1: A key observation is that, the oracle version of the estimator η̂(m),∗
TR,U − ηπ corresponds to an m-th order U-statistic.

The corresponding symmetric kernel function is given by

h({(Sij ,tj , Aij ,tj , Rij ,tj , Sij ,tj+1)}mj=1) =
1

m(1− γ)

m∑
j=1

E(a,s)∼(π,G)

∏
l 6=j

D(il,tl)Qπ(a, s) +
1

1− γ
ωπ(Aij ,tj , Sij ,tj )

×

Rij ,tj + γEa∼π(·|Sij ,tj+1)

∏
l 6=j

D(il,tl)Qπ(a, Sij ,tj+1)−
∏
l 6=j

D(il,tl)Qπ(Aij ,tj , Sij ,tj )


− ηπ.

Here, D(i1,t1) denotes a version of D(i1,t1)
k by replacing the estimator τ̂k with the oracle value τπ. Under (A1) and

the boundedness assumption in (A3), the conditions in Theorem 1 (c) of Denker & Keller (1983) are satisfied. The
asymptotic normality of η̂(m),∗

TR,U is thus proven. In addition, the asymptotic variance of
√
nT (η̂

(m),∗
TR,U − ηπ) is given by

(nT )−1m2E|
∑
i,t h1(Si,t, Ai,t, Ri,t, Si,t+1)|2 where

h1(s1, a1, r1, s
′
1) = E

(s2,a2,r2,s′2),··· ,(sm,am,rm,s′m)
iid∼ p∞

h({(sj , aj , rj , s′j)}mj=1).

Here, we use p∞ to denote the limiting distribution of the stochastic process {(St, At, Rt, St+1)}t≥0.

Since the expectation of the temporal-difference error r + γEa′∼π(·|s′)Q
π(a′, s′)−Q(a, s) is zero under the distribution

p∞, the function h1(s1, a1, r1, s
′
1) equals

1

m(1− γ)
ωπ(a1, s1){r1 + γEa′1∼π(·|s′1)Q

π(a′1, s
′
1)−Q(a1, s1)}.
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Consequently, the asymptotic variance σ2 equals

1

nT (1− γ)2
E

∣∣∣∣∣∣
∑
i,t

ωπ(Ai,t, Si,t){Ri,t + γEa′∼π(·|Si,t+1)Q
π(a′, Si,t+1)−Qπ(Ai,t, Si,t)}

∣∣∣∣∣∣
2

.

Under MA and CMIA, for any index i, the sequence of temporal-difference errors {εi,t}t≥0 = {Ri,t +
γEa′∼π(·|Si,t+1)Q

π(a′, Si,t+1) − Qπ(Ai,t, Si,t)}t≥0 forms a martingale difference sequence. As such, the elements in
{ωπ(Ai,t, Si,t)εi,t}t≥0 are pairwise uncorrelated. Consequently,

σ2 =
1

nT (1− γ)2

∑
i,t

E
∣∣ωπ(Ai,t, Si,t){Ri,t + γEa′∼π(·|Si,t+1)Q

π(a′, Si,t+1)−Qπ(Ai,t, Si,t)}
∣∣2 ,

and is equal to (3). This completes the proof for Part 1.

Part 2: For any 1 ≤ k ≤ K, we similarly define η̂(m),∗
TR,k,U as the oracle version of η̂(m)

TR,k,U . In this Part, we focus on proving
√
nT{η̂(m)

TR,k,U − η̂
(m),∗
TR,k,U − E(η̂

(m)
TR,k,U |Q̂k, τ̂k, ω̂k) + ηπ} = op(1). This in turn implies that

√
nT (η̂

(m)
TR,k,U − η̂

(m),∗
TR,k,U −

Eη̂(m)
TR,k,U + ηπ) = op(1) and hence

√
nT (η̂

(m)
TR,U − η̂

(m),∗
TR,U − Eη̂(m)

TR,U + ηπ) = op{(nT )−1/2}.

We next show
√
nT{η̂(m)

TR,k,U − η̂
(m),∗
TR,k,U − E(η̂

(m)
TR,k,U |Q̂k, τ̂k, ω̂k) + ηπ} = op(1). To simplify the proof, we assume Ik

consists of a single element i. Note that η̂(m)
TR,k,U − η̂

(m),∗
TR,k,U can be decomposed into the sum

∑m
j=0 η̂j,k where η̂0,k is the

main effect term, η̂1,k is the first-order linear term and η̂j,k is the high-order U-statistic for any j ≥ 2. Specifically,

η̂0,k = E(a,s)∼(π,G){Q̂k(a, s)−Qπ(a, s)},

corresponding to the difference between two plug-in estimators. Its conditional variance equals zero given Q̂k and we have
η̂0,k = E(η̂0,k|Q̂k). (1− γ)η̂1,k equals

1

T

T−1∑
t=0

ω̂k(Ai,t, Si,t)[Q
π(Ai,t, Si,t)− Q̂k(Ai,t, Si,t)− γEa∼π(·|Si,t+1){Qπ(a, Si,t+1)− Q̂k(a, Si,t+1)}]

+
1

T

T−1∑
t=0

E(a,s)∼(π,G)τ̂k(Ai,t, Si,t, a, s)[Q
π(Ai,t, Si,t)− Q̂k(Ai,t, Si,t)− γEa∼π(·|Si,t+1){Qπ(a, Si,t+1)− Q̂k(a, Si,t+1)}]

+
1

T

T−1∑
t=0

{ω̂k(Ai,t, Si,t) + E(a,s)∼(π,G)τ̂k(Ai,t, Si,t, a, s)− 2ωπ(Ai,t, Si,t)}εi,t.

Using similar arguments in the proof of Part 1, the conditional variance of the third line given ω̂k and τ̂k is equal to
T−1E{ω̂k(Ai,t, Si,t) +E(a,s)∼(π,G)τ̂k(Ai,t, Si,t, a, s)− 2ωπ(Ai,t, Si,t)}2ε2

i,t. It is of the order op(T−1) given that ω̂k and
τ̂k coverages to ωπ and τπ , respectively. As such, we have

1

T

T−1∑
t=0

{ω̂k(Ai,t, Si,t) + E(a,s)∼(π,G)τ̂k(Ai,t, Si,t, a, s)− 2ωπ(Ai,t, Si,t)}εi,t

=E

[
1

T

T−1∑
t=0

{ω̂k(Ai,t, Si,t) + E(a,s)∼(π,G)τ̂k(Ai,t, Si,t, a, s)− 2ωπ(Ai,t, Si,t)}εi,t

∣∣∣∣∣ ω̂k, τ̂k
]

+ op(T
−1/2).

(4)

As for the first line, similar to the proof of Theorem 1, we will apply Berbee’s coupling lemma to bound its conditional
variance. Specifically, following the discussion below Lemma 4.1 of (Dedecker & Louhichi, 2002), we can construct a
sequence of data tuples {O0

i,t = (S0
i,tl
, A0

i,tl
, R0

i,tl
, S0
i,tl+1)}1≤l≤m−1 such that

1

T

T−1∑
t=0

ω̂k(Ai,t, Si,t)[Q
π(Ai,t, Si,t)− Q̂k(Ai,t, Si,t)− γEa∼π(·|Si,t+1){Qπ(a, Si,t+1)− Q̂k(a, Si,t+1)}]

=
1

T

T−1∑
t=0

ω̂k(A0
i,t, S

0
i,t)[Q

π(A0
i,t, S

0
i,t)− Q̂k(A0

i,t, S
0
i,t)− γEa∼π(·|S0

i,t+1){Qπ(a, S0
i,t+1)− Q̂k(a, S0

i,t+1)}], (5)
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with probability at least 1 − Tβ(q)/q such that the sequences {U0
i,2t : i ≥ 0} and {U0

i,2t+1 : i ≥ 0} are i.i.d. where
U0
i = (O0

i,tq, O
0
i,tq+1, · · · , O0

i,tq+q−1). Due to the independence, the conditional variance of (5) is upper bounded by
Op(q

2T−1−2α1), under Condition (A2). Take q to be proportional to log T , the probability 1− Tβ(q)/q will approach 1,
under Condition (A1). As such, the conditional variance of (5) is op(T−1) and we have

1

T

T−1∑
t=0

ω̂k(A0
i,t, S

0
i,t)[Q

π(A0
i,t, S

0
i,t)− Q̂k(A0

i,t, S
0
i,t)− γEa∼π(·|S0

i,t+1){Qπ(a, S0
i,t+1)− Q̂k(a, S0

i,t+1)}]

= E

[
1

T

T−1∑
t=0

ω̂k(A0
i,t, S

0
i,t)[Q

π(A0
i,t, S

0
i,t)− Q̂k(A0

i,t, S
0
i,t)− γEa∼π(·|S0

i,t+1){Qπ(a, S0
i,t+1)− Q̂k(a, S0

i,t+1)}]

∣∣∣∣∣ Q̂k, ω̂k
]

+op(T
−1/2).

This in turn implies that

1

T

T−1∑
t=0

ω̂k(Ai,t, Si,t)[Q
π(Ai,t, Si,t)− Q̂k(Ai,t, Si,t)− γEa∼π(·|Si,t+1){Qπ(a, Si,t+1)− Q̂k(a, Si,t+1)}]

= E

[
1

T

T−1∑
t=0

ω̂k(Ai,t, Si,t)[Q
π(Ai,t, Si,t)− Q̂k(Ai,t, Si,t)− γEa∼π(·|Si,t+1){Qπ(a, Si,t+1)− Q̂k(a, Si,t+1)}]

∣∣∣∣∣ Q̂k, ω̂k
]

+op(T
−1/2).

(6)

Using similar arguments, we can show the second line satisfies a similar relation as well. This together with (4) and (6)
yields that η̂1,k = E(η̂1,k|Q̂k, ω̂k, τ̂k) + op(T

−1/2).

η̂2,k equals {T (T − 1)}−1
∑
t1 6=t2 η̂2,t1,t2,k where (1− γ)2η̂2,t1,t2,k equals

γEa∼π(·|Si,t1+1)[{ω̂k(Ai,t1 , Si,t1) + E(a,s)∼(π,G)τ̂k(Ai,t1 , Si,t1 , a, s)}τ̂k(Ai,t2 , Si,t2 , a, Si,t1+1)

−2ωπ(Ai,t1 , Si,t1)τπ(Ai,t2 , Si,t2 , a, Si,t1+1)]εi2,t2

−[{ω̂k(Ai,t1 , Si,t1) + E(a,s)∼(π,G)τ̂k(Ai,t1 , Si,t1 , a, s)}τ̂k(Ai,t2 , Si,t2 , Ai,t1 , Si,t1)

−2ωπ(Ai,t1 , Si,t1)τπ(Ai,t2 , Si,t2 , Ai,t1 , Si,t1)]εi2,t2

+{ω̂k(Ai,t1 , Si,t1) + E(a,s)∼(π,G)τ̂k(Ai,t1 , Si,t1 , a, s)}τ̂k(Ai,t2 , Si,t2 , Ai,t1 , Si,t1)

×{Qπ(Ai,t2 , Si,t2)− Q̂k(Ai,t2 , Si,t2)− Ea∼π(·|Si,t2+1){Qπ(a, Si,t2+1)− Q̂k(a, Si,t2+1)}}
−γ{ω̂k(Ai,t1 , Si,t1) + E(a,s)∼(π,G)τ̂k(Ai,t1 , Si,t1 , a, s)}Ea∼π(·|Si,t1+1)τ̂k(Ai,t2 , Si,t2 , a, Si,t1+1)

×{Qπ(Ai,t2 , Si,t2)− Q̂k(Ai,t2 , Si,t2)− Ea∼π(·|Si,t2+1){Qπ(a, Si,t2+1)− Q̂k(a, Si,t2+1)}}.

Other high-order terms can be similarly derived. Using similar arguments in proving η̂1,k = E(η̂1,k|Q̂k) + op(T
−1/2),

we can show η̂j,k = E(η̂j,k|Q̂k, ω̂k, τ̂k) + op(T
−1/2) for any j ≥ 2. This further implies that η̂(m)

TR,k,U − η̂
(m),∗
TR,k,U −

E(η̂
(m)
TR,k,U |Q̂k, τ̂k, ω̂k) + ηπ = op(T

−1/2), since Eη̂(m),∗
TR,k,U = ηπ . More generally, when Ik consists of multiple trajectories,

we can similarly show that η̂(m)
TR,k,U − η̂

(m),∗
TR,k,U − E(η̂

(m)
TR,k,U |Q̂k, τ̂k, ω̂k) + ηπ = op(n

−1/2T−1/2). This completes the proof
of Part 2.

Part 3: Finally, we discuss the variance decomposition formula. Similar to Step 2, we can decompose η̂(m),∗
TR,U into the sum∑m

j=0 η̂
∗
j where η̂∗0 is the main effect ηπ = E(a,s)∼(π,G)Q

π(a, s), η̂∗1 is the first-order term

1

nT (1− γ)

n∑
i=1

T−1∑
t=0

ωπ(Ai,t, Si,t){Ri,t + γEa∼π(·|Si,t+1)Q
π(a, Si,t+1)−Qπ(Ai,t, Si,t)}.

For any j ≥ 2, η̂∗j corresponds to a degenerate U-statistic whose explicit form is given by(
m

j

)
j!

(nT )!

∑
disjoint (i1,t1),··· ,(ij ,tj)

hr({(Sil,tl , Ail,tl , Ril,tl , Sil,tl+1
)}jl=1),
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where

hr({(sl, al, rl, s′l)}
j
l=1) =

j∑
r=1

(
j

r

)
(−1)j−rE

(sl+1,al+1,rl+1,s′l+1),··· ,(sm,am,rm,s′m)
iid∼ p∞

h({(sj , aj , rj , s′j)}mj=1),

where the kernel h is defined in Part 1. For instance,

η̂∗2 =
1

(1− γ)2nT (nT − 1)

∑
(i1,t1)6=(i2,t2)

[
ωπ(Ai1,t1 , Si1,t1){γEa′∼π(·|Si1,t1+1)τ

π(Ai2,t2 , Si2,t2 , a
′, Si1,t1+1)

−τπ(Ai2,t2 , Si2,t2 , Ai1,t1 , Si1,t1)}+ (1− γ)ωπ(Ai2,t2 , Si2,t2)] εi2,t2 .

Other high-order terms can be similarly derived.

A.6. Proof of Theorem 3

By Theorem 2, we have
√
nT (η̂(m) − Eη̂(m))

d→ N(0, σ2) for any m. Under the given conditions, using similar arguments
in Part 1 of the proof of Theorem 1, Eη̂(m) converges to ηπ at a rate of o{(nT )−1/2}. This further implies that

√
nT (η̂(m)−

ηπ)
d→ N(0, σ2).

To prove the validity of our CI, it suffices to show the sampling variance estimator (σ̂(m))2 is consistent. The consistency
can be proven using similar arguments in Part 2 of the proof of Theorem 2. We omit the details to save space.

B. More on the estimation of the nuisance functions
B.1. Fitted-Q evaluation

We review the fitted-Q evaluation (FQE) algorithm proposed in Le et al. (2019), which is the subroutine we use to learn the
Q-function. FQE is an iterative algorithm based on the Bellman’s equation:

Q(a, s) = Ea′∼π(·|s) (Rt + γQ(a′|St+1)|At = a, St = s) .

Based on this equation, we iteratively update the estimate by

Qm(a, s) = arg min
Q

∑
i′∈Ik

∑
t<T

(γEa′∼π(·|Si,t+1)Qm−1(a′|Si,t+1)

+Ri,t −Q(Ai,t, Si,t))
2,

for m = 1, 2, · · · . The optimization problem can be solved with various supervised learning algorithms. We summarize
FQE in Algorithm 1.

Algorithm 1 Fitted-Q evaluation
Input: Data {Sj,t, Aj,t, Rj,t, Sj,t+1}j,t, policy π, function class F , decay rate γ, number of iterations M
Randomly pick Q0 ∈ F
for m = 1, . . . ,M do

Update target values Zj,t = Rj,t + γQm−1(Sj,t+1, π(Sj,t+1)) for all (j, t);
Solve a regression problem to update the Q-function:
Qm = arg minQ∈F

1
n

∑n
i=1{Q(Sj,t, Aj,t)− Zj,t}2

end for
Output: The estimated Q-function QM (·, ·)

B.2. Learning the density ratio ω

The estimation of the density ratio ω is based on the following key observation.
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Lemma 1 For any function f , we have L(ω, f) = 0, where L(ω, f) is

Ea∼π(·|Si,t+1){ω(Ai,t, Si,t)(γf(a, Si,t+1)− f(Ai,t, Si,t))}
+ (1− γ)ES0∼G,a∼π(·|S0)f(a, S0).

(7)

Conversely, ω is the only function satisfying this condition.

Therefore, as suggested in Uehara et al. (2019), ω can be learned by solving the following mini-max problem

arg min
ω∈Ω

sup
f∈F

L(ω, f)2, (8)

for some functional class Ω and F . The expectation in (7) is approximated by the sample mean. To simplify the calculation,
we can choose F to be a reproducing kernel Hilbert space (RKHS) , with which the inner maximization has a closed form
solution, and then ω can be learned by solving the outer minimization via stochastic gradient descent. Let κ(·, ·; ·, ·) be the
kernel function of the RKHS. Consider sampling a random minibatch {Sig,tg , Aig,tg , Sig,tg+1 : g ∈M} from a data subset

Ik. We form the objective function D(ω) as
(|M|

2

)−1∑
g1,g2∈M,g1 6=g2 D(ω, g1, g2) where D(ω, g1, g2) is equal to

2(1− γ)ω(Xig1 ,tg1
)
{
γEa∼π(•|Sig1 ,tg1+1)

s′∼G,a′∼π(•|s′)

κ(Sig1 ,tg1+1, a; s′, a′)− Es′∼G,a′∼π(•|s′)κ(Xig1 ,tg1
; s′, a′)

}
+ω(Xig1 ,tg1

)ω(Xig2 ,tg2
)
{
γ2Ea1∼π(•|Sig1 ,tg1+1)

a2∼π(•|Sig2 ,tg2+1)

κ(Sig2 ,tg2+1, a2;Sig1 ,tg1+1, a1)

−2γEa∼π(•|Sig1 ,tg1+1)κ(Sig1 ,tg1+1, a;Xig2 ,tg2
) + κ(Xi2,t2 ;Xi1,t1)

}
+(1− γ)2E s′,s′′∼G

a′∼π(•|s′),a′′∼π(•|s′′)
κ(a′, s′; a′′, s′′),

where Xi,t denotes the state-action pair (Ai,t, Si,t). Thus, in each step, we take a random minibatch from the observed data.
Then we update the model parameter

θ ← θ − ε∆θD(ωθ/zωθ ),

where zωθ is a normalizing constant such that

zωθ =
1

|M|
∑
g∈M

ωθ(Aig,tg , Sig,tg ).

Note that ω satisfies Eω(π,At, St) = 1. For a given ω̂k, we can further normalize the density ratio by ω̂k(•) =
ω̂k(•)/{

∑
j,t ω̂k(Aj,t, Sj,t)/(nT )}. This yields the final estimates.

B.3. Learning the conditional sampling ratio τ
Following the same analogy, our algorithm for estimating τ is motivated by the following key observation.

Lemma 2 For any two pairs (i, t) and (i′, t′) such that Oi,t and Oi′,t′ are independent, we have for any function f that
E∆(τ, f, π; i, t, i′, t′) = 0, where ∆(τ, f, π; i, t, i′, t′) is

τ(Si′,t′ , Ai′,t′ ;Ai,t, Si,t)
{
γEa∼π(·|Si′,t′+1)f(Si′,t′+1, a;Ai,t, Si,t)

−f(Si′,t′ , Ai′,t′ ;Ai,t, Si,t)
}

+ (1− γ)f(Ai,t, Si,t, Ai,t, Si,t).

Conversely, τ is the only function satisfying this condition.

Therefore, τ can be learned by solving the following mini-max problem

arg min
ω∈Ω

sup
f∈F

∣∣∣∣∣∣
∑

(i,t)6=(i′,t′)

∆(ω, f, π; i, t, i′, t′)

∣∣∣∣∣∣
2

, (9)
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Algorithm 2 Estimation of the density ratio.
Input: The data subset in I`.
Initial: Initial the density ratio ω = ωβ to be a neural network parameterized by β.
for iteration = 1, 2, · · · do

a. Randomly sample batchesM,M∗ from the data transitions.
b. Update the parameter β by

β ← β − ε
(
|M|

2

)−2 ∑
(i1,t1),(i′1,t

′
1)∈M

(i1,t1)6=(i′1,t
′
1)

∑
(i2,t2),(i′2,t

′
2)∈M

(i2,t2)6=(i′2,t
′
2)

∇βD(
ωβ
zωβ

, π; i1, t1, i
′
1, t
′
1, i2, t2, i

′
2, t
′
2),

where zωβ is a normalization constant

zωβ (·;Ai,t, Si,t) =
1

|M∗|
∑

(i′,t′)∈M∗
ωβ(Xi′,t′ ;Xi,t).

end for
Output: the density ratio ωβ .

for some functional class Ω and F . The optimization for τ can be implemented in a similar way as that for ω. Specifically,
We set F to a unit ball of a reproducing kernel Hilbert space (RFHS), i.e., F = {f ∈ H : ‖f‖H = 1}, where

H =

f(·) =
∑

(i,t)6=(i′,t′)

bi,t,i′,t′κ(Xi′,t′ , Xi,t; ·) : bi,t,i′,t′ ∈ R

 ,

for some positive definite kernel κ(·; ·), where Xi,t is a shorthand for the state-action pair (Ai,t, Si,t). The optimization
problem in (9) is then reduced to

arg min
ω∈Ω

∑
(i1,t1)6=(i′1,t

′
1)

(i2,t2)6=(i′2,t
′
2)

D(ω, π; i1, t1, i
′
1, t
′
1, i2, t2, i

′
2, t
′
2),

where D(ω, π; i1, t1, i
′
1, t
′
1, i2, t2, i

′
2, t
′
2) is given by

ω(Xi′1,t
′
1
;Xi1,t1)

(1− γ)−1

{
γEa∼π(•|Si′1,t′1+1)κ(Si′1,t′1+1, a,Xi1,t1 ;Xi2,t2 , Xi2,t2)− κ(Xi′1,t

′
1
, Xi1,t1 ;Xi2,t2 , Xi2,t2)

}
+
ω(Xi′2,t

′
2
;Xi2,t2)

(1− γ)−1

{
γEa∼π(•|Si′2,t′2+1)κ(Si′2,t′2+1, a,Xi2,t2 ;Xi1,t1 , Xi1,t1)− κ(Xi′2,t

′
2
, Xi2,t2 ;Xi1,t1 , Xi1,t1)

}
+ω(Xi′1,t

′
1
;Xi1,t1)ω(Xi′2,t

′
2
;Xi2,t2)

{
γ2Ea1∼π(•|Si′1,t′1+1)

a2∼π(•|Si′2,t′2+1)

κ(Si′2,t′2+1, a,Xi2,t2 ;Si′1,t′1+1, a1, Xi1,t1)

−γEa1∼π(•|Si′1,t′1+1)κ(Si′1,t′1+1, a,Xi1,t1 ;Xi′2,t
′
2
, Xi2,t2)− γEa2∼π(•|Si′2,t′2+1)κ(Si′2,t′2+1, a,Xi2,t2 ;Xi′1,t

′
1
, Xi1,t1)

+κ(Xi′2,t
′
2
, Xi2,t2 ;Xi′1,t

′
1
, Xi1,t1)

}
+ (1− γ)2κ(Xi1,t1 , Xi1,t1 ;Xi2,t2 , Xi2,t2).

In our implementation, we set Ω to the class of neural networks. The detailed estimating procedure is given in Algorithm 2.

C. Additional numerical details
In this section, we report more details of the simulation environments and the algorithm implementations.
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C.1. More about the toy example

The behaviour policy is chosen as a Bernoulli distribution with equal probabilities, and the target policy is chosen as follows:
if the agent is at state A, then it takes action to transit to B or C with equal probabilities, while if it is at state B or C, it takes
action to transit to A with probability 1.0. The movement is uncertain: with probability 0.9 the transition will follow the
action, and with 0.1 the agent will just stay where it is. The initial states are equally distributed over the three states. In
Figure 1, when the convergence rate of nuisance estimators is set as (nT )−α, to inject noises in the nuisance functions, we
add a noise following N (0, (0.2n−α)2) to Q(s, a) when Q is contaminated, and add a noise following N (0, (0.04n−α)2)
to the corrsponding density ratio when ω or τ is contaminated. In Figure 2, to inject noises in the nuisance functions, we add
a fixed noise following N (0, 0.22) to Q(s, a) when Q is contaminated, and add a fixed noise following N (0, 0.042) to the
corresponding density ratio when ω or τ is contaminated. The length of trajectories is fixed as 50 for all settings.

C.2. More about the simulation settings

C.2.1. THE MODIFIED CARTPOLE ENVIRONMENT

Following Uehara et al. (2019), we slightly modified the original Cartpole environment in Brockman et al. (2016) to better fit
the off-policy evaluation task. Specifically, we add small Gaussian noise with mean zero and standard deviation 0.02 on the
original deterministic transition dynamics, and define a new state-action-dependent reward as (1− (x2)/11.52− (θ2)/288),
where x is the cart position and θ is the pole angle, to replace the original constant rewards.

C.2.2. THE DIABETES ENVIRONMENT

We use the simulation environment about an mobile health application on diabetes control calibrated in Shi et al. (2020).
The state vector is 15-dimensional and it contains the measurements of four hourly covariates and the hourly amounts of
insulin injected in the past four hours, and the action space is discrete with 5 levels on different amounts of insulin injection.
The reward is a deterministic function of the glucose level, the state transition for the glucose is a linear function estimated
from real data, and the noise for the glucose is set to have standard deviation 10 in our experiment. The objective is to learn
an optimal policy that maps patients time-varying coefficients into the amount of insulin injected to optimal patients health
status. More details can be found in Shi et al. (2020).

C.2.3. CONSTRUCTION OF THE BEHAVIOUR AND TARGET POLICIES

For both environment, we first run deep-Q network to get a near-optimal Q-function Q(s, a), and then apply softmax on its
Q-value divided by an adjustable temperature τ to define the action probability of a behaviour policy as

πb(a|s) ∝ exp(
Q(s, a)

τ
)

For Cartpole, we model the Q-function as a dense neural network with 2 hidden layers of dimension 256, and set the
optimizer as Adam with batch size 64 and learning rate 0.01. For Diabetes, we model the Q-function as a dense neural
network with 2 hidden layers of dimension 64, and set the optimizer as Adam with batch size 128 and learning rate 0.0001.

C.3. Implementation details

For the Cartpole experiment, to implement our method, we set K = 2 and sample 5% of the total pairs in calculation of the
incomplete U-statistics. To estimate the Q-function, we use random forests to model the Q-function, with the number of
trees set as 1000 and their max depth as 20. To estimate ω, we model it as a dense neural network with 5 hidden layers
of dimension 512, connected via ReLu, and model the kernel k (·, ·) as a Laplacian kernel with bandwidth chosen by the
median heuristic. We optimize the problem via Adam with batch size 256 and learning rate 0.001. To estimate τ , we model
it as a dense neural network with 3 hidden layers of dimension 512, and optimize the problem via Adam with batch size 32
and learning rate 0.0001, with the other hyper-parameters the same with those of ω.

For the Diabetes experiment, to implement our method, we keep the other hyper-parameters the same with those for Cartpole,
except that we sample 20% of the total pairs in calculation of the incomplete U-statistics, adjust the number of trees as 1000
and their max depth as 50, and adjust the learning rate for ω as 0.0001 and the learning rate for τ as 0.00005.

To implement the IS-based CI construction methods, for simplicity, we directly use the true behaviour policies. The open-
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source code 1 is used to implement CoinDice. We use the default hyper-parameters, except for the following adjustments to
get a better results for CoinDice. For CartPole, we set the learning rate as 0.005, batch size as 32, distribution regularizer
as 0.05, neural network regularizers as 1, and set the neural networks as having one hidden layer of dimension 64. For
Diabetes, we adjust the distribution regularizer as 2.5 and set the neural networks as having two hidden layers of dimension
256. In our experiments, we find Coindice is sensitive to these hyper-parameters, and tuned intensively to report results with
the best combination.

C.4. Computational complexity

In this section, we analyze the computational complexity for the proposed value estimator η̂(m)
TR . The construction of the CI

is straightforward and has the same complexity. Let N = nT and let the dimension of the action plus that of the state be p.
There are four main dominating parts of the computation: the calculation of Q̂, ω̂, and ω̂∗, and the construction of the final
estimator. For simplicity, we assume the standard dense networks with feedforward pass and back-propagation are used
for the first three parts, and let the maxmium latent layer width and the depth for all the neural networks be w and d. For
calculation of Q̂, assume FQE converges in M1 iterations, then according to the theory of neural networks, the complexity
for the part is O(NM1w

dp). For calculation of ω̂ and ω̂∗, assume the training iterations of neural networks be M2, then
we have the complexity for these two part is O(NM2w

dp). For the last part, to calculate η̂(m)
TR , suppose we sample M3

states from the reference distribution and use M4 samples in the calculation of the incomplete U-statistics, the complexity is
O((M3 +N)M4). Putting the above results together, the total complexity for calculating η̂(m)

TR and its CI is

O(nT (M1 +M2)wdp+ (M3 + nT )M4)

Note that the computation for the last part can be easily implemented in parallel, and for computing estimates of different
order, the first three parts can be shared.

D. More on the CoinDice method
We discuss why CoinDice will fail to achieve valid CI estimation in this section. As we have commented in the introduction,
CoinDice uses the empirical likelihood approach for interval estimation, assuming the data transactions are i.i.d. It is known
that directly applying the empirical likelihood method without further adjustment will fail to handle weakly dependent data.

To elaborate this, let us consider a simple example. Given a sequence of stationary random variables {Zt}1≤t≤n, we aim to
construct a CI for its mean. The CI based on the empirical likelihood method is given as follows

{EPZ : Df (P||Pn) ≤ ρ/n},

for some ρ > 0, where Pn denotes the empirical distribution of {Zt}t.

Here, the choice of ρ is essential to the validity of the resulting CI. When the observations {Zt}t are i.i.d., one may set ρ to
P(χ2

1 ≤ ρ) = 1− α for a given significance α. However, such a choice of ρ would fail with weakly dependent observations.
More specifically, ρ shall be chosen such that

P

(
χ2

1 ≤
ρVar(Z1)

Var(Z1) + 2
∑+∞
j=2 cov(Z1, Zj)

)
= 1− α,

to ensure the validity of the resulting CI. See Theorem 5 and Theorem 11 of Duchi et al. (2016) for details.

When the observations are weakly dependent, the factor Var(Z1)/{Var(Z1) + 2
∑+∞
j=2 cov(Z1, Zj)} is not equal to one in

general. Consequently, directly applying the empirical likelihood method by assuming the data are i.i.d. will result in an
invalid CI. CoinDice estimates the value via the marginalized important-sampling estimator instead of the doubly-robust
estimator. As such, the summands in their estimator are positively corrected. The corresponding factor is much smaller than
1. Hence, applying CoinDice leads to a very narrow but invalid CI.
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