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1. Additional Related Work
Additional Multi-source DA Theory has been investigated in the previous literature. In the unsupervised DA, (Ben-
David et al., 2010; Zhao et al., 2018; Peng et al., 2019) adopted H-divergence of marginal distribution D(x) to estimate
the domain relations.(Li et al., 2018a) also applied Wasserstein distance of D(x) to estimate pair-wise domain distance.
(Mansour et al., 2009; Wen et al., 2020) used the Discrepancy distance to derive a tighter theoretical bound. The motivated
practice from the aforementioned method used the feature information to learn the task relations, with the general following
forms:

RT (h) ≤
∑
t

λ[t]RS(h) +
∑
t

λ[t]d(St(x), T (x)) + β

However, as we stated in the paper, d(St(x), T (x)) is not a proper to measure the task’s relations. Besides, (Hoffman et al.,
2018) used Rényi divergence that requires supp(T (x)) ⊆ supp(S(x)), which generally does not hold in the complicated
real-world applications. (Konstantinov & Lampert, 2019; Mansour et al., 2020) adopted Y-discrepancy (Mohri & Medina,
2012) to measure the joint distribution similarity. However, Y discrepancy is practically difficult to estimate from the data
and we empirically show it is difficult to handle the target-shifted sources.

Multi-source DA Practice has been proposed from various prospective. The key idea is to estimate the importance of
different sources and then select the most related ones, to mitigate the influence of negative transfer. In the multi-source
unsupervised DA, (Sankaranarayanan et al., 2018; Balaji et al., 2019; Pei et al., 2018; Zhao et al., 2019; Zhu et al., 2019;
Zhao et al., 2020; 2019; Stojanov et al., 2019; Li et al., 2019b; Wang et al., 2019; Lin et al., 2020) proposed different
practical strategies in the classification, regression and semantic segmentation problems. In the presence of available labels
on the target domain, (Hoffman et al., 2012; Tan et al., 2013; Wei et al., 2017; Yao & Doretto, 2010; Konstantinov &
Lampert, 2019) used generalized linear model to learn the target. (Christodoulidis et al., 2016; Li et al., 2019a; Chen et al.,
2019) focused on deep learning approaches and (Lee et al., 2019) proposed an ad-hoc strategy to combine to sources in
the few-shot target domains. In contrast, these ideas are generally data-driven approaches and do not propose a principled
practice to understand the source combination and understand task relations.

Label-Partial Unsupervised DA Label-Partial can be viewed as a special case of the target-shifted DA. 1 Most existing
works focus on one-to-one partial DA (Zhang et al., 2018; Chen et al., 2020; Bucci et al., 2019; Cao et al., 2019) by adopting
the re-weighting training approach without a principled understanding. In our paper, we first analyzed this common practice
and adopt the label distribution ratio as its weights, which provides a principled approach to detect the non-overlapped
classes in the representation learning.

1.1. Other scenarios related to Multi-Source DA

Domain Generalization The domain generalization (DG) resembles multi-source transfer but aims at different goals. A
common setting in DG is to learn multiple source but directly predict on the unseen target domain. The conventional DG
approaches generally learn a distribution invariant features (Balaji et al., 2018; Saenko et al., 2010; Motiian et al., 2017; Ilse
et al., 2019) or conditional distribution invariant features (Li et al., 2018b; Akuzawa et al., 2019). However, our theoretical
results reveal that in the presence of label shift (i.e αt(y) 6= 1) and outlier tasks then learning conditional or marginal

1Since supp(T (y)) ⊆ supp(St(y)) then we naturally have T (y) 6= St(y).
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invariant features can not guarantee a small target risk. Our theoretical result enables a formal understanding about the
inherent difficulty in DG problems.

Multi-Task Learning The goal of multi-task learning (Zhang & Yang, 2017) aims to improve the prediction performance
of all the tasks. In our paper, we aim at controlling the prediction risk of a specified target domain. We also notice some
practical techniques are common such as the shared parameter (Zhang & Yeung, 2012), shared representation (Ruder, 2017),
etc.

2. Additional Figures
We additionally visualize the label distributions in our experiments.
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Figure 1. Label distribution visualization. (a) One example in Amazon Review dataset with sources: Book, Dvd, Electronic and target:
Kitchen. We randomly drop 50% of the negative reviews in all the sources while keeping target label distribution unchanged. (b) One
example in Digits dataset with Sources: MNIST, USPS, SVHN and Target Synth. We randomly drop 50% data on digits 5-9 in all sources
while keeping target label distribution unchanged. (c) Office-Home dataset. The original label distribution is non-uniform. See Appendix
12 for details.

3. Notation Tables

Table 1. Table of Notations

RD(h) = E(x,y)∼D`(h(x, y)) Expected Risk on distribution D w.r.t. hypothesis h
R̂D(h) = 1

N

∑N
i=1 `(h(xi, yi)) Empirical Risk on observed data {(xi, yi)}Ni=1 that are i.i.d. sampled

from D.
α and α̂t True and empirical label distribution ratio α(y) = T (y)/S(y)

R̂αS(h) = 1
N

∑N
i=1 α(yi)`(h(xi, yi)) Empirical Weighted Risk on observed data {(xi, yi)}Ni=1.

S(z|y) =
∫
x
g(z|x)S(x|Y = y)dx Conditional distribution w.r.t. latent variable Z that induced by feature

learning function g.
W1(St(z|y)‖T (z|y)) Conditional Wasserstein distance on the latent space Z

4. Proof of Theorem 1
Proof idea Theorem 1 consists three steps in the proof:

Lemma 1. If the prediction loss is assumed as L-Lipschitz and the hypothesis is K-Lipschitz w.r.t. the feature x (given the
same label), i.e. for ∀Y = y, ‖h(x1, y)− h(x2, y)‖2 ≤ K‖x1 − x2‖2. Then the target risk can be upper bounded by:

RT (h) ≤
∑
t

λ[t]Rαt

S (h) + LK
∑
t

λ[t]Ey∼T (y)W1(T (x|Y = y)‖S(x|Y = y)) (1)

Proof. The target risk can be expressed as:

RT (h(x, y)) = E(x,y)∼T `(h(x, y)) = Ey∼T (y)Ex∼T (x|y)`(h(x, y))
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By denoting α(y) = T (y)
S(y) , then we have:

Ey∼T (y)Ey∼T (x|y)`(h(x, y)) = Ey∼S(y)α(y)Ex∼T (x|y)`(h(x, y))

Then we aim to upper bound Ex∼T (x|y)`(h(x, y)). For any fixed y,

Ex∼T (x|y)`(h(x, y))− Ex∼S(x|y)`(h(x, y)) ≤ |
∫
x∈X

`(h(x, y))d(T (x|y)− S(x|y))|

Then according to the Kantorovich-Rubinstein duality, for any distribution coupling γ ∈ Π(T (x|y),S(x|y)), then we have:

= inf
γ
|
∫
X×X

`(h(xp, y))− `(h(xq, y))dγ(xp, xq)|

≤ inf
γ

∫
X×X

|`(h(xp, y))− `(h(xq, y))|dγ(xp, xq)

≤ L inf
γ

∫
X×X

|h(xp, y))− h(xq, y)|dγ(xp, xq)

≤ LK inf
γ

∫
X×X

‖xp − xq‖2dγ(xp, xq)

= LKW1(T (x|Y = y)‖S(x|Y = y))

The first inequality is obvious; and the second inequality comes from the assumption that ` is L-Lipschitz; the third
inequality comes from the hypothesis is K-Lipschitz w.r.t. the feature x (given the same label), i.e. for ∀Y = y,
‖h(x1, y)− h(x2, y)‖2 ≤ K‖x1 − x2‖2.

Then we have:

RT (h) ≤ Ey∼S(y)α(y)[Ex∼S(x|y)`(h(x, y)) + LKW1(T (x|y)‖S(x|y))]

= E(x,y)∼Sα(y)`(h(x, y)) + LKEy∼T (y)W1(T (x|Y = y)‖S(x|Y = y))

= RαS(h) + LKEy∼T (y)W1(T (x|Y = y)‖S(x|Y = y))

Supposing each source St we assign the weight λ[t] and label distribution ratio αt(y) = T (y)
St(y) , then by combining this T

source target pair, we have:

RT (h) ≤
∑
t

λ[t]Rαt

St (h) + LK
∑
t

λ[t]Ey∼T (y)W1(T (x|Y = y)‖St(x|Y = y))

Then we will prove Theorem 1 from this result, we will derive the non-asymptotic bound, estimated from the finite sample
observations. Supposing the empirical label ratio value is α̂t, then for any simplex λ we can prove the high-probability
bound.

4.1. Bounding the empirical and expected prediction risk

Proof. We first bound the first term, which can be upper bounded as:

sup
h
|
∑
t

λ[t]Rαt
St (h)−

∑
t

λ[t]R̂α̂t
St (h)| ≤ sup

h
|
∑
t

λ[t]Rαt
St (h)−

∑
t

λ[t]R̂αt
St (h)|︸ ︷︷ ︸

(I)

+sup
h
|
∑
t

λ[t]R̂αt
St (h)−

∑
t

λ[t]R̂α̂t
St (h)|︸ ︷︷ ︸

(II)
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Bounding term (I) According to the McDiarmid inequality, each item changes at most | 2λ[t]αt(y)`
NSt

|. Then we have:

P ((I)− E(I) ≥ t) ≤ exp(
−2t2∑T

t=1
4

βtN
λ2[t]αt(y)2`2

) = δ

By substituting δ, at high probability 1− δ we have:

(I) ≤ E(I) + Lmaxd
sup
∞

√√√√ T∑
t=1

λ[t]2

βt

√
log(1/δ)

2N

Where Lmax = suph∈H `(h) and N =
∑T
t=1NSt the total source observations and βt =

NSt

N the frequency ratio of each
source. And dsup

∞ = maxt=1,...,T d∞(T (y)‖S(y)) = maxt=1,...,T maxy∈[1,Y] αt(y), the maximum true label shift value
(constant).

Bounding E sup(I), the expectation term can be upper bounded as the form of Rademacher Complexity:

E(I) ≤ 2EσEŜT
1

sup
h

T∑
t=1

λ[t]
∑

(xt,yt)∈Ŝt

1

TN
(αt(y)`(h(xt, yt))

≤ 2
∑
t

λ[t]EσEŜT
1

sup
h

∑
(xt,yt)∈Ŝt

1

TN
(αt(y)`(h(xt, yt))

≤ 2 sup
t

EσEŜt sup
h

∑
(xt,yt)∈Ŝt

1

TN
[αt(y)`(h(xt, yt))]

= sup
t

2Rt(`,H) = 2R̄(`,H)

Where R̄(`,H) = suptRt(`,H) = supt suph∼H EŜt,σ
∑

(xt,yt)∈Ŝt
1
TN [αt(y)`(h(xt, yt))], represents the Rademacher

complexity w.r.t. the prediction loss `, hypothesis h and true label distribution ratio αt.

Therefore with high probability 1− δ, we have:

sup
h
|
∑
t

λ[t]Rαt

S (h)−
∑
t

λ[t]R̂αt

S (h)| ≤ R̄(`, h) + Lmaxd
sup
∞

√√√√ T∑
t=1

λ[t]2

βt

√
log(1/δ)

2N

Bounding Term (II) For all the hypothesis h, we have:

|
∑
t

λ[t]R̂αt

St (h)−
∑
t

λ[t]R̂α̂t

St (h)| = |
∑
t

λ[t]
1

NSt

NSt∑
i

(α(y(i))− α̂(y(i)))`(h)|

=
∑
t

λ[t]
1

NSt
|
|Y|∑
y

(α(Y = y)− α̂(Y = y))¯̀(Y = y)|

Where ¯̀(Y = y) =
∑NSt
i `(h(xi, yi = y)), represents the cumulative error, conditioned on a given label Y = y. According

to the Holder inequality, we have:

∑
t

λ[t]
1

NSt
|
|Y|∑
y

(αt(Y = y)− α̂t(Y = y))¯̀(Y = y)| ≤
∑
t

λ[t]
1

NSt
‖αt − α̂t‖2‖¯̀(Y = y)‖2

≤ Lmax

∑
t

λ[t]‖αt − α̂t‖2

≤ Lmax sup
t
‖αt − α̂t‖2
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Therefore, ∀h ∈ H, with high probability 1− δ we have:

∑
t

λ[t]Rαt

S (h) ≤
∑
t

λ[t]R̂α̂t

S (h) + 2R̄(`, h) + Lmaxd
sup
∞

√√√√ T∑
t=1

λ[t]2

βt

√
log(1/δ)

2N
+ Lmax sup

t
‖αt − α̂t‖2

4.2. Bounding empirical Wasserstein Distance

Then we need to derive the sample complexity of the empirical and true distributions, which can be decomposed as the
following two parts. For any t, we have:

Ey∼T (y)W1(T (x|Y = y)‖St(x|Y = y))− Ey∼T̂ (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))

≤ Ey∼T (y)W1(T (x|Y = y)‖St(x|Y = y))− Ey∼T (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))︸ ︷︷ ︸
(I)

+ Ey∼T (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))− Ey∼T̂ (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))︸ ︷︷ ︸
(II)

Bounding (I) We have:

Ey∼T (y)W1(T (x|Y = y)‖St(x|Y = y))− Ey∼T (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))

=
∑
y

T (y)
(
W1(T (x|Y = y)‖St(x|Y = y))−W1(T̂ (x|Y = y)‖Ŝt(x|Y = y)

)
≤ |
∑
y

T (y)| sup
y

(
W1(T (x|Y = y)‖St(x|Y = y))−W1(T̂ (x|Y = y)‖Ŝt(x|Y = y)

)
= sup

y

(
W1(T (x|Y = y)‖St(x|Y = y))−W1(T̂ (x|Y = y)‖Ŝt(x|Y = y)

)
≤ sup

y
[W1(St(x|Y = y)‖Ŝt(x|Y = y)) +W1(Ŝt(x|Y = y)‖T̂ (x|Y = y))

+W1(T̂ (x|Y = y)‖T (x|Y = y))−W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))]

= sup
y
W1(St(x|Y = y)‖Ŝt(x|Y = y)) +W1(T̂ (x|Y = y)‖T (x|Y = y))

The first inequality holds because of the Holder inequality. As for the second inequality, we use the triangle inequality of
Wasserstein distance. W1(P‖Q) ≤W1(P‖P1) +W1(P1‖P2) +W1(P2‖Q).

According to the convergence behavior of Wasserstein distance (Weed et al., 2019), with high probability ≥ 1− 2δ we have:

W1(St(x|Y = y)‖Ŝt(x|Y = y)) +W1(T̂ (x|Y = y)‖T (x|Y = y)) ≤ κ(δ,Ny
St , N

y
T )

Where k(δ,Ny
St , N

y
T ) = Ct,y(Ny

St)
−st,y +Cy(Ny

T )−sy +
√

1
2 log( 2

δ )(
√

1
Ny

St

+
√

1
Ny

t
), where Ny

St is the number of Y = y

in source t and Ny
T is the number of Y = y in target distribution. Ct,y, Cy st,y > 2, sy > 2 are positive constant in the

concentration inequality. This indicates the convergence behavior between empirical and true Wasserstein distance.

If we adopt the union bound (over all the labels) by setting δ ← δ/|Y|, then with high probability ≥ 1− 2δ, we have:

sup
y
W1(S(x|Y = y)‖Ŝ(x|Y = y)) +W1(T̂ (x|Y = y)‖T (x|Y = y)) ≤ κ(δ,Ny

St , N
y
T )

where κ(δ,Ny
St , N

y
T ) = Ct,y(Ny

St)
−st,y + Cy(Ny

T )−sy +
√

1
2 log( 2|Y|

δ )(
√

1
Ny

St

+
√

1
Ny

T
)

Again by adopting the union bound (over all the tasks) by setting δ ← δ/T , with high probability ≥ 1− 2δ, we have:∑
t

λ[t]Ey∼T (y)W1(T (x|Y = y)‖S(x|Y = y))−
∑
t

λ[t]Ey∼T (y)W1(T̂ (x|Y = y)‖Ŝ(x|Y = y)) ≤ sup
t
κ(δ,Ny

St , N
y
T )

Where κ(δ,Ny
St , N

y
T ) = Ct,y(Ny

St)
−st,y + Cy(Ny

T )−sy +
√

1
2 log( 2T |Y|

δ )(
√

1
Ny

St

+
√

1
Ny

T
).
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Bounding (II) We can bound the second term:

Ey∼T (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))− Ey∼T̂ (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))

≤ sup
y
W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))|

∑
y

T (y)− T̂ (y)|

≤ Ctmax|
∑
y

T (y)− T̂ (y)|

Where Ctmax = supyW1(T̂ (x|Y = y)‖Ŝ(x|Y = y)) is a positive and bounded constant. Then we need to bound
|
∑
y T (y)− T̂ (y)|, by adopting MicDiarmid’s inequality, we have at high probability 1− δ:

|
∑
y

T (y)− T̂ (y)| ≤ ET̂ |
∑
y

T (y)− T̂ (y)|+

√
log(1/δ)

2NT

= 2EσET̂
∑
y

σT̂ (y) +

√
log(1/δ)

2NT

Then we bound EσET̂
∑
y σT̂ (y). We use the properties of Rademacher complexity [Lemma 26.11, (Shalev-Shwartz &

Ben-David, 2014)] and notice that T̂ (y) is a probability simplex, then we have:

EσET̂
∑
y

σT̂ (y) ≤

√
2 log(2|Y|)

NT

Then we have |
∑
y T (y)− T̂ (y)| ≤

√
2 log(2|Y|)

NT
+
√

log(1/δ)
2NT

Then using the union bound and denoting δ ← δ/T , with high probability ≥ 1− δ and for any simplex λ, we have:∑
t

λ[t]Ey∼T (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y)) ≤
∑
t

λ[t]Ey∼T̂ (y)W1(T̂ (x|Y = y)‖Ŝt(x|Y = y))

Cmax(

√
2 log(2|Y|)

NT
+

√
log(T/δ)

2NT
)

where Cmax = supt C
t
max.

Combining together, we can derive the PAC-Learning bound, which is estimated from the finite samples (with high
probability 1− 4δ):

RT (h) ≤
∑
t

λtR̂
α̂t

St (h) + LH
∑
t

λtEy∼T̂ (y)W1(T̂ (x|Y = y)‖Ŝ(x|Y = y)) + Lmaxd
sup
∞

√√√√ T∑
t=1

λ2
t

βt

√
log(1/δ)

2N

+ 2R̄(`, h) + Lmax sup
t
‖αt − α̂t‖2 + sup

t
κ(δ,Ny

St , N
y
T ) + Cmax(

√
2 log(2|Y|)

NT
+

√
log(T/δ)

2NT
)

Then we denote Comp(NS1 , . . . , NT , δ) = 2R̄(`, h) + supt κ(δ,Ny
St , N

y
T ) + Cmax(

√
2 log(2|Y|)

NT
+
√

log(T/δ)
2NT

) as the
convergence rate function that decreases with larger NS1 , . . . , NT . Bedsides, R̄(`, h) = suptRt(`,H) is the re-
weighted Rademacher complexity. Given a fixed hypothesis with finite VC dimension 2, it can be proved R̄(`, h) =

minNS1
,...,NST

O(
√

1
NSt

) i.e (Shalev-Shwartz & Ben-David, 2014).

2If the hypothesis is the neural network, the Rademacher complexity can still be bounded analogously through recent theoretical
results in deep neural-network
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5. Proof of Theorem 2
We first recall the stochastic feature representation g such that g : X → Z and scoring hypothesis h h : Z ×Y → R and the
prediction loss ` with ` : R→ R. 3

Proof. The marginal distribution and conditional distribution w.r.t. latent variable Z that are induced by g, which can be
reformulated as:

S(z) =

∫
x

g(z|x)S(x)dx S(z|y) =

∫
x

g(z|x)S(x|Y = y)dx

In the multi-class classification problem, we additionally define the following distributions:

µk(z) = S(Y = k, z) = S(Y = k)S(z|Y = k)

πk(z) = T (Y = k, z) = T (Y = k)T (z|Y = k)

Based on (Nguyen et al., 2009) and g(z|x) is a stochastic representation learning function, the loss conditioned a fixed point
(x, y) w.r.t. h and g is Ez∼g(z|x)`(h(z, y)). Then taking the expectation over the S(x, y) we have: 4

RS(h, g) = E(x,y)∼S(x,y)Ez∼g(z|x)`(h(z, y))

=

|Y|∑
k=1

S(y = k)

∫
x

S(x|Y = k)

∫
z

g(z|x)`(h(z, y = k))dzdx

=

|Y|∑
k=1

S(y = k)

∫
z

[

∫
x

S(x|Y = k)g(z|x)dx]`(h(z, y = k))dz

=

|Y|∑
k=1

S(y = k)

∫
z

S(z|Y = k)`(h(z, y = k))dz

=

|Y|∑
k=1

∫
z

S(z, Y = k)`(h(z, y = k))dz

=

|Y|∑
k=1

∫
z

µk(z)`(h(z, y = k))dz

Intuitively, the expected loss w.r.t. the joint distribution S can be decomposed as the expected loss on the label distribution
S(y) (weighted by the labels) and conditional distribution S(·|y) (real valued conditional loss).

Then the expected risk on the S and T can be expressed as:

RS(h, g) =

|Y|∑
k=1

∫
z

`(h(z, y = k))µk(z)dz

RT (h, g) =

|Y|∑
k=1

∫
z

`(h(z, y = k))πk(z)dz

3Note this definition is different from the conventional binary classification with binary output, and it is more suitable in the multi-
classification scenario and cross entropy loss (Hoffman et al., 2018). For example, if we define l = − log(·) and h(z, y) ∈ (0, 1) as a
scalar score output. Then `(h(z, y)) can be viewed as the cross-entropy loss for the neural-network.

4An alternative understanding is based on the Markov chain. In this case it is a DAG with Y
S(y|x)←−−−− X

g−→ Z, X
S(y|x)−−−−→ Y

h−→
S

h←− Z g←− X . (S is the output of the scoring function). Then the expected loss over the all random variable can be equivalently written
as

∫
P(x, y, z, s) `(s) d(x, y, z, s) =

∫
P(x)P(y|x)P(z|x)P(s|z, y)`(s) =

∫
P(x, y)P(z|x)P(s|z, y)`(s)d(x, y)d(z)d(s). Since the

scoring S is determined by h(x, y), then P(s|y, z) = 1. According to the definition we have P(z|x) = g(z|x), P(x, y) = S(x, y), then
the loss can be finally expressed as ES(x,y)Eg(z|x)`(h(z, y))
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By denoting α(y) = T (y)
S(y) , we have the α-weighted loss:

RαS(h, g) =T (Y = 1)

∫
z

`(h(z, y = 1))S(z|Y = 1) + T (Y = 2)

∫
z

`(h(z, y = 2))S(z|Y = 2)

+ · · ·+ T (Y = k)

∫
z

`(h(z, y = k))S(z|Y = k)dz

Then we have:

RT (h, g)−RαS(h, g) ≤
∑
k

T (Y = k)

∫
z

`(h(z, y = k))d|S(z|Y = k)− T (z|Y = k)|

Under the same assumption, we have the loss function `(h(z, Y = k)) is KL-Lipschitz w.r.t. the cost ‖ · ‖2 (given a fixed k).
Therefore by adopting the same proof strategy (Kantorovich-Rubinstein duality) in Lemma 2, we have

≤ KLT (Y = 1)W1(S(z|Y = 1)‖T (z|Y = 1)) + · · ·+KLT (Y = k)W1(S(z|Y = k)‖T (z|Y = k))

= KLEy∼T (y)W1(S(z|Y = y)‖T (z|Y = y))

Therefore, we have:
RT (h, g) ≤ RαS(h, g) + LKEy∼T (y)W1(S(z|Y = y)‖T (z|Y = y))

Based on the aforementioned result, we have ∀t = 1, . . . , T and denote S = St and α(y) = αt(y) = T (y)/St(y):

λ[t]RT (h, g) ≤ λ[t]Rαt

St (h, g) + LKλ[t]Ey∼T (y)W1(St(z|Y = y)‖T (z|Y = y))

Summing over t = 1, . . . , T , we have:

RT (h, g) ≤
T∑
t=1

λ[t]Rαt

St (h, g) + LK

T∑
t=1

λ[t]Ey∼T (y)W1(St(z|Y = y)‖T (z|Y = y))

6. Approximation W1 distance
According to Jensen inequality, we have

W1(Ŝt(z|Y = y)‖T̂ (z|Y = y)) ≤
√

[W2(Ŝt(z|Y = y)‖T̂ (z|Y = y))]2

Supposing Ŝt(z|Y = y) ≈ N (Cy
t ,Σ) and T̂ (z|Y = y) ≈ N (Cy,Σ), then we have:

[W2(Ŝt(z|Y = y)‖T̂ (z|Y = y)]2 = ‖Cy
t −Cy‖22 + Trace(2Σ− 2(ΣΣ)1/2) = ‖Cy

t −Cy‖22
We would like to point out that assuming the identical covariance matrix is more computationally efficient during the
matching. This is advantageous and reasonable in the deep learning regime: we adopted the mini-batch (ranging from
20-128) for the neural network parameter optimization, in each mini-batch the samples of each class are small, then we
compute the empirical covariance/variance matrix will be surely biased to the ground truth variance and induce a much
higher complexity to optimize. By the contrary, the empirical mean is unbiased and computationally efficient, we can
simply use the moving the moving average to efficiently update the estimated mean value (with a unbiased estimator). The
empirical results verify the effectiveness of this idea.

7. Proof of Lemma 1
For each source St, by introducing the duality of Wasserstein-1 distance, for y ∈ Y , we have:

W1(St(z|y)‖T (z|y)) = sup
‖d‖L≤1

Ez∼St(z|y)d(z)− Ez∼T (z|y)d(z)

= sup
‖d‖L≤1

∑
z

St(z|y)d(z)−
∑
z

T (z|y)d(z)

=
1

T (y)
sup
‖d‖L≤1

T (y)

St(y)

∑
z

St(z, y)d(z)−
∑
z

T (z, y)d(z)
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Then by defining ᾱt(z) = 1{(z,y)∼St}
T (Y=y)
St(Y=y) = 1{(z,y)∼St}αt(Y = y), we can see for each pair observation (z, y)

sampled from the same distribution, then ᾱt(Z = z) = αt(Y = y). Then we have:∑
y

T (y)W1(St(z|y)‖T (z|y)) =
∑
y

sup
‖d‖L≤1

{
∑
z

αt(y)St(z, y)d(z)−
∑
z

T (z, y)d(z)}

= sup
‖d‖L≤1

∑
z

ᾱt(z)St(z)d(z)−
∑
z

T (z)d(z)

= sup
‖d‖L≤1

Ez∼St(z)ᾱt(z)d(z)− Ez∼T (z)d(z)

We propose a simple example to understand ᾱt: supposing three samples in St = {(z1, Y = 1), (z2, Y = 1), (z3, Y = 0)}
then ᾱt(z1) = ᾱt(z2) = αt(1) and ᾱt(z3) = αt(0). Therefore, the conditional term is equivalent to the label-weighted
Wasserstein adversarial learning. We plug in each source domain as weight λ[t] and domain discriminator as dt, we finally
have Lemma 1.

8. Derive the label distribution ratio Loss
In GLS, we have T (z|y) ≈ St(z|y), ∀t, then we suppose the predicted target distribution as T̄ (y). By simplifying the
notation, we define f(z) = argmaxyh(z, y) the most possible prediction label output, then we have:

T̄ (y) =

Y∑
k=1

T (f(z) = y|Y = k)T (Y = k) =

Y∑
k=1

St(f(z) = y|Y = k)T (Y = k)

=

Y∑
i=1

St(f(z) = y, Y = k)αt(k) = T̄αt
(y)

The first equality comes from the definition of target label prediction distribution, T̄ (y) = ET (z)1{f(z) = y} = T (f(z) =

y) =
∑Y
k=1 T (f(z) = y, Y = k) =

∑Y
k=1 T (f(z) = y|Y = k)T (Y = k).

The second equality T (f(z) = y|Y = k) = St(f(z) = y|Y = k) holds since ∀t, T (z|y) ≈ St(z|y), then for the shared
hypothesis f , we have T (f(z) = y|Y = k) = St(f(z) = y|Y = k).

The term St(f(z) = y, Y = k) is the (expected) source prediction confusion matrix, and we denote its empirical (observed)
version as Ŝt(f(z) = y, Y = k).

Based on this idea, in practice we want to find a α̂t to match the two predicted distribution T̄ and T̄α̂t
. If we adopt the

KL-divergence as the metric, we have:

min
α̂t

DKL(T̄ ‖T̄α̂t
) = min

α̂t

Ey∼T̄ log(
T̄ (y)

T̄α̂t
(y)

) = min
α̂t

−Ey∼T̄ log(T̄α̂t
(y))

= min
α̂t

−
∑
y

T̄ (y) log(

Y∑
k=1

St(f(z) = y, Y = k)α̂t(k))

We should notice the nature constraints of label ratio: {α̂t(y) ≥ 0,
∑
y α̂t(y)Ŝt(y) = 1}. Based on this principle, we

proposed the optimization problem to estimate each label ratio. We adopt its empirical counterpart, the empirical confusion
matrix CŜt [y, k] = Ŝt[f(z) = y, Y = k], then the optimization loss can be expressed as:

min
α̂t

−
|Y|∑
y=1

T̄ (y) log(

|Y|∑
k=1

CŜt [y, k]α̂t(k))

s.t. ∀y ∈ Y, α̂t(y) ≥ 0,
∑
y

α̂t(y)Ŝt(y) = 1
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Feature	Extractor

Critic

Classifier

Figure 2. Network Structure of Proposed Approach. It consists three losses: the weighted Classification losses; the centroid matching for
explicit conditional matching; the weighted adversarial loss for implicit conditional matching, showed in Eq. (3)

9. Label Partial Multi-source unsupervised DA
The key difference between multi-conventional and partial unsupervised DA is the estimation step of α̂t. In fact, we only
add a sparse constraint for estimating each α̂t:

min
α̂t

−
|Y|∑
y=1

T̄ (y) log(

|Y|∑
k=1

CŜt [y, k]α̂t(k)) + C2‖α̂t‖1

s.t. ∀y ∈ Y, α̂t(y) ≥ 0,
∑
y

α̂t(y)Ŝt(y) = 1

(2)

Where C2 is the hyper-parameter to control the level of target label sparsity, to estimate the target label distribution. In the
paper, we denote C2 = 0.1.

10. Explicit and Implicit conditional learning
Inspired by Theorem 2, we need to learn the function g : X → Z and h : Z × Y → R to minimize:

min
g,h

∑
t

λ[t]R̂α̂t

St (h, g) + C0

∑
t

λ[t]Ey∼T̂ (y)W1(Ŝt(z|Y = y)‖T̂ (z|Y = y))

This can be equivalently expressed as:

min
g,h

∑
t

λ[t]R̂αt

St (h, g) + εC0

∑
t

λ[t]Ey∼T̂ (y)W1(Ŝt(z|Y = y)‖T̂ (z|Y = y))

+ (1− ε)C0

∑
t

λ[t]Ey∼T̂ (y)W1(Ŝt(z|Y = y)‖T̂ (z|Y = y))

Due to the explicit and implicit approximation of conditional distance, we then optimize an alternative form:

min
g,h

max
d1,...,dT

∑
t

λ[t]R̂α̂t

St (h, g)︸ ︷︷ ︸
Classification Loss

+ εC0

∑
t

λ[t]Ey∼T̂ (y)‖C
y
t −Cy‖2︸ ︷︷ ︸

Explicit Conditional Loss

+ (1− ε)C0

∑
t

λ[t][Ez∼Ŝt(z)ᾱ
t(z)d(z)− Ez∼T̂ (z)d(z)]︸ ︷︷ ︸

Implicit Conditional Loss

(3)

Where
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• Cy
t =

∑
(zt,yt)∼Ŝt 1{yt=y}zt the centroid of label Y = y in source St.

• Cy =
∑

(zt,yp)∼T̂ 1{yp=y}zt the centroid of pseudo-label Y = yp in target St. (If it is the unsupervised DA scenarios).

• ᾱt(z) = 1{(z,y)∼St}α̂t(Y = y), namely if each pair observation (z, y) from the distribution, then ᾱt(Z = z) =
α̂t(Y = y).

• d1, · · · , dT are domain discriminator (or critic function) restricted within 1-Lipschitz function.

• ε ∈ [0, 1] is the adjustment parameter in the trade-off of explicit and implicit learning. We fix ε = 0.5 in the experiments.

• T̂ (y) empirical target label distribution. (In the unsupervised DA scenarios, we approximate it by predicted target label
distribution T̄ (y).)

Gradient Penalty In order to enforce the Lipschitz property of the statistic critic function, we adopt the gradient penalty
term (Gulrajani et al., 2017). More concretely, given two samples zs ∼ St(z) and zt ∼ T (z) we generate an interpolated
sample zint = ξzs + (1− ξ)zt with ξ ∼ Unif[0, 1]. Then we add a gradient penalty ‖∇d(zint)‖22 as a regularization term to
control the Lipschitz property w.r.t. the discriminator d1, · · · , dT .

11. Algorithm Descriptions
We propose a detailed pipeline of the proposed algorithm in the following, shown in Algorithm 1 and 2. As for updating
λ and αt, we iteratively solve the convex optimization problem after each training epoch and updating them by using the
moving average technique.

For solving the λ and αt, we notice that frequently updating these two parameters in the mini-batch level will lead to
an instability result during the training. 5 As a consequence, we compute the accumulated confusion matrix, weighted
prediction risk, and conditional Wasserstein distance for the whole training epoch and then solve the optimization problem.
We use CVXPY to optimize the two standard convex losses. 6

Comparison with different time and memory complexity. We discuss the time and memory complexity of our approach.

Time complexity: In computing each batch we need to compute T re-weighted loss, T domain adversarial loss and T explicit
conditional loss. Then our computational complexity is still (O)(T ) during the mini-batch training, which is comparable
with recent SOTA such as MDAN and DARN. In addition, after each training epoch we need to estimate αt and λ, which
can have time complexity O(T |Y|) with each epoch. (If we adopt SGD to solve these two convex problems). Therefore, the
our proposed algorithm is time complexity O(T |Y|). The extra Y term in time complexity is due to the approach of label
shift in the designed algorithm.

Memory Complexity: Our proposed approach requires O(T ) domain discriminator and O(T |Y|) class-feature centroids.
By the contrary, MDAN and DARN require O(T ) domain discriminator and M3SDA and MDMN require O(T 2) domain
discriminators. Since our class-feature centroids are defined in the latent space (z), then the memory complexity of the
class-feature centroids can be much smaller than domain discriminators.

5In the label distribution shift scenarios, the mini-batch datasets are highly labeled imbalanced. If we evaluate αt over the mini-batch,
it can be computationally expensive and unstable.

6The optimization problem w.r.t. αt and λ is not large scale, then using the standard convex solver is fast and accurate.
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Algorithm 1 Wasserstein Aggregation Domain Network (unsupervised scenarios, one iteration)

Require: Labeled source samples Ŝ1, . . . , ŜT , Target samples T̂
Ensure: Label distribution ratio α̂t and task relation simplex λ. Feature Learner g, Classifier h, Statistic critic function

d1, . . . , dT , class centroid for source Cy
t and target Cy (∀t = [1, T ], y ∈ Y).

1: . . . DNN Parameter Training Stage (fixed αt and λ) / / /
2: for mini-batch of samples (xS1 ,yS1) ∼ Ŝ1, . . . , (xST ,yST ) ∼ ŜT , (xT ) ∼ T̂ do
3: Predict target pseudo-label ȳT = argmaxyh(g(xT ), y)
4: Compute source confusion matrix for each batch (un-normalized)

CŜt = #[argmaxy′h(z, y′) = y, Y = k] (t = 1, . . . , T )
5: Compute the batched class centroid for source Cyt and target Cy .
6: Moving Average for update source/target class centroid: (We set ε1 = 0.7)
7: Source class centroid update Cy

t = ε1 ×Cy
t + (1− ε1)× Cyt

8: Target class centroid update Cy = ε1 ×Cy + (1− ε1)× Cy
9: Updating g, h, d1, . . . , dT (SGD and Gradient Reversal), based on Eq.(3)

10: end for
11: . . . Estimation α̂t and λ / / /
12: Compute the global(normalized) source confusion matrix

CŜt = Ŝt[argmaxy′h(z, y′) = y, Y = k] (t = 1, . . . , T )
13: Solve αt (denoted as {α′t}Tt=1) (Or Eq.(2)) in the partial scenario).
14: Update αt by moving average: αt = ε1 × αt + (1− ε1)× α′t
15: Compute the weighted loss and weighted centroid distance, then solve λ (denoted as λ′) from Sec. 2.3.
16: Updating λ by moving average: λ = 0.8× λ + 0.2× λ′

12. Dataset Description and Experimental Details
12.1. Amazon Review Dataset

We used the amazon review dataset (Blitzer et al., 2007). It contains four domains (Books, DVD, Electronics, and Kitchen)
with positive (label ”1”) and negative product reviews (label ”0”). The data size is 6465 (Books), 5586 (DVD), 7681
(Electronics), and 7945 (Kitchen). We follow the common data pre-processing strategies (Chen et al., 2012): use the
bag-of-words (BOW) features then extract the top-5000 frequent unigram and bigrams of all the reviews.

We also noticed the original data-set are label balanced D(y = 0) = D(y = 1). To enhance the benefits of the proposed
approach, we create a new dataset with label distribution drift. Specifically, in the experimental settings, we randomly drop
50% data with label ”0” (negative reviews) for all the source data while keeping the target identical, showing in Fig (3).

We choose the MLP model with

• feature representation function g: [5000, 1000] units

• Task prediction and domain discriminator function [1000, 500, 100] units,

We choose the dropout rate as 0.7 in the hidden and input layers. The hyper-parameters are chosen based on cross-validation.
The neural network is trained for 50 epochs and the mini-batch size is 20 per domain. The optimizer is Adadelta with a
learning rate of 0.5.

Experimental Setting We use the amazon Review dataset for two transfer learning scenarios (limited target labels and
unsupervised DA). We first randomly select 2K samples for each domain. Then we create a drifted distribution of each
source, making each source ≈ 1500 and target sample still 2K.

In the unsupervised DA, we use these labeled source tasks and unlabelled target task, which aims to predict the labels on the
target domain.

In the conventional transfer learning, we random sample only 10% dataset (≈ 200 samples) as the target training set and the
rest 90% samples as the target test set.
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Algorithm 2 Wasserstein Aggregation Domain Network (Limited Target Data, one iteration)

Require: Labeled source samples Ŝ1, . . . , ŜT , Target samples T̂ , Label shift ratio αt
Ensure: Task relation simplex λ. Feature Learner g, Classifier h, Statistic critic function d1, . . . , dT , class centroid for

source Cy
t and target Cy (∀t = [1, T ], y ∈ Y).

1: . . . DNN Parameter Training Stage (fixed λ) / / /
2: for mini-batch of samples (xS1 ,yS1) ∼ Ŝ1, . . . , (xST ,yST ) ∼ ŜT , (xT ) ∼ T̂ do
3: Compute the batched class centroid for source Cyt and target Cy .
4: Moving Average for update source/target class centroid: (We set ε1 = 0.7)
5: Source class centroid update Cy

t = ε1 ×Cy
t + (1− ε1)× Cyt

6: Target class centroid update Cy = ε1 ×Cy + (1− ε1)× Cy
7: Updating g, h, d1, . . . , dT (SGD and Gradient Reversal), based on Eq.(3).
8: end for
9: . . . Estimation λ / / /

10: Solve λ by Sec. 2.3. (denoted as λ′)
11: Updating λ by moving average: λ = ε1 × λ + (1− ε1)× λ′

We select C0 = 0.01 and C1 = 1 for these two transfer scenarios. In both practical settings, we set the maximum training
epoch as 50.
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Figure 3. Amazon Review dataset (a) Original Label Training Distribution; (b) Label-Shifted distribution with sources tasks: Book, Dvd,
Electronic, and target task Kitchen. We randomly drop 50% of the negative reviews for all the source distribution while keeping the target
label distribution unchanged.

12.2. Digit Recognition

We follow the same settings of (Ganin et al., 2016) and we use four-digit recognition datasets in the experiments MNIST,
USPS, SVHN, and Synth. MNIST and USPS are the standard digits recognition task. Street View House Number (SVHN)
(Ganin et al., 2016) is the digit recognition dataset from house numbers in Google Street View Images. Synthetic Digits
(Synth) (Ganin et al., 2016) is a synthetic dataset that by various transforming SVHN dataset.

We also visualize the label distribution in these four datasets. The original datasets show an almost uniform label distribution
on the MNIST as well as Synth, (showing in Fig. 5 (a)). In our paper, we generate a label distribution drift on the source
datasets for each multi-source transfer learning. Concretely, we drop 50% of the data on digits 5-9 of all the sources while
we keep the target label distribution unchanged. (Fig. 5 (b) illustrated one example with sources: Mnist, USPS, SVHN, and
Target Synth. We drop the labels only on the sources.)

MNIST and USPS images are resized to 32 × 32 and represented as 3-channel color images to match the shape of the other
three datasets. Each domain has its own given training and test sets when downloaded. Their respective training sample
sizes are 60000, 7219, 73257, 479400, and the respective test sample sizes are 10000, 2017, 26032, 9553.

The model structure is shown in Fig. 4. There is no dropout and the hyperparameters are chosen based on cross-validation.
It is trained for 60 epochs and the mini-batch size is 128 per domain. The optimizer is Adadelta with a learning rate of 1.0.
We adopted γ = 0.5 for MDAN and γ = 0.1 for DARN in the baseline (Wen et al., 2020).
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Experimental Setting We use the Digits dataset for two transfer learning scenarios (limited target labels and unsupervised
DA). Notice the USPS data has only 7219 samples and the digits dataset is relatively simple. We first randomly select 7K
samples for each domain. We create a drifted distribution of each source, making each source ≈ 5300, and the target sample
still 7K.

In the unsupervised DA, we use these labeled source tasks and unlabelled target task, which aims to predict the labels on the
target domain.

In the transfer learning with limited data, we random sample only 10% dataset (≈ 700 samples) as the target training set and
the rest 90% samples as the target test set.

We select C0 = 0.01 and C1 as the maximum prediction loss C1 = maxtR
αt(h) as the hyper-parameters across these two

scenarios. The maximum training epoch is 60.

1. Feature extractor: with 3 convolution layers.

’layer1’: ’conv’: [3, 3, 64], ’relu’: [], ’maxpool’: [2, 2, 0],

’layer2’: ’conv’: [3, 3, 128], ’relu’: [], ’maxpool’: [2, 2, 0],

’layer3’: ’conv’: [3, 3, 256], ’relu’: [], ’maxpool’: [2, 2, 0],

2. Task prediction: with 3 fully connected layers.

’layer1’: ’fc’: [*, 512], ’act fn’: ’relu’,

’layer2’: ’fc’: [512, 100], ’act fn’: ’relu’,

’layer3’: ’fc’: [100, 10],

3. Domain Discriminator: with 2 fully connected layers.

reverse gradient()

’layer1’: ’fc’: [*, 256], ’act fn’: ’relu’,

’layer2’: ’fc’: [256, 1],

Figure 4. Neural Network Structure in the digits recognition (Ganin et al., 2016)
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Figure 5. One example in Digits dataset with Sources: MNIST, USPS, SVHN and Target Synth. We randomly drop 50% data on digits
5-9 in all sources while keeping target label distribution unchanged.

12.3. Office-Home dataset

To show the dataset in the complex scenarios, we use the challenging Office-Home dataset (Venkateswara et al., 2017). It
contains images of 65 objects such as a spoon, sink, mug, and pen from four different domains: Art (paintings, sketches,
and/or artistic depictions), Clipart (clipart images), Product (images without background), and Real-World (regular images
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captured with a camera). One of the four datasets is chosen as an unlabelled target domain and the other three datasets are
used as labeled source domains.

The dataset size is 2427 (Art), 4365 (Clipart), 4439 (Product), 4357 (Real-World). We follow the same training/test procedure
as (Wen et al., 2020). We additionally visualize the label distribution D(y) in four domains in Fig.??, which illustrated the
inherent different label distributions. We did not re-sample the source label distribution to uniform distribution in the data
pre-processing step. All the baselines are evaluated under the same setting.

We use the ResNet50 (He et al., 2016) pretrained from the ImageNet in PyTorch as the base network for feature learning and
put an MLP with the network structure shown in Fig. 7.

Experimental Settings We use the original Office-Home dataset for two transfer learning scenarios (unsupervised DA
and label-partial unsupervised DA). We use SGD optimizer with learning rate 0.005, momentum 0.9 and weight decay
value 1e-3. It is trained for 100 epochs and the mini-batch size is 32 per domain. As for the baselines, MDAN use γ =
1.0 while DARN use γ = 0.5. We select C0 = 0.01 and C1 as the maximum prediction loss C1 = maxtR

αt(h) as the
hyper-parameters across these two scenarios.

In the multi-source unsupervised partial DA, we randomly select 35 classes from the target (by repeating 3 samplings), then
at each sampling we run 5 times. The final result is based on these 3× 5 = 15 repetitions.

Figure 6. Samples Images From Office-Home dataset (Venkateswara et al., 2017), which consists four domains with non-uniform label
distribution.

1. Feature extractor: ResNet50 (He et al., 2016),

2. Task prediction: with 3 fully connected layers.

’layer1’: ’fc’: [*, 256], ’batch normalization’, ’act fn’: ’Leaky relu’,

’layer2’: ’fc’: [256, 256], ’batch normalization’, ’act fn’: ’Leaky relu’,

’layer3’: ’fc’: [256, 65],

3. Domain Discriminator: with 3 fully connected layers.

reverse gradient()

’layer1’: ’fc’: [*, 256], ’batch normalization’, ’act fn’: ’Leaky relu’,
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Figure 7. Neural Network Structure in the Office-Home

13. Analysis in Unsupervised DA
13.1. Ablation Study: Different Dropping Rate

To show the effectiveness of our proposed approach, we change the drop rate of the source domains, showing in Fig.(8). We
observe that in task Book, DVD, Electronic, and Kitchen, the results are significantly better under a large label-shift. In the
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initialization with almost no label shift, the state-of-the-art DARN illustrates a slightly better (< 1%) result.
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Figure 8. Different label drift levels on Amazon Dataset. Larger dropping rate means higher label shift.

13.2. Additional Analysis on Amazon Dataset

We present two additional results to illustrate the working principles of WADN, showing in Fig. (9).

We visualize the evolution of λ between DARN and WADN, which both used theoretical principled approach to estimate
λ. We observe that in the source shifted data, DARN shows an inconsistent estimator of λ. This is different from
the observation of (Wen et al., 2020). We think it may in the conditional and label distribution shift problem, using
R̂S(h(z)) + Discrepancy(S(z), T (z)) to update λ is unstable. In contrast, WADN illustrates a relative consistent estimator
of λ under the source shifted data.

In addition, WARN gradually and correctly estimates the unbalanced source data and assign higher wights αt for label
y = 0 (first row of Fig.(9)). These principles in WADN jointly promote significantly better results.

13.3. Additional Analysis on Digits Dataset

We show the evolution of α̂t on WADN, which verifies the correctness of our proposed principle. Since we drop digits 5-9
in the source domains, the results in Fig. (10) illustrate a higher α̂t on these digits.

14. Partial multi-source Unsupervised DA
From Fig. (12), WADN is consistently better than other baselines, given different selected classes.

Besides, when fewer classes are selected, the accuracy in DANN, PADA, and DARN is not drastically dropping but
maintaining a relatively stable result. We think the following possible reasons:

• The reported performances are based on the average of different selected sub-classes rather than one sub-class
selection. From the statistical perspective, if we take a close look at the variance, the results in DANN are much more
unstable (higher std) inducing by the different samplings. Therefore, the conventional domain adversarial training is
improper for handling the partial transfer since it is not reliable and negative transfer still occurs.

• In multi-source DA, it is equally important to detect the non-overlapping classes and find the most similar sources.
Comparing the baselines that only focus on one or two principles shows the importance of unified principles in
multi-source partial DA.

• We also observe that in the Real-World dataset, the DANN improves the performance by a relatively large value. This
is due to the inherent difficultly of the learning task itself. In fact, the Real-World domain illustrates a much higher
performance compared with other domains. According to the Fano lower bound, a task with smaller classes is generally
easy to learn. It is possible the vanilla approach showed improvement but still with a much higher variance.

Fig (13), (14) showed the estimated α̂t with different selected classes. The results validate the correctness of WADN in
estimating the label distribution ratio.



Aggregating From Multiple Target-Shifted Sources
al

ph
a 

D

Target: Book

al
ph

a 
E

0 10 20 30 40 50

al
ph

a 
K

(a) Target: Book

al
ph

a 
B

Target: DVD

al
ph

a 
E

0 10 20 30 40 50

al
ph

a 
K

(b) Target: DVD

al
ph

a 
B

Target: Electronics

al
ph

a 
D

0 10 20 30 40 50

al
ph

a 
K

(c) Target: Electronics
al

ph
a 

B

Target: Kitchen

al
ph

a 
D

0 10 20 30 40 50

al
ph

a 
E

(d) Target: Kitchen

Figure 9. Amazon Dataset. WADN approach: evolution of α̂t during the training. Darker indicates higher Value. Since we drop y = 0 in
the sources, then the true αt(0) > 1 will be assigned with higher value.
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Figure 11. Evolution of accuracy w.r.t. the predicted target pseudo-labels in different tasks in unsupervised DA.
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Figure 13. We select 15 classes and visualize estimated α̂t (the bar plot). The ”X” along the x-axis represents the index of dropped 50
classes. The red curves are the ground-truth label distribution ratio.
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Figure 14. We select 35 classes and visualize estimated α̂t (the bar plot). The ”X” along the x-axis represents the index of dropped 30
classes. The red curves are the ground-truth label distribution ratio.


