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Appendix A Proofs

We prove Theorems 1 and 2 under a more general assumption below.

Assumption 2′ (Continuous conditional measure). For the case where supp(U) is potentially an

infinite set, the cost function c is decomposable as

c
(
(x, u), (x′, u′)

)
= c̄(x, x′) +∞ · ‖u− u′‖,

and the following conditions are satisfied:

a) the moments EP‖U‖22, EP‖φ(U, µ)‖22 and EP‖φz(U, µ)‖2 are finite.

b) For z such that ‖z − µ‖2 < v, the derivative φz(·) satisfies,

‖φz(u, z)− φz(u, µ)‖2 ≤M(u) ‖z − µ‖2 , (A.1)

where EP[M(U)] < +∞.

c) The (regular) conditional probability measure νt of φ(U, µ)|Φ(X) = t converges in terms of the

type 1-Wasserstein distance as t→ 0: i.e., there exist a set B ⊂ R with P(Φ(X) ∈ B) = 1 and

ε0 > 0 such that

lim
t→0

W1 (νt, ν0)1{t ∈ B} = 0

and supt∈B EP[‖φ(U, µ)‖2+ε0
2 |Φ(X)=t] is finite, where type 1-Wasserstein distance W1(·, ·) is

Wc(·, ·) with the cost function being a metric.

Remark 1. If supp(U) is a finite set, and U is completely dependent on (X,Y ), the simpler As-

sumption 2 is equivalent to Assumption 2′.
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Appendix A.1 Proofs of Section 3

Proof of Proposition 1. Since the cost to move U is +∞, we have EQ[U ] = EP̂N [U ]. Then, consider

any probability measure Q such that

EQ[C(X)φ(U,EP̂N [U ])] = 0,

and let π be the optimal coupling between P̂N and Q. Because P̂N is the empirical measure, the

coupling π can be written as π = 1
N

∑
i∈[N ] πi ⊗ δ(xi,ui). For any value ε > 0, construct now the

measure

Qε =
1

N

∑
i∈[N ]

(1− pi)δ(xi,ui) + piδ(xεi ,ui)
, (A.2)

where the mass pi is set to

pi =

∫
X1−C(xi)

πi(dx) = πi(X1−C(xi)) ∈ [0, 1] ∀i ∈ [N ].

and xεi is an ε-optimizer of the problem infx′∈X1−C(x) c(xi, x
′). Then, it is easy to see

EQε [C(X)φ(U,EP̂N [U ])] = EQ[C(X)φ(U,EP̂N [U ])] = 0, and

EQε [C(X)φ(U,EP̂N [U ])]

=
1

N

∑
i∈[N ]

(1− pi)C(xi)φ(ui,EP̂N [U ]) + pi(1− C(xi))φ(ui,EP̂N [U ])


=

1

N

∑
i∈[N ]

(1− 2C(xi))φ(ui,EP̂N [U ])pi +
∑
i∈[N ]

C(xi)φ(ui,EP̂N [U ])

 .

Since d(xi) ≤ ‖xεi − xi‖ ≤ ‖x − xi‖ + ε for any x ∈ X1−C(xi), this implies that 1
N

∑
i∈[N ] pid(xi) ≤

W (Q, P̂N ) + ε. Since ε can be chosen arbitrarily, this implies that

P(P̂N ) ≥


min

1

N

∑
i∈[N ]

pid(xi)

s.t. p ∈ [0, 1]N∑
i∈[N ]

(1− 2C(xi))φ(ui,EP̂N [U ])pi = −
∑
i∈[N ]

C(xi)φ(ui,EP̂N [U ]).

(A.3)

On the other hand, for any {pi}Ni=1 satisfying the constraints in the linear programming (A.3), we can

construct the measure Qε according to (A.2). Since Qε is a feasible solution of the primal problem

(5), we have the other direction of the inequality.

Proof of Proposition 2. Case 1: d(xi) < +∞ for i ∈ [N ]. The primal problem has a feasible solution
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(pi = 0 if C(X) = 0; pi = 1, otherwise) and is bounded, thus it has an optimal solution and the

strong duality holds. By the strong duality, we have

P(P̂N ) =


max

1

N

∑
i∈[N ]

αi + γ>C(xi)φ(ui,EP̂N [U ])


s.t. αi ≤ 0 ∀i ∈ [N ]

αi − (1− 2C(xi)) γ>φ(ui,EP̂N [U ]) ≤ d(xi) ∀i ∈ [N ].

(A.4)

Then, we have

αi =
(
d(xi) + (1− 2C(xi)) γ>φ(ui,EP̂N [U ])

)−
,

which gives the desired results.

Case 2: ∃i ∈ [N ] such that d(xi) = +∞. The primal problem is equivalent to

P(P̂N ) =



min
1

N

∑
i∈[N ]

pid(xi),

s.t. p ∈ [0, 1]N ,

pi = 0 for d(xi) = +∞∑
i∈[N ]

(1− 2C(xi))φ(ui,EP̂N [U ])pi = −
∑
i∈[N ]

C(xi)φ(ui,EP̂N [U ]),

(A.5)

with the convention that if the problem is infeasible, the optimal value of the minimization problem

is +∞. We have the dual problem

max
1

N

 ∑
d(xi)<+∞

αi + γ>C(xi)φ(ui,EP̂N [U ])


s.t. αi ≤ 0 for d(xi) < +∞

αi − (1− 2C(xi)) γ>φ(ui,EP̂N [U ]) ≤ d(xi) for d(xi) < +∞.

(A.6)

Since the problem (A.6) is also feasible, if it is bounded, then the strong duality holds. If the problem

(A.6) is unbounded, the primal problem (A.5) is infeasible, which means the primal and the dual

both have optimal value +∞. Finally, because(
d(xi) + (1− 2C(xi)) γ>φ(ui,EP̂N [U ])

)−
= 0 for d(xi) = +∞,

we have the optimal value of problem (A.6) equals to D(P̂N ).

Proof of Lemma 1. SinceXC

∣∣XD = x has positive density in Rd2 for every x ∈ D, we have θ>CXC

∣∣XD =
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x has positive density in R for every x ∈ D. Therefore, θ>X has a density

fθ>X(x) =
∑
v∈D

pvfθ>CXC

∣∣v(x− θ>Dv) > 0,

where pv = P (XD = v) and f
θ>CXC

∣∣v(·) denotes the conditional density of θ>CXC

∣∣XD = x.

Further, let w = `−1(τ). For the cost function c̄(·) given by (3a), we have by Hölder inequality

d(x) = inf
θ>x′=w

‖x− x′‖ = ‖θ‖−1
∗ |θ>x− w|.

Therefore, PΦ has a continuous density f(·) = ‖θ‖∗fθ>X(‖θ‖∗ × ·+ w) with f(0) > 0.

For the cost function c̄(·) given by (4), when d(x) < δ, we have

d(x) = inf
θ>x′=w

c̄(x, x′) = inf
xD=x′D,θ

>
Cx
′=w−θ>DxD

c̄(x, x′) = inf
θ>Cx

′=w−θ>DxD
‖xC − x′C‖ = ‖θC‖−1

∗ |θ>x− w|.

The last equality is again due to Hölder inequality. Therefore, PΦ has a continuous density f(·) =

‖θC‖∗fθ>X(‖θC‖∗ × ·+ w) with f(0) > 0, which completes the proof.

Lemmas A1 and A2 are useful for the proof of Theorem 1, whose proofs are presented in Section

Appendix A.3.

Lemma A1. Suppose Assumption 2′ is enforced. Then, we have

√
N
(
EP̂N

[
φ
(
U,EP̂N [U ]

)
C(X)

]
− EP [φ(U, µ)C(X)]

)
⇒ N (0, cov (EP [φz(U, µ)C(X)]U + φ(U, µ)C(X))).

Lemma A2. Suppose Assumption 1 and 2′ are enforced. Then, we have

√
NEP̂N

[(
−γ>φ

(
U,EP̂N [U ]

)
+
√
Nd(X)

)−
C(X)

]
p−→ −1

2
f(0)EP

[(
γ>φ (U, µ)

)2
I{γ>φ (U, µ) ≥ 0}

∣∣∣∣ d(X) = 0

]
,

uniformly over ‖γ‖2 ≤ B.

We are now ready to prove Theorem 1.

Proof of Theorem 1. Recall that

D(P̂N ) = max
γ∈Rm

1

N

∑
i∈[N ]

(
d(xi) + (1− 2C(xi)) γ>φ(ui,EP̂N [U ])

)−
+ γ>C(xi)φ(ui,EP̂N [U ])


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= max
γ∈Rm

 1

N

∑
i∈[N ]

γ>C(xi)φ(ui,EP̂N [U ]) +

1

N

∑
i∈[N ]

(
d(xi)− γ>φ(ui,EP̂N [U ])

)−
C(xi) +

(
d(xi) + γ>φ(ui,EP̂N [U ])

)−
(1− C(xi))

 .

We first rescale γ ← γ
√
N and thus

ND(P̂N )

=
√
N max

γ∈Rm

{
γ>EP̂N

[
φ
(
U,EP̂N [U ]

)
C(X)

]
+

EP̂N

[(√
Nd(X)− γ>φ(U,EP̂N [U ])

)−
C(X) +

(√
Nd(X) + γ>φ(U,EP̂N [U ])

)−
(1− C(X))

]}
.

To ease the notation, we denote λi = φ
(
ui,EP̂N [U ]

)
. By Lemma A2, we have

1√
N

N∑
i=1

(
−γ>λi +N1/2d(xi)

)−
(1− C(xi))

p−→ −1

2
f(0)EP

[(
γ>φ (U, µ)

)2
I{γ>φ (U, µ) ≥ 0}

∣∣∣∣ d(X) = 0

]
= −1

2
f(0)EP

[(
γ>φ (U, µ)

)2
I{γ>φ (U, µ) ≥ 0}

∣∣∣∣ d(X) = 0

]
,

and similarly, we have

1√
N

N∑
i=1

(
γ>λi +N1/2d(xi)

)−
(1−C(xi))

p−→ −1

2
f(0)EP

[(
γ>φ (U, µ)

)2
I{γ>φ (U, µ) < 0}

∣∣∣∣ d(X) = 0

]
.

Therefore, we have

√
NEP̂N

[(√
Nd(X)− γ>φ(U,EP̂N [U ])

)−
C(X) +

(√
Nd(X) + γ>φ(U,EP̂N [U ])

)−
(1− C(X))

]
p−→ −1

2
f(0)EP

[(
γ>φ (U, µ)

)2
∣∣∣∣ d(X) = 0

]
.

We denote

VN =
√
NEP̂N

[
φ
(
U,EP̂N [U ]

)
C(X)

]
, and

MN (γ) =
1√
N

N∑
i=1

[(
−γ>λi +N1/2d(xi)

)−
C(X)}+

(
γ>λi +N1/2d(xi)

)−
(1− C(X))

]
.

To proceed, we rely on the following lemma.

Lemma A3. Suppose Assumption 1 is enforced. Then, for every ε > 0, there exists N0 > 0 and
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b ∈ (0,∞) such that for all N ≥ N0,

P

(
sup
‖γ‖2>b

{
γ>VN +MN (γ)

}
> 0

)
≤ ε.

The proof of Lemma A3 is furnished in Section Appendix A.3. Notice that D(P̂N ) ≥ 0 (choosing

γ = 0), Lemma A3 implies that when N ≥ N0,

P

{
ND(P̂N ) = sup

‖γ‖2≤b

{
γ>VN +MN (γ)

}}
≥ 1− ε.

By Lemmas A1 and A2, we have

sup
‖γ‖2≤b

{
γ>VN +MN (γ)

}
⇒ sup

‖γ‖2≤b

{
γ>V − 1

2
f(0)E

[(
γ>φ (U, µ)

)2
∣∣∣∣ d(X) = 0

]}
= sup

‖γ‖2≤b

{
γ>V − 1

2
γ>Sγ

}
,

where

S = f(0)EP

[
φ (U, µ)φ (U, µ)>

∣∣∣ d(X) = 0
]
,

and V is normally distributed with mean zero and covariance matrix

cov (EP [φz(U, µ)C(X)]U + φ(U, µ)C(X)) .

By the arbitrariness of ε, we have the desired result:

N ×D(P̂N )⇒ sup
γ

{
γ>V − 1

2
γ>Sγ

}
.

This completes the proof.

Appendix A.2 Proofs of Section 4

The proofs of Propositions 4 and 5 are not presented because they follow the same lines as the proofs

of Propositions 1 and 2.

Proof of Theorem 2. Let

ε∗ = EP [C(X)φ (U,EP[U ])] .

By following the similar arguments with the proof of Theorem 1, we have

NDε(P̂N )
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= N sup
γ∈Rm

+

−γ>ε+
1

N

∑
i∈[N ]

(1− 2C(xi))φ(ui,EP̂N [U ]) +
∑
i∈[N ]

C(xi)φ(ui,EP̂N [U ])




=
√
N sup

γ∈Rm
+

{
γ>
(
EP̂N

[
φ
(
U,EP̂N [U ]

)
C(X)} − ε

])
+

EP̂N

[(
−γ>φ(U,EP̂N [U ]) +

√
Nd(X)

)−
C(X) +

(
γ>φ(U,EP̂N [U ]) +

√
Nd(X)

)−
(1− C(X))

]}
= sup

γ∈Rm
+

{
γ>VN +

√
Nγ> (ε∗ − ε) +MN (γ)

}
.

Similarly, we still have

γ>VN +MN (γ)⇒ γ>V − 1

2
γ>Sγ,

uniformly over
{
γ : γ ∈ Rm+ , ‖γ‖2 ≤ B

}
. Therefore, we must enforce γ> (ε∗ − ε) = 0 here. Then, we

have

NDε(P̂N )⇒ max
γ∈Rm

+ ,γ
>(ε∗−ε)=0

{
γ>V − 1

2
γ>Sγ

}
� max

γ∈Rm
+

{
γ>V − 1

2
γ>Sγ

}
.

This completes the proof.

Appendix A.3 Proofs of Technical Results

Proof of Lemma A1. By adding and subtracting the term EP̂N [φ(U, µ)C(X)], we find

EP̂N

[
φ(U,EP̂N [U ])C(X)

]
− EP [φ(U, µ)C(X)]

= EP̂N

[
φ(U,EP̂N [U ])C(X)− φ(U, µ)C(X)

]
+EP̂N [φ(U, µ)C(X)]− EP [φ(U, µ)C(X)]

(A.7)

Under Assumption 2′ and the fundamental theorem of calculus, the first term in the right-hand side

of (A.7) becomes

EP̂N

[
φ(U,EP̂N [U ])C(X)− φ(U, µ)C(X)

]
= EP̂N

[∫ 1

0
φz
(
U, µ+ t

(
EP̂N [U ]− µ

)) (
EP̂N [U ]− µ

)
C(X)dt

]
.

Thanks to Assumption 2′, we have that∥∥∥∥EP̂N

[∫ 1

0
φz
(
U, µ+ t

(
EP̂N [U ]− µ

)) (
EP̂N [U ]− µ

)
C(X)dt

]
−EP̂N

[∫ 1

0
φz (U, µ)

(
EP̂N [ψ(U)]− µ

)
C(X)dt

]∥∥∥∥
2

≤ 1

2
EP̂N [M(U)]

∥∥EP̂N [U ]− µ
∥∥2

2
,
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whenever
∥∥EP̂N [U ]− µ

∥∥
2
< εµ. Then, notice that we have

lim
N→∞

1

2

√
NEP̂N [M(U)]

∥∥EP̂N [ψ(U)]− µ
∥∥2

2
= 0 almost surely, (A.8)

and

EP̂N

[∫ 1

0
φz (U, µ)

(
EP̂N [U ]− µ

)
C(X)dt

]
= EP̂N [φz (U, µ) C(X)]

(
EP̂N [U ]− µ

)
}

= (EP [φz (U, µ) C(X)] + op (1))
(
EP̂N [ψ(U)]− µ

)
.

By multiplying
√
N to both sides of equation (A.7), we have

√
N
(
EP̂N

[
φ
(
U,EP̂N [U ]

)
C(X)

]
− EP [φ(U, µ)C(X)]

)
=
√
N (EP [φz (U, µ) C(X)] + op (1))

(
EP̂N [U ]− µ

)
+EP̂N [φ(U, µ)C(X)]− EP [φ(U, µ)C(X)] + op(1)

=
√
NEP̂N

[
EP
[
φz (U, µ) C(X)

]
(U − µ) + φ(U, µ)C(X)− EP

[
φ(U, µ)C(X)

]]
+ op(1)

⇒ N (0,Σ),

where Σ is the covariance matrix of EP [φz(U, µ)C(X)]U + φ(U, µ)C(X), namely

Σ = cov (EP [φz(U, µ)C(X)]U + φ(U, µ)C(X)) .

Proof of Lemma A2. Step 1: we first show

√
NEP̂N

[(
−γ>φ

(
U,EP̂N [U ]

)
+
√
Nd(X)

)−
C(X)

]
−
√
NEP̂N

[(
−γ>φ (U, µ) +

√
Nd(X)

)−
C(X)

]
p−→ 0,

uniformly over ‖γ‖2 ≤ B. When
∥∥EP̂N [U ]− µ

∥∥
2
< εµ, we have

√
NEP̂N

[(
−γ>φ

(
U,EP̂N [U ]

)
+
√
Nd(X)

)−
C(X)

]
−
√
NEP̂N

[(
−γ>φ (U, µ) +

√
Nd(X)

)−
C(X)

]
≤ N−1/2 ‖γ‖2

N∑
i=1

[∥∥φ (ui,EP̂N [ψ(U)]
)
− φ (ui, µ)

∥∥
2
I{Ei}

]
,
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where the events Ei are defined by

Ei = { ‖γ‖2 (‖φ (ui, µ)‖2 + (‖φz (ui, µ)‖2 +M(ui)εµ) εµ)≥
√
Nd(xi)}.

By a similar derivation with the proof of Lemma A1, we have

N−1/2 ‖γ‖2
N∑
i=1

[∥∥φ (ui,EP̂N [U ]
)
− φ (ui, µ)

∥∥−
2
I{Ei}

]
=
‖γ‖2√
N

N∑
i=1

[∫ 1

0

(
φz
(
ui, µ+ t

(
EP̂N [U ]− µ

)) (
EP̂N [U ]− µ

)
dt
)
I{Ei}

]
≤ ‖γ‖2

√
N
(
EP̂N [U ]− µ

)
EP̂N [φz (U, µ) I{Ei}] +

1

2
‖γ‖2

√
NEP̂N [M(U)]

∥∥EP̂N [U ]− µ
∥∥2

2
.

Since I{Ei} → 0 almost surely and EP[φz(U, µ)] < +∞, we have

‖γ‖2
√
N
(
EP̂N [U ]− µ

)
EP̂N [φz (U, µ) I{Ei}]

p−→ 0,

uniformly over ‖γ‖2 ≤ B. By combining

1

2
‖γ‖2

√
NEP̂N [M(U)]

∥∥EP̂N [U ]− µ
∥∥2

2
→ 0 almost surely,

uniformly over ‖γ‖2 ≤ B, we finish step 1.

Step 2: We claim that

√
NEP

[(
−γ>φ (U, µ) +

√
Nd(X)

)−
C(X)

]
−→ −1

2
f(0)E

[(
γ>φ (U, µ)

)2
I{γ>φ (U, µ) ≥ 0}

∣∣∣∣ d(X) = 0

]
.

Notice that for any c > 0, we have

√
NEP

[(
−γ>φ (U, µ) +

√
Nd(X)

)−
C(X)

]
=
√
N

∫ +∞

0
EP

[(
−γ>φ (U, µ) +

√
Nd(X)

)−∣∣∣∣ d(X) (2C(X)− 1) = t

]
dPΦ(t).

=
√
N

∫ c/
√
N

0
EP

[(
−γ>φ (U, µ) +

√
Nd(X)

)−∣∣∣∣Φ(X) = t

]
dPΦ(t) (A.9)

+
√
N

∫ +∞

c/
√
N
EP

[(
−γ>φ (U, µ) +

√
Nd(X)

)−∣∣∣∣Φ(X) = t

]
dPΦ(t) (A.10)

We first analyze the first term in (A.9). By Assumption 1.a), when N is sufficient large such that
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c/
√
N < v, we have

√
N

∫ c/
√
N

0
EP

[(
−γ>φ (U, µ) +

√
Nd(X)

)−∣∣∣∣Φ(X) = t

]
dPΦ(t)

=
√
N

∫ c/
√
N

0
EP

[(
−γ>φ (U, µ) +

√
Nd(X)

)−∣∣∣∣Φ(X) = t

]
f(t)dt.

By changing of the variable s =
√
Nt , we have

√
N

∫ c/
√
N

0
EP

[(
−γ>φ (U, µ) +

√
NdB(X)

)−∣∣∣∣Φ(X) = t

]
f(t)dt

=

∫ c

0
EP

[(
−γ>φ (U, µ) + s

)−∣∣∣∣Φ(X) = N−1/2s

]
f(N−1/2s)ds

By Assumption 1.c), we have for any ε > 0, any 0 < c < +∞, there exists N0, such that for N > N0

and s ≤ c, ∣∣∣∣EP

[(
−γ>φ (U, µ) + s

)−∣∣∣∣Φ(X) = N−1/2s

]
− EP

[(
−γ>φ (U, µ) + s

)−∣∣∣∣Φ(X) = 0

]∣∣∣∣
≤ ‖γ‖∗

∥∥∥EP

[
φ (U, µ)|Φ(X) = N−1/2s

]
− EP [φ (U, µ)|Φ(X) = 0]

∥∥∥
≤ ‖γ‖∗W1

(
φ (U, µ)|Φ(X) = N−1/2s, φ (U, µ)|Φ(X) = 0

)
≤ ε.

Therefore, by taking ε ↓ 0, we have∣∣∣∣∫ c

0
EP

[(
−γ>φ (U, µ) + s

)−
I{h (X)≥τ}

∣∣∣∣Φ(X) = N−1/2s

]
f(N−1/2s)ds

−
∫ c

0
EP

[(
−γ>φ (U, µ) + s

)−
I{h (X)≥τ}

∣∣∣∣Φ(X) = 0

]
f(N−1/2s)ds

∣∣∣∣ p−→ 0.

Then, the basic algebra and the mean value theorem for integrals give us∫ c

0
EP

[(
−γ>φ (U, µ) + s

)−∣∣∣∣Φ(X) = 0

]
f(N−1/2s)ds

=

∫ c

0
EP

[(
−γ>φ (U, µ) + s

)−∣∣∣∣ d(X) = 0

]
f(N−1/2s)ds

=f(ξ)EP

[∫ c

0

((
−γ>φ (U, µ) + s

)−∣∣∣∣ d(X) = 0

)
ds

]
=f(ξ)EP

[∫ min(c,γ>φ(U,µ)|Φ(X)=0)

0

((
−γ>φ (U, µ) + s

)
I{γ>φ (U, µ) ≥ 0}

∣∣∣ d(X) = 0
)

ds

]

→− 1

2
f(0)EP

[
min{c, γ>φ (U, µ)}

(
γ>φ (U, µ) +

(
γ>φ (U, µ)− c

)+
)
I{γ>φ (U, µ) ≥ 0}

∣∣d(X) = 0

]
,

(A.11)
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where ξ ∈ [0, N−1/2c] and (x)+ = max{x, 0}.
We then deal with the second term in (A.9). Let

Mγ = ess sup
t≥0

EP

[∣∣∣γ>φ (U, µ)
∣∣∣2+ε0

|Φ(X)=t

]
.

For any c ≥ 0, we have

√
N

∫ +∞

c/
√
N
EP

[(
−γ>φ (U, µ) +

√
Nt
)−∣∣∣∣Φ(X) = t

]
dPΦ(t)

≥ −
√
N

∫ +∞

c/
√
N
EP

[
γ>φ (U, µ) I{γ>φ (U, µ) ≥

√
Nt
∣∣∣Φ(X) = t

]
dPΦ(t)

≥ −
√
N

∫ +∞

c/
√
N

(
1√
Nt

)1+ε0

EP

[(
γ>φ (U, µ)

)2+ε0
I{γ>φ (U, µ) ≥

√
Nt
∣∣∣Φ(X) = t

]
dPΦ(t)

≥ −
(√

N
)−ε0 ∫ +∞

c/
√
N

1

t1+ε0
EP[
∣∣∣γ>φ (U, µ)

∣∣∣2+ε0
|Φ(X) = t]dPΦ(t)

≥ −
(√

N
)−ε0

Mγ

∫ +∞

c/
√
N

1

t1+ε0
dPΦ(t).

We pick ε > 0 such that PΦ (·) has density in [0, ε]. Then, we have

(√
N
)−ε0

Mγ

∫ +∞

c/
√
N

1

t1+ε0
f(t)dt

= Mγ

(√
N
)−ε0 (∫ +∞

ε

1

t1+ε0
f(t)dPΦ(t) +

∫ ε

c/
√
N

1

t1+ε0
f(t)dt

)

≤ Mγ

((√
N
)−ε0 1

ε1+ε0
+

1

ε0

(√
N
)−ε0 (√

N/c
)ε0

f(ξ)

)
= Mγ

((√
N
)−ε0 1

ε1+ε0
+

1

cε0ε0
f(ξ)

)
,

where ξ ∈ (c/
√
N, ε). By taking ε ↓ 0, we have

lim inf
N→+∞

√
N

∫ +∞

c/
√
N
EP

[(
−γ>φ (U, µ) +

√
Nt
)−∣∣∣∣Φ(X) = t

]
dPΦ(t) ≥ −Mγf(0)

cε0ε0
.

Finally, by taking c ↑ +∞, we conclude step 2.

Step 3: We then apply weak law of triangular arrays Durrett [2, Theorem 2.2.11]. We need to

check

N ×
[
P
(
−
(
−γ>φ (U, µ) +

√
Nd(X)

)
C(X) >

√
N
)]
→ 0, and (A.12a)

E

[((
−γ>φ (U, µ) +

√
Nd(X)

)−)2

C(X)

]
→ 0. (A.12b)
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For condition (A.12a), we have

NP
(
−
(
−γ>φ (U, µ) +

√
Nd(xi)

)−
C(X) >

√
N

)
≤ NP

(
γ>φ (U, µ) ≥

√
N
)

≤
E
[(
γ>φ (U, µ)

)2+ε0
]

(√
N
)ε0 ≤ Mγ(√

N
)ε0 → 0.

For condition (A.12b), we have

E

[((
−γ>φ (U, µ) +

√
Nd(X)

)−)2

C(X)

]

≤ E
[(
γ>φ (U, µ)

)2
I{γ>φ (U, µ)≥

√
Nd(X)}

]
=

∫ +∞

0
EP

[(
γ>φ (U, µ)

)2
I
{
γ>φ (U, µ) ≥

√
Nt
}∣∣∣Φ(X) = t

]
dPΦ(t).

We pick ε > 0 such that PΦ (·) has density in [0, ε]. Then, we have∫ +∞

0
EP

[(
γ>φ (U, µ)

)2
I
{
γ>φ (U, µ) ≥

√
Nt
}∣∣∣Φ(X) = t

]
dPΦ(t)

=

∫ ε

0
EP

[(
γ>φ (U, µ)

)2
I
{
γ>φ (U, µ) ≥

√
Nt
}∣∣∣Φ(X) = t

]
f(t)dt (A.13)

+

∫ +∞

ε
EP

[(
γ>φ (U, µ)

)2
I
{
γ>φ (U, µ) ≥

√
Nt
}∣∣∣Φ(X) = t

]
dPΦ(t). (A.14)

For the first term (A.13), we have∫ ε

0
EP

[(
γ>φ (U, µ)

)2
I{γ>φ (U, µ) ≥

√
Nt
∣∣∣Φ(X) = t

]
f(t)dt ≤M2/(2+ε0)

γ εf(ξ),

where ξ ∈ [0, ε]. For the second term (A.14) we have∫ +∞

ε
EP

[(
γ>φ (U, µ)

)2
I{γ>φ (U, µ) ≥

√
Nt
∣∣∣Φ(X) = t

]
dPΦ(t)

≤
∫ +∞

ε

EP

[(
γ>φ (U, µ)

)2+ε0 Φ(X) = t
]

(√
Nt
)ε0 dPΦ(t)

≤ M0(√
Nε
)ε0 → 0.

12



By taking ε ↓ 0, we have∫ +∞

0
EP

[(
γ>φ (U, µ)

)2
I{γ>φ (U, µ) ≥

√
Nt
∣∣∣Φ(X) = t

]
dPΦ(t)→ 0.

We then apply Durrett [2, Theorem 2.2.11] to obtain the weak law for each γ.

Step 4: We establish the Lipschitz continuity of

√
NEP

[(
−γ>φ (U, µ) +

√
Nd(X)

)−
C(X)

]
for ‖γ‖2 ≤ B, which ensures the tightness. For any γ1, γ2 satisfying ‖γ1‖2 ≤ B and ‖γ2‖2 ≤ B, we

have

√
N

∣∣∣∣EP

[(
−γ>1 φ (U, µ) +

√
Nd(X)

)−
C(X)

]
− EP

[(
−γ>2 φ (U, µ) +

√
Nd(X)

)−
C(X)}

]∣∣∣∣
≤
√
N ‖γ1 − γ2‖2 ‖φ (U, µ)‖2 C(X)I

{
B ‖φ (U, µ)‖2 ≥

√
Nd(X)

}
.

By following similar lines with steps 2 and 3, we have

√
NEP̂N

[
‖φ (U, µ)‖2 C(X)I

{
B ‖φ (U, µ)‖2 ≥

√
Nd(X)

}]
p−→ f(0)EP

[
‖φ (U, µ)‖22

∣∣∣ d(X) = 0
]
.

Then, by Billingsley [1, Theorem 7.5], we have the desired uniform convergence result.

Proof of Lemma A3. Due to E
[
φ (U, µ)φ (U, µ)>

∣∣∣ d(X) = 0
]
� 0, there exists δ > 0 and c0 ∈

(0,+∞) such that

inf
‖γ‖2=1

E
[
min

{
c0, γ

>φ (U, µ)
} ∣∣∣γ>φ (U, µ)

∣∣∣] > δ.

for all ‖γ‖2 = 1. And

inf
‖γ‖2=1

E
∣∣∣γ>φ (U, µ)

∣∣∣ > 0,

since the unit circle is compact. Let δ = inf‖γ‖2=1 E
∣∣γ>φ (U, µ)

∣∣ . For any ε > 0, there exists N1 > 0

and b′ < +∞, such that

P(‖VN‖2 ≥ b
′) < ε/2,

for any N > N0. Recalling Lemma A2 and equation (A.11), there exists N0 > N1 such that

P
(
∃γ : ‖γ‖2 = b such that MN (γ) ≥ −1

4
E
[
min

{
bc0,

∣∣∣γ>φ (U, µ)
∣∣∣} ∣∣∣γ>φ (U, µ)

∣∣∣]) < ε/2
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for any N > N0. Then, we have

inf
‖γ‖2=b

E
[
min

{
bc0,

∣∣∣γ>φ (U, µ)
∣∣∣} ∣∣∣γ>φ (U, µ)

∣∣∣]
≥ b2 inf

‖γ‖2=1
E
[
min

{
c0,
∣∣∣γ>φ (U, µ)

∣∣∣} ∣∣∣γ>φ (U, µ)
∣∣∣] > b2δ.

Let b = 4b′/δ. We have

P

(
sup
‖γ‖2=b

MN (γ) ≥ −bb′
)
< ε/2. (A.15)

Notice that for any ‖γ‖2 > b,

MN (γ) ≤
‖γ‖2
b

MN

(
b

‖γ‖2
γ

)
≤
‖γ‖2
b

sup
‖γ‖2=b

MN (γ). (A.16)

By combining inequalities (A.15) and (A.16), we have

P
(
∃γ : ‖γ‖2 > b, such that MN (γ) ≥ −‖γ‖2 b

′) < ε/2.

Therefore,

P

(
sup
‖γ‖2>b

{
γ>VN +MN (γ)

}
> 0

)

≤ P

(
sup
‖γ‖2>b

{‖γ‖2 ‖VN‖2 +MN (γ)} > 0

)
≤ P(‖VN‖2 ≥ b

′) + P
(
∃γ : ‖γ‖2 > b, such that MN (γ) ≥ −‖γ‖2 b

′)
≤ ε.

This completes the proof.

Appendix B Additional Details for Numerical Experiments

Appendix B.1 Validation of the Hypothesis Test

In this section, we empirically validate the convergence result in Theorem 1 and our proposed hy-

pothesis test method. we use a simple logistic classifier in the form

C(x) = I
{

1

1 + exp (−θ>x)
≥ τ

}
.

Then, the decision boundary is
{
x : θ>x = − log

(
1
τ − 1

)}
. We denote w = − log

(
1
τ − 1

)
. Then, we

borrowed the example in Taskesen et al. [4]. Let
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p11 = 0.4, p01 = 0.1, p10 = 0.4, p00 = 0.1.

Moreover, conditioning on (A, Y ), the feature X follows a Gaussian distribution of the form

X|A = 1, Y = 1 ∼N ([6, 0], [3.5, 0; 0, 5]),

X|A = 0, Y = 1 ∼N ([−2, 0], [5, 0; 0, 5]),

X|A = 1, Y = 0 ∼N ([6, 0], [3.5, 0; 0, 5]),

X|A = 0, Y = 0 ∼N ([−4, 0], [5, 0; 0, 5]).

The true distribution P is thus a mixture of Gaussian. A simple algebraic calculation indicates that

a logistic classifier with θ = (0, 1)> and τ = 0.5 is fair with respect to the equal opportunity criterion

in Example 1. Let ϕ(·) denotes the density of the standard normal distribution and we denote µay

and Σay to be the conditional mean and variable defined above, respectively. For any θ, the density

of θ>X becomes ∑
a,y∈{0,1}2

(
θ>Σayθ

)−1/2
payϕ

((
θ>Σayθ

)−1/2 (
θ>x− θ>µay

))
.

And thus the density of Φ (·) becomes

f (z) = ‖θ‖∗
∑

a,y∈{0,1}2

(
θ>Σayθ

)−1/2
payϕ

((
θ>Σayθ

)−1/2 (
(z ‖θ‖∗ + w)− θ>µay

))
.

By Bayes formula, we have

pay|d(X)=0 = f (0)−1
(
θ>Σayθ

)−1/2
‖θ‖∗ payϕ

((
θ>Σayθ

)−1/2 (
w − θ>µay

))
for a ∈ {0, 1} and y ∈ {0, 1}, where pay|d(X)=0 = E[I(a,y)(A, Y )|d(X) = 0]. In the first experiments,

we generate N ∈ {30, 100, 500} i.i.d. samples from P and then calculate N × D(P̂N ). We replicate

this process for 2,000 times and compare the empirical distribution of N ×D(P̂N ) with the limiting

distribution defined in Theorem 1. Figure 1 shows that finite-sample empirical estimates are closed

to the theoretical limiting distributions even when N is as small as 30.

In the second experiments, we show that our proposed Wasserstein projection hypothesis test has

the desired coverage property. We generate N ∈ {30, 100, 500, 1000, 2000} i.i.d. samples from P and

compute the estimate Ŝ defined in Section 5.2 and the empirical covariance using the sample data. For

the kernel estimator Ŝ, we use the standard Gaussian kernel and choose the bandwidth h = N−1/5,

where the results listed below are not sensitive to the constant. We repeat the procedure for 2,000

replications and report the rejection probability at different significant values of α ∈ {0.1, 0.05, 0.01}
in Table 1. We can observe that when N > 100, the rejection probability is closed to the desired

level α.
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(a) N = 30 (b) N = 100 (c) N = 500

Figure 1: Empirical distribution N ×D(P̂N ) over 2,000 replications (histogram) versus the limiting
Chi-square distribution (blue curve) with different sample sizes N .

Table 1: Comparison of the null rejection probabilities of probabilistic equal opportunity tests with
different significance levels α and test sample sizes N .

α 0.10 0.05 0.01

N = 30 0.2875 0.2255 0.1415
N = 100 0.0945 0.0540 0.0250
N = 500 0.0895 0.0450 0.0085
N = 1000 0.0900 0.0430 0.0065
N = 2000 0.0870 0.0460 0.0080

Appendix B.2 The Description of Datasets

Followings show brief descriptions of datasets: Arrhythmia, COMPAS and Drug [3] provided in

Section 6.

• Arrhythmia is from UCI repository1, where the aim of this data set is to distinguish between

the presence and absence of cardiac arrhythmia and classify it in one of the 16 groups. The

dataset consists of 452 samples and we use the first 12 features among which the gender is the

sensitive feature. For our purpose, we construct binary labels between ’class 01’ (’normal’) and

all other classes (different classes of arrhythmia and unclassified ones).

• COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) 2 is a com-

merical tool used by judges, probation and parole officers to estimate a criminal defendant’s

likelihood to re-offend algorithmically. The COMPAS dataset contains the criminal records

within 2 years after the decision. We use race (African-American and Caucasian, which ac-

counts for 5278 samples) as the sensitive attribute.

• Drug [3] contains answers of 1885 participants on their use of 17 legal and illegal drugs. We

concern the cannabis usage as a binary problem, where the label is ’Never used’ VS ’Others’

1https://archive.ics.uci.edu/ml/datasets/arrhythmia
2https://www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
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(’used’). There are 12 features including age, gender, education, country, ethnicity, NEO-FFI-

R measurements, impulsiveness measured by BIS-11 and sensation seeing measured by ImpSS.

Among those, we choose ethnicity (black vs others) as the sensitive attribute.
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