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1. Relationship with Disk Embeddings
We prove the following result, relating Euclidean Disk Em-
beddings (Suzuki et al., 2019) to the Triple Fermi-Dirac
(TFP) model in Minkowski spacetime.

Proposition 1. Let p = (x, u) and q = (y, v) denote ele-
ments of Rn × R, D be the Euclidean distance between x
and y, and T = v − u the time difference. Then, for the
choice of TFD function parameters α = 0, r = 0, k = 1 we
have F(p, q) ≥ 1

2 if and only if

D ≤
(
τ1 log

3− e−T/τ2
1 + e−T/τ2

+ T 2

)1/2

(1)

Proof. From the definition of the Triple Fermi-Dirac proba-
bility on Minkowski space-time we have

F(p, q) =
(

1

e(D2−T 2)/τ1 + 1

1

e−T/τ2 + 1

1

2

)1/3

Then,

F(p, q) ≥ 1

2
⇐⇒ 1

e(D2−T 2)/τ1 + 1

1

e−T/τ2 + 1
≥ 1

4

⇐⇒ e(D
2−T 2)/τ1 ≤ 3− e−T/τ2

1 + e−T/τ2

⇐⇒ D ≤
(
τ1 log

3− e−T/τ2
1 + e−T/τ2

+ T 2

)1/2

The set of points p and q from Rn ×R that satisfies the con-
dition for inclusion of Euclidean Disks, which determines
the embeddings that are connected by directed edges, is
given by D ≤ T . For T ≥ 0, every pair p and q which
satisfy D ≤ T also satisfy (1); hence the set of points
p, q ∈ Rn × R which correspond to a directed edge in the
Euclidean Disk Embeddings model is strictly contained in
the set of pairs of points which have F(p, q) ≥ 1

2 in the
Triple Fermi-Dirac probability function on (flat) Minkowski
space-time. Moreover, the difference between these two sets
is a small neighbourhood of the Minkowski light cone, with
the size of this set dependent on the parameters τ1 and τ2.
Figure 1 illustrates this in the R×R case for τ1 = τ2 = 0.05
(the parameters used by the model in the experiments on the
WordNet dataset.)

Figure 1. Boundaries of the regions containing points q ∈ R× R
with F(p, q) ≥ 1

2
(red) and with D ≤ T (blue) for p = (0, 0)

Table 1. Statistics of datasets used in the experiments.
Dataset Nodes Edges Cyclic
Duplication Divergence 100 1026 True
DREAM5: In silico 1,565 4,012 True
DREAM5: E. coli 1,081 2,066 True
DREAM5: S. cerevisiae 1,994 3,940 True
WordNet 82,115 743,086 False

2. Experiment details
2.1. Graph Datasets

This section describes in detail the experiments conducted
in our work, including dataset and evaluation specifications.

2.2. Hyperparameters and training details

The model hyperparameters for the experiments on the Du-
plication Divergence Model and DREAM5 datasets are
given in Table 4. We performed a Cartesian product grid
search and selected the optimal values based on the median
average precision on the test set over three random initializa-
tions. We implemented a simple linear learning rate decay
schedule to a final rate of a quarter of the initial rate λ;
hence although we selected the best test set performance
across all the training run epochs, the maximum number of
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epochs affects the performance as it determines the rate of
learning-rate decay.

The hyperparameter tuning approach for the WordNet exper-
iments was performed differently as it includes an F1 score
threshold selection. This is described separately in Section
2.2.3 below.

A summary of the datasets is provided in Table 2.1.

2.2.1. DUPLICATION DIVERGENCE MODEL

The duplication divergence model is a simple two-parameter
model of the evolution of protein-protein interaction net-
works (Ispolatov et al., 2005). Starting from a small, fully-
connected, directed graph of ni nodes, the network is grown
to size nf as follows. First we duplicate a random node
from the set of existing nodes. Next the duplicated node is
linked to the neighbors of the original node with probability
p1 and to the original itself with probability p2. This step is
repeated (nf − ni) times. Because the model only includes
duplicated edges with no extra random attachments, it is eas-
ily shown that if the seed network is a directed acyclic graph
(DAG), the network remains a DAG throughout its evolution.
We generate one cyclic graph from an initial 3-node seed
graph, with parameters (ni, nf , p1, p2) = (3, 100, 0.7, 0.7)
and perform a single random 85 / 15 train-test split for all
experiments.

2.2.2. DREAM5

Traditionally a network inference problem, the DREAM5
challenge (Marbach et al., 2012) is a set of tasks with cor-
responding datasets. The goal of the challenge and each
task is to infer genome-scale transcriptional regulatory net-
works from gene-expression microarray datasets. We use
only the gold standard edges from three DREAM5 gene
regulatory networks for our use case: In silico, Escherichia
coli and Saccharomyces cerevisiae. The fourth Staphylococ-
cus aureus network from the DREAM5 challenge was not
considered here due to the issues in evaluation described
in Marbach et al. (2012). We extract only the positive-
regulatory nodes from the remaining three networks while
omitting the gene-expression data itself. We limit ourselves
to positive-regulation edges as our work focuses on single
edge type graphs. The extracted node pairs form a directed
graph, where the edge between nodes (i, j) represent a reg-
ulatory relation between two genes. Each network is then
randomly split into train and test sets, following 85 / 15 split.
Although the network is cyclic, the number of cycles in each
of them is relatively low, which may account for the simi-
larity in performances of the (non-cylindrical) Minkowski
embeddings with embeddings on cylindrical Minkowski and
AdS (e.g. the E. Coli dataset experiments in Table 2.2.3).
Similar to the Duplication Divergence model above, we
evaluate the performance using the average precision on the

test set.

2.2.3. WORDNET

To further evaluate the embeddings of directed acyclic
graphs (DAGs), we use the WordNet (Miller, 1998) database
of noun hierarchy. The WordNet dataset is an example
of a tree-like network with low number of ancestors, and
high number of descendants. To ensure fair comparison we
use the same dataset and split as in Suzuki et al. (2019),
proposed in Ganea et al. (2018). During training and evalu-
ation, we use nodes (i, j) ∈ T connected by an edge such
that ci � cj as positive examples. As the dataset consists
only of positive examples, we randomly sampled a set of
non-connected negative pairs for each positive pair. For
evaluation, we use an F1 score for a binary classification to
assess whether a given pair of nodes (i, j) is connected by a
directed edge in the graph. Similarly as in (Suzuki, 2019)
we compute the results based on the percentage of transitive
closure of the graph.

As WordNet is a DAG, we restrict our attention to the model
based on flat Minkowski spacetime. Here, the key hyper-
parameters are the learning rate and values for α, τ1 and τ2
(we set r = 0 and k = 1 in these experiments). We perform
a Cartesian product grid search and select the optimal values
based on the mean F1 score on the validation set over two
random initializations (seeds), using 50 epochs and batch
size 50. The threshold for the F1 score was chosen by line
search and tuned. The grid of values is as follows, with
the optimal values given in bold: λ ∈ {0.01,0.02, 0.1},
α ∈ {0., 0.0075,0.075}, τ1 ∈ {0.005,0.05, 1.} and τ2 ∈
{0.005,0.05, 1.}. We then trained a model with the selected
parameters for 150 epochs using 5 different random seeds to
generate the results reported in Table 2. Here, we report the
test set F1 score using a threshold selected via line search
on the validation set.

2.3. Model complexity and runtimes

The model complexity is similar to standard (Euclidean)
embedding models. For the pseudo-Riemannian manifold
examples in this paper, the computation of the pseudo-
Riemannian SGD vector from the JAX autodiff-computed
value for the differential df scales linearly with embed-
ding dimension. The approximation to infinite sum in the
wrapped TFD function introduces a O(m) complexity fac-
tor, where m is the number of cycles one uses in the approx-
imation (see eq. (21) in the main text).

The cyclic graph link prediction experiments were per-
formed as CPU-only single process runs. The longest run-
time for the 100-dimensional AdS manifold embedding
model was ∼ 19 sec/epoch for the Duplication Diver-
gence model graph and ∼ 112 sec/epoch for the in silico
DREAM5 dataset. The equivalent runtimes for the other
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Table 2. F1 percentage score on the test data on WordNet. The best flat-space performance (top-half) for each dataset/embedding
dimension combination has its background highlighted in gray, and the best overall is highlighted in bold. The benchmark methods results
were taken from (Suzuki et al., 2019). For the results of our method, we report the median together with standard deviation across seeds
(N=5).

d = 5 d = 10
Transitive Closure Percentage 0% 10% 25% 50% 0% 10% 25% 50%

Minkowski + TFD (Ours) 21.2 ± 0.5 77.8 ± 0.1 86.2 ± 0.7 92.1 ± 0.3 24 ± 0.5 82 ± 1.2 89.3 ± 0.7 94.4 ± 0.1
Order Emb. (Vendrov et al., 2016) 34.4 70.6 75.9 82.1 43.0 69.7 79.4 84.1
Euclidean Disk (Suzuki et al., 2019) 35.6 38.9 42.5 45.1 45.6 54.0 65.8 72.0
Spherical Disk (Suzuki et al., 2019) 37.5 84.8 90.5 93.4 42.0 86.4 91.5 93.9
Hyperbolic Disk (Suzuki et al., 2019) 32.9 69.1 81.3 83.1 36.5 79.7 90.5 94.2
Hyperbolic EC (Ganea et al., 2018) 29.2 80.0 87.1 92.8 32.4 84.9 90.8 93.8
Poincare Emb. (Nickel et al., 2014) 28.1 69.4 78.3 83.9 29.0 71.5 82.1 85.4

Table 3. Link prediction for directed cyclic graphs with embedding dimension d. Reported above are the median average precision (AP)
percentages with standard deviation across seeds (N=20), calculated on a held-out test set for varying embedding dimension. Annotated in
bold is the top-performing model for the given dimension. For reference, the random baseline AP is 20%.

Embedding dimension
3 5 10 50 100

Duplication Divergence

Euclidean + FD 37.8 ± 2.8 39.4 ± 2.4 39.0 ± 1.9 38.9 ± 1.9 38.9 ± 1.9
Hyperboloid + FD 36.3 ± 2.2 37.5 ± 2.4 38.2 ± 2.3 38.2 ± 2.4 38.1 ± 2.3

Minkowski + TFD 43.7 ± 2.2 47.5 ± 2.5 48.5 ± 3.7 48.5 ± 3.7 48.5 ± 3.7
Anti de-Sitter + TFD 50.1 ± 3.2 52.4 ± 3.3 56.2 ± 3.2 56.3 ± 3.1 56.8 ± 3.0
Cylindrical Minkowski + TFD 55.8 ± 3.6 61.6 ± 4.8 65.3 ± 4.1 65.7 ± 3.1 65.6 ± 3.2

DREAM5: in silico

Euclidean + FD 29.4 ± 2.1 32.9 ± 2.5 39.7± 1.8 39.8 ± 1.6 34.8± 1.1
Hyperboloid + FD 28.8 ± 5.5 46.8 ± 4.6 50.8 ± 7.4 50.9 ± 1.5 52.5 ± 1.5

Minkowski + TFD 36.3 ± 2.3 43.1 ± 3.1 51.2 ± 3.0 57.7 ± 2.8 58.0 ± 2.7
Anti de-Sitter + TFD 38.1 ± 4.8 45.2 ± 2.3 51.9 ± 5.2 55.6 ± 4.2 56.0 ± 3.4
Cylindrical Minkowski + TFD 41.0 ± 3.6 48.4 ± 7.3 56.3 ± 8.4 58.9 ± 2.9 61.0 ± 1.9

DREAM5: E. Coli

Euclidean + FD 33.0 ± 3.9 34.2± 3.4 40.2 ± 4.3 44.5 ± 2.6 49.0 ± 3.2
Hyperboloid + FD 43.4 ± 4.1 47.2 ± 3.3 52.7 ± 1.9 53.6 ± 1.4 50.6 ± 0.7

Minkowski + TFD 51.0 ± 4.0 58.4 ± 2.3 63.4 ± 3.6 67.7 ± 2.7 68.2 ± 2.4
Anti de-Sitter + TFD 42.7 ± 3.7 56.5 ± 2.6 61.8 ± 6.8 63.3 ± 4.8 63.0 ± 7.5
Cylindrical Minkowski + TFD 50.3 ± 3.3 56.8 ± 3.4 62.3 ± 3.3 65.8 ± 3.4 63.2 ± 2.4

DREAM5: S. Cerevisiae

Euclidean + FD 33.0 ± 2.7 34.2 ± 2.8 40.2 ± 3.3 44.5 ± 3.5 49.0 ± 2.0
Hyperboloid + FD 29.2 ± 2.5 37.9 ± 1.3 46.5 ± 1.6 48.8 ± 1.4 47.9 ± 1.2

Minkowski + TFD 34.7 ± 2.2 38.6 ± 1.9 46.4 ± 3.1 52.7 ± 3.0 54.0 ± 2.5
Anti de-Sitter + TFD 37.2 ± 3.2. 41.3 ± 1.5 44.9. ± 2.5 47.5 ± 3.1 49.4 ± 3.3
Cylindrical Minkowski + TFD 37.4 ± 3.2 42.7 ± 2.3 46.8 ± 3.5 53.4 ± 2.2 54.6 ± 2.1

manifolds are approximately an order of magnitude shorter.

The WordNet experiments were performed on NVIDIA
V100 GPUs. The run-times were largely similar for the
cases with embedding dimension 5 or 10, with the propor-
tion of the transitive closure included in the training data (i.e.
the training data size) being the main factor which deter-
mined run-time in our experiments. These varied from∼ 60
sec/epoch when 0% was included to ∼ 280 sec/epoch
when 50% was included.
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Table 4. Cyclic graph inference hyperparameters. Optimal values* are in bold. * In a situation where the optimal value was dependent on
the embedding dimension, we highlight all the values that recorded best performance on at least one embedding dimension.
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