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A. Implementation Details
A.1. Datasets and Classifiers

MNIST (LeCun & Cortes, 2010) The classifier consists of
two 6x6 CNN layers with a stride of 2, followed by a 256-
unit fully connected layer, a dropout layer with p = 0.5, and
the 10 output neurons. As shown in (Springenberg et al.,
2015) the stride>1 CNN achieved comparable performance
with pooling layers. The classifier was trained for 50 epochs
and achieve a test accuracy of 99.3%.

Street-View House Numbers (SVHN) (Netzer et al., 2011)
We tested our models on the cropped version of SVHN
and used the same model architecture with that of MNIST
and achieved a test accuracy of 90.3% after 50 epochs of
training.

CIFAR10 (Krizhevsky, 2009) We trained a classifier consist
of 4 repetitive units, with each unit constructed by two 3x3
CNN layers and a 2x2 average pooling layer, with each
CNN layer followed by a batch normalization layer. The
classifer achieved 87.8% test accuracy after 100 epochs of
training.

apple2orange (Zhu et al., 2017) We trained a classifier
taking the original 256x256 image as input. The classifier
was constructed by adding a global average pooling layer on
top of MobileNet (Howard et al., 2017), and then followed
by a dense layer of 1024 neurons and a dropout layer of
p = 0.5 before the output neurons. The classifier was
trained for 50 epochs and achieve a test accuracy of 87.7%.

BAM (Benchmarking Attribution Methods) (Yang &
Kim, 2019) BAM dataset was originally designed for
evaluating explainable models in one-vs-one settings. It
was constructed by positioning objects from MS COCO
dataset (Lin et al., 2014) on to background images
from miniplaces dataset (Zhou et al., 2018). Here we
treated different combinations of objects and backgrounds
as different classes and considered four classes in our
experiment: (pizza, bedroom), (pizza, bambooforest),
(stopsign, bedroom), (stopsign, bambooforest).

Similar to the apple2orange dataset, we constructed a clas-
sifier consist of MobileNet (Howard et al., 2017), a dense
layer, a global average pooling layer, and a dropout layer
and trained for 50 epochs to achieve 96.6% test accuracy.

A.2. Baseline Generation with GANMEX

Our baseline generation process is based on StarGAN (Choi
et al., 2017). We used the Tensorflow-GAN implemen-
tation (https://github.com/tensorflow/gan)
and made the following two modifications (Equation 9):

1. The class discriminator Dcls is replace by the target
classifier S to be explained.

2. A similarity lossLsim is added to the training objective
function.

We train the GANMEX model for 100k steps for the MNIST
and apple2orange datasets, 300k steps for the SVHN dataset,
and 400k steps for the CIFAR10 dataset. Only the train split
is used for training, and the attribution results and evaluation
were done on the test split of the dataset.

We released our source code at https://github.com/
pinjutien/GANMEX.

A.3. Attribution Methods

We used DeepExplain (https://github.com/
marcoancona/DeepExplain) for generating saliency
maps with IG, DeepLIFT, and Occlusion. We modified
the code base to use the score delta (Sco − Sct) instead of
the original class score (Sct) and allowing replacing the
zero baseline (see Section 2.1) by custom baselines from
GANMEX and MDTS. EG was separately implemented
according to the formulation in (Erion et al., 2019). We
set the number of sampling steps to 200 for both IG and
EG, and used Occlusion-1 that only perturb the pixel itself
(as supposed to perturbing the whole neighboring patch of
pixels).

The DeepSHAP saliency maps were calculated using SHAP
(https://github.com/slundberg/shap). We made similar modi-
fication to replace the original class score by the score delta
and feed in the custom baseline instances.

In all saliency maps shown in the paper, blue color in indi-
cates positive values and red color indicates negative values.
We skipped Occlusion for large images (apple2orange) and
also skipped SHAP for full dataset evaluations due to the
computation resource constraints.

B. Baseline Distance Analysis
To measure how various baseline selection approaches sat-
isfy the minimum distance requirements in Equation 1, we
calculatedD(x, x̃) = ‖x−x̃‖ for (1) GANMEX, (2) MDTS,
(3) a randomly selected sample in the target class as baseline
and (4) zero baseline. GANMEX was on-par with MDTS
on the MNIST dataset, but on SVHN and CIFAR10 dataset
that have more degrees of freedom (object size, color, orien-
tation, background, ...), GANMEX was significantly better
in identifying minimum distance baselines compared to
the in-sample search. The high dataset complexity of was
supported by the average intra-class distance, the average
distance between any two instances within the same class,
which was higher than that of MNIST. Note that the result-
ing sample to baseline distance D(x, x̃GANMEX) is much
higher in MNIST than in SVHN, because there were more
boundary values (0s and 1s) in MNIST.

https://github.com/tensorflow/gan
https://github.com/pinjutien/GANMEX
https://github.com/pinjutien/GANMEX
https://github.com/marcoancona/DeepExplain
https://github.com/marcoancona/DeepExplain
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Figure 6. (A) Vertical edge area in an SVHN image. (B) Histogram
of sample to baseline distance (Dedge(x, x̃)) in the vertical edge
area. (C-E) Samples comparing GANMEX and MDTS baselines
with Dedge(x, x̃) indicated on the top of the baseline images. (C)
Easy cases for GANMEX (Dedge(x, x̃) ≈ 1). (D) Difficult cases
for GANMEX (Dedge(x, x̃) ≈ 3). (E) Difficult cases for GAN-
MEX (Dedge(x, x̃) ≈ 6).

We further evaluated the similarity distance on the vertical
edge area (Dedge(x, x̃)) of the SVHN images (Figure6.A).
Empirically, we observed that the digits of interest were
rarely present in the vertical edge, and therefore, we would
expect a closest baseline choice will lead to minimal changes
in the edge area Dedge(x, x̃) under the minimum distance
requirements. We provided a histogram in Figure 6.B for
comparing the distribution of Dedge(x, x̃) for MDTS and
GANMEX, and we presented sampled success/failure cases
in Figure 6.C-E. Overall, GANMEX leads to baselines that
are closer to the original samples.

C. Additional Metrics
C.1. Perturbation-based evaluation

We followed the perturbation-based evaluation suggested
by (Bach et al., 2015) that flips input features starting from
the ones with the highest saliency values and evaluates the
cumulative impacts on the score delta Sco−Sct as proposed
by (Shrikumar et al., 2017). Flipping a feature means to
provide with a value of 1− x where x is its original value,
assuming all features are normalized to x ∈ [0, 1]. A wanted
behavior from the attribution map is that the score delta will
decrease as rapidly as possible as we flip the features one
by one. We provide in Figure 7.A-C the perturbation curves
for both MNIST, SVHN and CIFAR10, plotting the score
delta as a function of the number of flipped features. It is

Figure 7. (A-C) Perturbation-based evaluation plots for MNIST
and SVHN, respectively. The dashed lines represent the non-
class-targeted baselines and the solid lines represent class-targeted
baselines. (D-F) Gini indices, with the yellow bars represent
saliency maps with zero baselines and the green bars represent that
of GANMEX baselines.
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Table 2. Baseline distance analysis comparing the average intra-class distance Dintra and the average inter-class distance Dinter, with the
average distance from the instance to the baseline input generated by GANMEX (GAN), MDTS, random selection (RAND), and zero
inputs (Zero).

Data Size Avg. Distance Baseline Distance

Dimension Train Test Dintra Dinter GAN MDTS Rand Zero

MNIST 784 (28 x 28 x 1) 60,000 10,000 8.96 10.32 7.17 7.18 10.32 9.28
SVHN 3072 (32 x 32 x 3) 73,257 26,032 14.42 14.48 3.42 5.94 15.44 26.52
CIFAR10 3072 (32 x 32 x 3) 50,000 10,000 18.28 19.06 6.89 10.54 19.01 29.04

clear that that by using a GANMEX baseline rather than
the alternative zero baseline, the descent of the curve is
much faster, meaning that we successfully capture the most
important features using GANMEX. This holds true for all
attribution methods. As a side note, notice that in SVHN
when we flip all features the score delta goes back to where
it was in the beginning as opposed to going down to zero.
This is due to the fact that once all features are flipped, we
are back to having the same digit as before.

Based on the perturbation curves, we evaluated AOPCL
for the different baseline choices. AOPCL measures the
area over the perturbation curve within the first L pertur-
bation steps (Samek et al., 2017; Tomsett et al., 2019)).
One potential downside of AOPCL is that the metric is only
sensitive to the top L features in the saliency map and not
the rest. Therefore, in addition to AOPCL=100, we calcu-
lated AOPCall, the area over the perturbation curve across
all feature. The gradient family of IG and EG generally out-
performed DeepLIFT and occlusion on the AOPC metrics,
with IG+GANMEX performed the best overall (Table 3).

C.2. Remove And Retrain (ROAR)

ROAR evaluates model explanations by removing features
in a similar manner as in AOPC, but instead of directly mea-
suring how the predictions of the same model deteriorates,
ROAR retrains models with all images having the same
number of pixels removed and measures the performance of
the new models. The retraining process of ROAR ensures
that the models are evaluated on datasets with the same dis-
tribution where they were trained. However, unlike AOPC
which measures the particular model instance, ROAR mea-
sures on a series of retrained models which is more of an
indicator of how the explanation method identifies the key
features from the dataset.

For evaluating one-vs-one explanations with ROAR, we
divide the classes in to pairs (ci, c

′
i), and for sample x and x′

with the labels y = ci and y′ = c′i, we remove the features
according to AS,ci→c′i(x) and AS,c′i→ci(x

′), respectively.
A classifier is then trained for each pair of labels (ci, c

′
i) to

measure the effectiveness of the saliency maps. We reported

the Area Over the ROAR Curve (AORoarC) in Table 3,
showing that both GANMEX and MDTS outperformed
the results from expected gradient and zero baselines, with
Occlusion + GANMEX performed the best overall.

C.3. Sparsity

The sparsity is a desirable property for one-vs-one attribu-
tion. We expect a good one-vs-one explanation to highlight
only the differentiating features for distinguishing between
two classes. Compared with one-vs-all saliency maps, one-
vs-one saliency maps should highlight a smaller subset of
features, especially when the target classes are similar to the
original classes. Therefore, one would expect a more sparse
one-vs-one saliency map is more likely to be correct.

We calculated the Gini Index representing the sparsity of
the saliency maps as proposed by Chalasani et al. (2018),
where a larger score means sparser saliency map, which
is a desired property. As shown in Table 3, saliency maps
generated by the gradient family generally have higher Gini
indices, and therefore are more sparse compared to the other
two groups of saliency methods - DeepLIFT and Occlusion.
IG+GANMEX and IG+MDTS were the best performers
overall, whereas EG, on the other hand, consistently under-
performed other gradient based methods on all datasets. IG
with zero baseline did achieve sparsity comparable with
other top methods. We suspected that the sparseness of zero
baseline attribution was benefited from incorrectly hiding
some key features, as shown in Figure 2.

C.4. Faithfulness and Monotonicity

We measured the faithfulness reported by (Alvarez-Melis
& Jaakkola, 2018; Tomsett et al., 2019) and monotonic-
ity suggested by (phi Nguyen & Martı́nez, 2020). Instead
of measuring the cumulative effect of alternating a set of
features, both faithfulness and monotonicity measure the im-
pacts on alternating single features. We found that EG and
Occlusion+zero baseline are the best performers on those
two metrics (Figure 2).
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Table 3. Additional metrics for attribution methods using the zero baseline (Zero), MDTS, and GANMEX (GAN).

Integrated Gradient EG DeepLIFT Occlusion

Metrics Dataset Zero MDTS GAN Zero MDTS GAN Zero MDTS GAN

AOPC100 MIST 0.614 1.249 1.421 1.260 0.505 0.639 0.724 0.705 1.050 1.221
SVHN 0.346 0.861 0.921 0.878 0.377 0.634 0.621 0.317 0.547 0.549
CIFAR10 0.298 0.485 0.494 0.516 0.323 0.464 0.451 0.441 0.492 0.440

AOPCall MIST 0.889 1.098 1.263 1.13 0.859 0.933 0.992 0.877 1.019 1.114
SVHN 0.564 0.844 0.822 0.626 0.649 0.750 0.751 0.528 0.586 0.585
CIFAR10 0.696 0.788 0.808 0.789 0.726 0.780 0.794 0.628 0.694 0.706

AORoarCall MIST 0.176 0.295 0.249 0.211 0.209 0.294 0.293 0.196 0.303 0.327

sparsity MIST 0.909 0.911 0.919 0.827 0.047 0.047 0.046 0.062 0.058 0.058
SVHN 0.606 0.713 0.783 0.615 0.131 0.133 0.139 0.168 0.139 0.144
CIFAR10 0.565 0.639 0.626 0.522 0.164 0.171 0.169 0.325 0.260 0.223

faithfulness MIST 0.182 0.224 0.280 0.407 0.075 0.003 0.031 0.257 0.254 0.291
SVHN 0.017 0.265 0.270 0.548 -0.041 0.075 0.017 0.007 0.306 0.243
CIFAR10 0.005 0.028 0.027 0.054 0.003 0.017 0.017 0.288 0.285 0.225

monotonicity MIST 0.118 0.196 0.264 0.357 0.087 0.150 0.206 0.244 0.239 0.280
SVHN 0.129 0.212 0.248 0.340 0.095 0.150 0.182 0.057 0.210 0.211
CIFAR10 0.008 0.050 0.042 0.058 0.004 0.044 0.033 0.175 0.140 0.087

inv. localization SVHN 0.268 0.128 0.113 0.217 0.268 0.156 0.123 0.268 0.144 0.100

C.5. Inverse Localization Metrics for SVHN Dataset

Lastly, we applied the inverse localization metric described
in Section 4.1 to the SVHN dataset. We observed that the
digits mostly have < 1 aspect ratios, meaning that their
widths are smaller then their heights. As a results, the
areas at the two vertical edges are generally not covered by
the primary numbers, and instead, they usually show the
background or the neighboring numbers. Therefore, we can
reasonably expect the saliency map sensitivity to be location
in the center area (area excluding the vertical edges), and
not the vertical edge area (Figure 6.A).

Based on this observation, we define the inverse
localization metric for SVHN to be L(A(x)) =
( 1
card(Sedge)

∑
i∈Sedge

|Ai(x)|)/( 1
card(Scenter)

∑
i∈Scenter

|Ai(x)|),
which calculates the ratio of the average absolute sensitivity
between the vertical edge area and the center area. Scenter
and Sedge represent the feature set in the center area and the
edge area, respectively. While Scenter is just an outer bound
of the distinguishing feature set, we still expect such metric
provide meaningful evaluation for the attribution methods.

As shown in Table 3, we see a consistent trend of the saliency
maps with GANMEX baselines being more localized (lower
inverse localization) compared to MDTS baselines across all
attribution methods, and EG and the zero baselines generally
lead to the worst results. The saliency maps produced by
occlusion+GANMEX was the most localized among all the
methods tested.

To summarize, we evaluated multiple attribution methods

and baseline combinations with metrics that assess different
properties of the saliency maps. While there was inconsis-
tency between different metrics as observed by Tomsett et al.
(2019), we see a strong trend of class-targeted baselines, es-
pecially GANMEX, leading to more desirable attributions.
Most importantly, the only ground-truth driven metric - in-
verse localization has showed that GANMEX significantly
improved the attributions.

D. Hyper-parameter Analysis
We tested how the generated baselines change with respect
to the hyperparemeters in the GANMEX loss function. The
hyper-parameters, λfcls, λrec, and λsim, presented in Equa-
tion 9 control the degrees of the classification loss, recon-
struction loss, and similarity loss, respectively. We per-
formed the hyper-parameter scan on the SVHN dataset as
it has enough complex and yet simple enough for visually
assessing the attribution.

Classification Loss (λfcls) Low classification loss tended to
make some transformation unsuccessful, and high classifi-
cation loss introduced additional noise that make the images
unrealistic.

Similarity Loss (λrec) Similarity loss is the key component
for minimum distance optimization. As we have shown
in Section 5 and Figure 5.B, at zero similarity loss, the
generator is only constraint by the reconstruction loss and
can lead to incorrect font colors and background. High
similarity loss, on the other hand, makes the baselines to be
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Figure 8. GANMEX baselines generated with various weights for
the (A) classification loss, (B) similarity loss, and (C) reconstruc-
tion loss.

too similar to the original images.

Reconstruction Loss (λsim) As we have mentioned in Sec-
tion 5 and Figure 5.B, reconstruction loss is not required for
GANMEX, but it slightly helps GAN to converged. In con-
trast, high reconstruction loss can lead to incorrect outputs.

E. Compute Time Analysis
In Table 4, we measure the GANMEX compute time com-
pared with various attribution methods. While the GAN
component takes 5-23 hours to train depending on the
datasets, the inference step only requires one single forward
operation, and the compute time (MNIST: 9.3 ms, SVHN:
15.4 ms, CIFAR10: 96.0 ms) is at the same order with IG
and Occlusion. More experiment details are provided in the
caption of Table 4.

F. Intuitions Behind the Minimum Distance
Requirements

Here we present the intuitions behind the baseline selec-
tion criteria from Section 3.1 using a simplified formulation.
Assuming a transformation ρ projecting from a set of high-
level concept variables V to a sample x, with x = ρ(V ), and
we can separate V into three groups V = {V dis, V con, V irr}.
Here, V dis are the discriminating variables that leads to the
model decision, the color of the fruits in our apply/orange
dataset for example; V con are the contingent variables that
are independent to the model decision but correlate with
how the discriminating variables are presented (eg. sizes
and locations of the fruits); V irr are the irrelevant variables
that are both independent to the model decision and uncorre-
lated to the presentations of the discriminating variables (eg.
background colors of the images). The expected one-vs-all
explanation under the formulation would be

Aco(x) = Aco(ρ(V ))

= A(ρ(V dis
co , V

con, V irr))

= αco(V dis
co , V

con) (10)

with α being a transformation from the underlying concept
variables to the explanation. Here we assumed a correct map-
ping α should be independent of V irr because the variable
set has no impact on the discriminating variables themselves
or how discriminating variables are presented.

Now if we apply the concept of one-vs-one, we expect a
one-vs-one explanation to produce

Ac0→ct(x,Bct(x)) = αc0→ct(V
dis
co , V

dis
ct , V

con) (11)

where Ac0→ct and Bct were defined in Section 3, and V dis
co

and V dis
ct are the discriminating variables for class co and ct.

In the apple to orange example, V dis
co would represent the

red color, and V dis
ct would represent the orange color.

The baseline generation function Bct maps the original
sample x = ρ(V dis

co , V
con, V irr) to the baseline sample

Bct(x) = ρ(Ṽ dis, Ṽ con, Ṽ irr), where Ṽ dis, Ṽ con and Ṽ irr

are the concept variables for the generated baseline input.
We can explicitly write out

Ac0→ct(x,Bct(x)) = Ac0→ct(ρ(V dis, V con, V irr),

ρ(Ṽ dis, Ṽ con, Ṽ irr)) (12)

Although Ac0→ct could be designed to be independent
of Ṽ con, V irr, and Ṽ irr to make Equation 12 satisfy the
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Table 4. Run Time Analysis comparing the attribution computation time for IG, EG, DeepLIFT (DL) and Occlusion (Occ), as well as the
baseline generation time for EG, GANMEX (GAN), and MDTS. The computation was performed on a single Tesla V100 GPU, and the
compute time was measure in seconds on calculation over all samples for the dataset, and the baseline generation time is the additional
compute time on top of the attribution methods. (§) We selected the same sampling number for IG and EG, and the baseline selection time
of EG was estimated by the complexity difference of EG and IG. (†) The attribution inference time for CIFAR10 was measured in 10
separate batches due to the memory constraint. (‡) MDTS search was performed on CPU instead of GPU.

Attribution Inference Baseline Generation GAN Training

Dataset Size Dim. IG EG DL Occ EG§ GAN MDTS‡ Steps t (hour)

MNIST 10k 784 43.5 64.1 0.6 75.7 20.6 92.5 850.8 100k 5.2
SVHN 26k 3072 557.3 658.9 1.9 4917.0 101.6 399.8 3674.4 300k 18.2
CIFAR10† 10k 3072 239.4 294.8 30.0 1532.1 55.3 959.7 1085.8 400k 23.8

form of Equation 11, anti-symmetric attribution methods
with Ac0→ct(x,Bct(x)) = −Act→c0(Bct(x), x) such as
IG would not satisfy such requirements. Alternatively, we
can require Bct to satisfy the following.

Ṽ dis = V dis
ct (13)

Ṽ con = V con (14)
Ṽ irr = V irr (15)

Equation 13 requires the baseline to belong to the target
class ct, and this implies that a class-targeted one-vs-one
baseline is required for correct one-vs-one explanations.

Equation 14 and Equation 15 combined have led to the clos-
est input requirements described in Section 3.1. Assuming
a smooth transformation (ρ), minimizing the distance of
‖x−Bct(x)‖ provides an effective way of ensuring Equa-
tion 14 and Equation 15. Going back to the apple/orange
example, a baseline satisfying Equation 13-15 for an apple
image input would be an image with an orange fruit of the
same size, at the same location, with the same background
to the original input, and all of the above can be achieved
by the minimum distance sample described in Section 3.1.

Non-class-targeted baselines, such as zero baselines, max
value baselines, or blurred images clearly violate Equa-
tion 13-15. Specifically, all three non-class-targeted base-
lines mentioned here violates all of Equation 13-15, and
therefore, they do not lead to correct one-vs-one attributions.
This can be easily spotted in the examples in Figure 2, 4 and
tested in the BAM dataset evaluations (Table 1) and by the
sanity checks in Figure 3.

G. Additional Figures

Figure 9. One-vs-one saliency maps using class-targeted baselines
(GANMEX) vs non-class-targeted baselines (zero baselines). One-
vs-one saliency maps generated using zero baselines show almost
the same attributions regardless of the target class, making the
one-vs-one saliency maps (columns with target labels) similar to
the one-vs-all saliency maps (the ”Avg” columns that show the av-
eraged saliency maps over all target classes). GANMEX baselines
corrected the behavior for both IG, DeepLIFT and DeepSHAP, and
produced different attributions depending on the target classes.
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Figure 10. Additional examples of saliency maps for the classifier on the apple2orange dataset with four baseline choices: zero baseline
(Zero), maximum value baselines (Max), blurred baselines (Blur), MDTS, Expected Gradient, and GANMEX baselines.


