
Dynamic Planning and Learning under Recovering Rewards
— Supplementary Material

David Simchi-Levi 1 Zeyu Zheng 2 Feng Zhu 1

1. Proof of NP-Hardness of the offline problem
Here we adopt the similar idea in (Cella & Cesa-Bianchi, 2020) to give a proof of NP-Hardness of the offline problem, even
if we confine ourselves to find a long-run optimal policy within the class of purely periodic policies.

Proof.

Our proof relies on a reduction from the Periodic Maintenance Scheduling Problem (PMSP) to our problem. In PMSP, we
are given n machines for service, and n positive integers `1, · · · , `n such that

∑n
i=1 1/`i ≤ 1. We call {`i}i∈[N] is feasible,

if there exists a schedule such that the consecutive service times of each machine i are exactly `i times apart, and meanwhile
in each time period at most 1 machine is in service. The question is to examine whether {`i}i∈[N] is feasible. Bar-Noy et al.
(2002) showed that PMSP is NP-complete.

Given an instance of PMSP with `1, · · · , `n, we prove that {`i}i∈[N] is feasible if and only if there exists a 1-PPP such that
its long-run average reward is

∑
i∈[N] 1/`i. We let N = n, K = 1, and

Ri(d) =

{
0, if d < `i,
1, if d ≥ `i.

On one hand, if this instance of PMSP is feasible, then we can directly apply the corresponding schedule to pull arms,
yielding a long-run average reward ∑

i∈[N]

Ri(`i)/`i =
∑
i∈[N]

1/`i.

Moreover, this schedule is purely periodic.

On the other hand, suppose we can find a purely periodic schedule of arms pulling such that the long-run average reward is
no less than

∑
i∈[N] 1/`i. Note that the long-run average reward of pulling an arm i is upper bounded by

Ri(d)/d ≤ 1/`i (∀d ≥ 1),

and the equality holds iff d = `i. Therefore, we must pull arm i every `i times eventually, or the average reward within one
period is strictly less than 1/`i. This means that the instance is feasible.

2. Proofs of Lemmas and Theorems
Proof of Lemma 1.

1Institute for Data, Systems, and Society, Massachusetts Institute of Technology, Massachusetts, USA 2Department of Industrial Engi-
neering and Operations Research, University of California, Berkeley, USA. Correspondence to: David Simchi-Levi <dslevi@mit.edu>,
Zeyu Zheng <zyzheng@berkeley.edu>, Feng Zhu <fengzhu@mit.edu>.

Proceedings of the 38 th International Conference on Machine Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Dynamic Planning and Learning under Recovering Rewards — Supplementary Material

Let F cc
i,T (x) be the value of the following problem.

max
s

1

T

J∑
j=1

Rcc
i (sj − sj−1) (1)

s.t. J ≤ x · T,
0 = s0 < s1 < · · · < sJ ≤ T.

Intuitively, F cc
i,T (x) is the optimal average reward of i under {Rcc

i (d)}, given that we pull arm i no more than x · T times.
Then we can see that F cc

i,T (x) ≥ Fi,T (x) (∀i ∈ [N], T ≥ 1, x ∈ [0, 1]).

Claim 1. Fix i ∈ [N], T ≥ 1 and x ∈ [0, 1], then there exists an optimal solution to (1) such that sJ = T and {sj − sj−1}
can take at most two different values.

Apparently, under Assumption 1, the objective value will never decrease if we let sJ = T . Thus, we can always assume
sJ = T . For simplicity, we write dsj , sj − sj−1. For any feasible solution {sj} and J of (1), we define

dist({sj}Jj=1) =
∑

1≤i,j≤J

|dsj − dsi| · 1 {|dsj − dsi| > 1} .

Let {s∗j}J
∗

j=1 be an optimal solution such that dist
(
{s∗j}J

∗

j=1

)
attains the minimum among all optimal solutions. This is

attainable since the number of feasible solutions to (1) is finite, and as a result, there always exists an optimal solution
and the number of optimal solutions is finite. Suppose dist

(
{s∗j}J

∗

j=1

)
> 0, then we choose j1 = arg minj

{
ds∗j
}

and
j2 = arg maxj

{
ds∗j
}

. Without loss of generality, we assume j1 < j2. Then ds∗j2 − ds
∗
j1
≥ 2. We define a new set {s′j} as

follows.

s′j =

{
s∗j + 1, if j1 ≤ j < j2,
s∗j , else.

Note that s′J = s∗J = T . Then

ds′j1 = ds∗j1 + 1 ≤ ds∗j2 − 1 = ds′j2 ,

ds′j = ds∗j , ∀j 6= j1, j2.

By our choice of j1 and j2 ,we have∣∣ds′jk − ds′j∣∣1{∣∣ds′jk − ds′j∣∣ > 1
}
≤
∣∣ds∗jk − ds∗j ∣∣1{∣∣ds∗jk − ds∗j ∣∣ > 1

}
, ∀k ∈ {1, 2},∣∣ds′j2 − ds′j1 ∣∣1{∣∣ds′j2 − ds′j1∣∣ > 1

}
<
∣∣ds∗j2 − ds∗j1∣∣ =

∣∣ds∗j2 − ds∗j1∣∣1{∣∣ds∗j2 − ds∗j1 ∣∣ > 1
}
.

Thus dist
(
{s′j}Jj=1

)
< dist

(
{s∗j}Jj=1

)
. However, since {Rcc

i (d)} is concave, we have

Rcc
i (ds′j1) +Rcc

i (ds′j2)−Rcc
i (ds∗j1)−Rcc

i (ds∗j2)

=
(
Rcc
i (ds′j1)−Rcc

i (ds′j1 − 1)
)
−
(
Rcc
i (ds∗j2)−Rcc

i (ds∗j2 − 1)
)
≥ 0.

This means either {s∗j}J
∗

j=1 is not optimal, or it does not have the minimum dist value. A contradiction. Therefore,
dist

(
{s∗j}J

∗

j=1

)
= 0, indicating {ds∗j} must take at most two different values.

Claim 2. Let x = α 1
d+1 +(1−α) 1

d , where d ∈ Z+, d ≥ d(1)i , and α ∈ (0, 1]. Then F cc
i,T (x) ≤ αR

cc
i (d+1)
d+1 +(1−α)

Rcc
i (d)
d =

Fi(x).

From Claim 1, ∃d′ ∈ Z+, an optimal scheduling of (1) satisfies sj − sj−1 ∈ {d′, d′ + 1}. Then we have

T ≤ (d′ + 1)J ≤ (d′ + 1)xT < (d′ + 1)T/d,

which indicates d′ ≥ d. Suppose in the optimal scheduling,

a = # {j ∈ [J] : sj − sj−1 = d′} ,
b = # {j ∈ [J] : sj − sj−1 = d′ + 1} .

Dynamic Planning and Learning under Recovering Rewards — Supplementary Material

Then

a+ b ≤ x · T, ad′ + b(d′ + 1) = T.

Since {Rcc
i (d)}d≥0 is concave, we have Rcc

i (d)/d is non-increasing. If d′ ≥ d+ 1, then we have

Fi,T (x) =
a

T
Rcc
i (d′) +

b

T
Rcc
i (d′ + 1) =

ad′

T

Rcc
i (d′)

d′
+
b(d′ + 1)

T

Rcc
i (d′ + 1)

d′ + 1

≤ Rcc
i (d+ 1)

d+ 1
≤ αR

cc
i (d+ 1)

d+ 1
+ (1− α)

Rcc
i (d)

d
.

If d′ = d, then

T = ad+ b(d+ 1) ≤ (d+ 1)xT − a,

which means ad
T ≤ 1− α. We thus have

Fi,T (x) =
a

T
Rcc
i (d) +

b

T
Rcc
i (d+ 1) =

ad

T

Rcc
i (d)

d
+
b(d+ 1)

T

Rcc
i (d+ 1)

d+ 1

=
ad

T

Rcc
i (d)

d
+

(
1− ad

T

)
Rcc
i (d+ 1)

d+ 1
≤ αR

cc
i (d+ 1)

d+ 1
+ (1− α)

Rcc
i (d)

d
,

since Rcc
i (d)
d ≥ Rcc

i (d+1)
d+1 .

We are left to show that αR
cc
i (d+1)
d+1 + (1− α)

Rcc
i (d)
d = Fi(x), which means αR

cc
i (d+1)
d+1 + (1− α)

Rcc
i (d)
d can be achieved in

an asymptotic sense. Let k ≥ 1 such that d(k)i ≤ d < d+ 1 ≤ d(k+1)
i . Then

α
Rcc
i (d+ 1)

d+ 1
+ (1− α)

Rcc
i (d)

d

= α
Rcc
i (d

(k)
i)

d
(k+1)
i −(d+1)

d
(k+1)
i −d(k)i

+Rcc
i (d

(k+1)
i)

(d+1)−d(k)i

d
(k+1)
i −d(k)i

d+ 1
+ (1− α)

Rcc
i (d

(k)
i)

d
(k+1)
i −d

d
(k+1)
i −d(k)i

+Rcc
i (d

(k+1)
i)

d−d(k)i

d
(k+1)
i −d(k)i

d

= Rcc
i (d

(k)
i)

xd
(k+1)
i − 1

d
(k+1)
i − d(k)i

+Rcc
i (d

(k+1)
i)

1− xd(k)i

d
(k+1)
i − d(k)i

= Ri(d
(k)
i)

xd
(k+1)
i − 1

d
(k+1)
i − d(k)i

+Ri(d
(k+1)
i)

1− xd(k)i

d
(k+1)
i − d(k)i

We solve

a+ b = x · T, ad
(k)
i + bd

(k+1)
i = T

and get a =
d
(k+1)
i xT−T
d
(k+1)
i −d(k)i

and b =
T−d(k)i xT

d
(k+1)
i −d(k)i

. Then

bac+ bbc ≤ x · T, bacd(k)i + bbcd(k+1)
i ≤ T.

We have

lim inf
T
Fi,T (x) ≥ lim

T

bacRi(d(k)i)

T
+
bbcRi(d(k+1)

i)

T

= Ri(d
(k)
i)

xd
(k+1)
i − 1

d
(k+1)
i − d(k)i

+Ri(d
(k+1)
i)

1− xd(k)i

d
(k+1)
i − d(k)i

= α
Rcc
i (d+ 1)

d+ 1
+ (1− α)

Rcc
i (d)

d
.

Dynamic Planning and Learning under Recovering Rewards — Supplementary Material

Claim 3. Let x ≥ 1

d
(1)
i

. Then Fi,T (x) ≤ Ri(d
(1)
i)

d
(1)
i

= Fi(x).

We can see from the definition of d(1)i that

Fi,T (x) ≤ 1

T

J∑
j=1

Ri(sj − sj−1) =
1

T

J∑
j=1

Ri(sj − sj−1)

sj − sj−1
(sj − sj−1) ≤ Ri(d

(1)
i)

d
(1)
i

.

On the other hand, if we let sj = j · d(1)i , then

lim inf
T
Fi,T (x) ≥ lim

T

bT/d(1)i c
T

Ri(d
(1)
i) =

Ri(d
(1)
i)

d
(1)
i

.

�

Proof of Lemma 2.

We first prove the claim that (2) is an upper bound on the original problem. For any schedule within a finite time horizon T ,
let

xi = #{t ∈ [T] : i is pulled at time period t}/T ∈ [0, 1].

Then
∑
i∈[N] xi ≤ K always hold. Further, the reward collected from arm i is no less than Fi,T (xi) ≤ Fi(xi), by our

definition of Fi,T (xi) and Lemma 1. Thus, the total reward collected is no less than∑
i∈[N]

Fi(xi).

Now we prove the remaining part. Suppose {x∗i } is a feasible solution of (2). Then making x∗i ← min {x∗i , 1/di,1} does
not decrease the objective value. If more than one components are not of the form {1/d(k)i } ∪ {0}, then we can assume
x∗i1 ∈ (1/(di1,j1+1), 1/di1,j1) and x∗i2 ∈ (1/(di2,j2+1), 1/di2,j2), where i1 6= i2. From Lemma 1, Fik (k ∈ {1, 2}) is linear
on [1/(dik,jk+1), 1/dik,jk], so we can move xi1 larger (smaller) and xi2 smaller (larger) by the same distance until one of
them reach an endpoint. The objective value will not decrease for at least one direction, and meanwhile this will not violate
the hard constraint, but strictly decrease the number of i ∈ [N] that x∗i /∈ {1/d

(k)
i } ∪ {0} in the feasible solution. We can

thus repeat the procedure above until the solutions is transformed into the property stated in Lemma 2. In fact, the procedure
takes at most O(N) time to transform any feasible solution into the form we want.

�

Proof of Lemma 3.

When 1/x∗i ∈ {d
(k)
i }k≥1, we have

Ri(di)/di
Fi(x∗i)

=
Ri(di)/di
Rcc
i (1/x∗i)x

∗
i

=
Ri(di)/di
Ri(1/x∗i)x

∗
i

≥ 1

dix∗i
,

where the first equality holds from Lemma 1, and the inequality holds from Assumption 1. We notice that

{1, · · · , a− 1}
⋃{

a× 2`, (a+ 1)× 2`, · · · , (2a− 1)× 2`
}
`≥0 ⊂ D[a]

because any positive integer number no less than 2a can be written as a positive odd number (less than 2a) times a power of
2. Now if 1/x∗i ≤ 2a− 1, then d = 1/x∗i . If 1/x∗i ≥ 2a, then

di ≤ sup
a≤b<2a

b+ 1

b
· 1/x∗i ≤

a+ 1

ax∗i
.

Thus, 1
dix∗i

≥ a
a+1 .

Dynamic Planning and Learning under Recovering Rewards — Supplementary Material

�

Proof of Lemma 4.

Part 1. Without loss of generality, we assume that the sum of frequencies is strictly larger than 1 (otherwise we simply
choose Ij1 = Ij). For each 1 ≤ k ≤ |Ij |, we write dik = (2j − 1)× 2`ik . Since the sum of frequencies is no less than 1,
there exists some 1 ≤ m < |Ij | such that

m∑
k=1

1/dik ≤ 1 <

m+1∑
k=1

1/dik .

We will prove in the following that

m∑
k=1

1/dik = 1.

In fact, we have

dim − 1 ≤ dim − dim/dim+1
<

m∑
k=1

dim/dik =
m∑
k=1

2`im−`ik ∈ Z+,

which indicates that

dim ≤
m∑
k=1

dim/dik .

This is what we desire. Apparently, we can find m by adding dik one by one and compare each sum with 1. Moreover, once
the sum reaches 1 (our proof above guarantees this), we can make the former m products into a group, and restart from
product im+1. The total time complexity is O(|Ij |).

Part 2. We begin with j = 1. We write dik = 2`ik and let ` = maxi∈I1 `i. We use induction method to prove that after
sorting, we can specify a 1-PPP in O(|I1| log di|I1|) time. When ` = 0, there is only one product in I1 with frequency 1.
Let ti1 = 0. The result is correct.

Suppose for ` the result is correct. Now consider the case for `+ 1. Then `i1 ≥ 1 and∑
i∈I1

1/(di/2) ≤ 2.

If
∑
i∈I1 1/(di/2) ≤ 1, then by induction, we can specify a 1-PPP inO

(
|I1| log

(
di|I1|/2

))
time. We project the offering

time by t→ 2t. The total time complexity is

O
(
|I1| log

(
di|I1|/2

))
+O (|I1|) = O

(
|I1| log di|I1|

)
.

If
∑
i∈I1 1/(di/2) > 1, then applying the proof of Part 1, we can split I1 into two parts I11 and I12 in O(|I1|) time such

that ∑
i∈I1k

1/(di/2) ≤ 1, ∀k ∈ {1, 2}.

By induction, we can specify a feasible 1-PPP for I11 and I12. The time complexity for this procedure is

O
(
|I11| log

(
di|I1|/2

))
+O

(
|I12| log

(
di|I1|/2

))
= O

(
|I1| log

(
di|I1|/2

))
.

Now we project the offering time by t → 2t − 1 for products in I11 and t → 2t for products in I12. This fulfills our
requirement. The total time complexity is

O
(
|I1| log

(
di|I1|/2

))
+O (|I1|) = O

(
|I1| log di|I1|

)
.

Dynamic Planning and Learning under Recovering Rewards — Supplementary Material

We continue on general cases. When j > 1, we notice that

∑
i∈Ij

1/ (di/(2j − 1)) ≤ 2j − 1.

By Part 1, we can split Ij into at most 2j − 1 disjoint sets such that Ij =
⋃
s Ijs such that

∑
i∈Ijs

1/ (di/(2j − 1)) ≤ 1, ∀s.

By our proof for j = 1 above, we can specify a feasible 1-PPP for Ijs (∀s). We project the offering time by t →
(2j − 1)(t− 1) + s for products in Ijs . This completes the construction. The total time complexity is

O(|Ij |) +
∑
s

O
(
|Ijs | log

(
di|Ij |/(2j − 1)

))
= O

(
|Ij | log di|Ij |

)
.

�

Proof of Theorem 1.

For each selected product i ∈ [N], it is offered at time ti + kdi (k ≥ 1) until T . Thus, the number of time it is offered is
lower bounded by

b(T − ti)/dic ≥ bT/dic > T/di − 1.

The total reward of i throughout the whole time horizon is lower bounded by

(T/di − 2) ·R(di) = Ri(di)/di · T − 2 ·R(di).

Therefore, the total reward obtained is lower bounded by

∑
i is selected

Fi(1/di) · T − 2
∑

i is selected

R(di)

=

∑
i is selected Fi(1/di)

UB[N,K]
· UB[N,K] · T −O(N)

≥ γK · UB[N,K] · T −O(N).

�

Proof of Lemma 5.

Let {x∗i } be an optimal solution of (2). From Lemma 2, we can assume that at most 1 of its non-zero components x∗i0
is not in {1/d(k)i }k≥1. We round x∗i0 to x̃∗i0 = min

{
y ≥ x∗i0 : 1/y ∈ {d(k)i }k≥1

}
. We apply Step 1 in Section 3.2 to

{x∗i }i 6=i0 ∪ {x̃∗i0} and obtain {1/di} such that di ∈ D[a]. Define {xi,j,d} as follows,

xi,j,d = 1 {d = di} .

Then {xi,j,d} satisfies the constraints of (4), which means it is a feasible solution. Thus, the optimal objective value of (4) is

Dynamic Planning and Learning under Recovering Rewards — Supplementary Material

lower bounded by ∑
i∈[N]

∑
d∈Dφ[a]

R̂i,j(d)xi,j,d/d

≥
∑

i∈[N],di∈Dφ[a]

Ri(di)/di

≥
∑
i∈[N]

Ri(di)/di −
∑

i∈[N],di /∈Dφ[a]

Ri(di)/di

≥
∑

i∈[N],i6=i0

a

a+ 1
Fi(x

∗
i) +

a

a+ 1
Fi(x̃

∗
i0)−NRmax

φ/2

≥
∑
i∈[N]

a

a+ 1
Fi(x

∗
i)−

2NRmax

φ

=
a

a+ 1
UB[N,K]− 2NRmax

φ
,

where the third inequality follows from Lemma 3.

�

Proof of Lemma 6. Consider the following more general problem.

max
x

∑
i∈[N]

∑
s∈S

ri,sxi,s (2)

s.t.
∑
i∈[N]

∑
s∈S

wi,sxi,s ≤ K ′,

∑
s∈S

xi,s ≤ 1, ∀i ∈ [N],

xi,s ∈ {0, 1}, ∀i ∈ [N],∀s ∈ S.

We first assume that ri,s ∈ Z+ ∪ {0}, then we let v(n, r) be the value of following problem.

min
x

∑
i∈[n]

∑
s∈S

wi,sxi,s

s.t.
∑
i∈[n]

∑
s∈S

ri,sxi,s = r,

∑
s∈S

xi,s ≤ 1, ∀i ∈ [n],

xi,s ∈ {0, 1}, ∀i ∈ [n],∀s ∈ S.

If the problem is infeasible, we let v(n, r) = +∞, then we have the following recurrence formula:

v(n, r) = min
s:rn,s≤r

{v(n− 1, r), wn,s + v(n− 1, r − rn,s)} .

We also have the initial conditions:

v(1, r) =

{
w1,s, if r = r1,s,
+∞, else, v(n, 0) = 0, ∀n ∈ [N].

Let rmax = maxi,s ri,s, then the largest possible r is Nrmax. Thus, v(n, r) can be computed within O
(
N2rmax|S|

)
time.

The maximal reward for (2) is then computed by iterating through {v(n, r)}n∈[N],r≤Nrmax
such that v(n, r) ≤ K ′ while r

is maximized. Finding the optimal solution requires tracing back v(n, r) to the initial conditions, which consumes O(N |S|)
time. Thus, the total time complexity is O

(
N2rmax|S|

)
.

Dynamic Planning and Learning under Recovering Rewards — Supplementary Material

For the general case, we define r̃i,s = bNri,sεrmax
c. We compute (2) with {ri,s} replaced by {r̃i,s}. Then since

0 ≤
N

εrmax
ri,s − r̃i,s
N

εrmax
ri,s

≤ 1
Nri,s
εrmax

≤ ε, ∀i ∈ [N], s ∈ S,

The solution we compute is a (1−ε)-optimal solution of (2). As a final step, we substitute S withDφ[a], and the computation
time is

O
(
N2 max

i,s

⌊
Nri,s
εrmax

⌋
|Dφ[a]|

)
= O

(
N3a log2 φ

ε

)
.

�

Proof of Theorem 2.

For completeness, we restate some definitions. Let ni,j(d) be the number of samples we have collected for Ri(d) from
the beginning of the whole time horizon to the end of phase j. Here we let ni,0(d) = 0 for all i ∈ [N] and d ∈ Z+. At the
beginning, we have a natural upper bound Ri(d) ≤ Rmax. Let

R̄i,j−1(d) ,

∑ni,j−1(d)
`=1 R̂`i(d)

ni,j−1(d)

be the empirical mean of Ri(d) calculated by the samples collected prior to phase j. Here, R̂`i(d) is the `th sampled reward
we collected when we offer product i d time periods after we offered it last time. The upper bound R̂i,j(d) is then computed
by

min

{
R̄i,j−1(d) +Rmax

√
2 log(KT)

max {ni,j−1(d), 1}
, Rmax

}
.

Let G be the “good event” that ∀i ∈ [N], all phases j and all d ∈ Dφ[a], the following holds:

∣∣Ri(d)− R̄i,j−1(d)
∣∣ ≤ Rmax

√
2 log(KT)

max {ni,j−1(d), 1}
. (3)

Since ∀i ∈ [N], after each phase, we update the estimation of at most one element in {Ri(d)}d∈Dφ[a], and so by Hoeffding’s
inequality,

P (Gc) ≤ N ·
⌈
T

φ

⌉
· 2 exp (−2 · 2 log(KT))

≤ N · 2T

φ
· 2 exp (−4 log(KT)) ≤ 4N

φKT 3
.

Thus, the total loss incurred when Gc occurs is bounded by

4N

φKT 3
RmaxKT = O

(
NRmax

φT 2

)
.

Next, we consider the situation when G holds. Then we have

R̂i,j(d) ≥ Ri(d) ≥ R̂i,j(d)− 2Rmax

√
2 log(KT)

max {ni,j−1(d), 1}

Dynamic Planning and Learning under Recovering Rewards — Supplementary Material

because of (3) and Ri(d) ≤ Rmax. For brevity, we write γK,ε = γK(1− ε). The reward obtained at a given phase j is

φ

N∑
i=1

Ri(di,j)/di,j −O(NRmax)

= φγK,εUB[N,K]− φ

(
γK,εUB[N,K]−

N∑
i=1

Ri(di,j)/di,j

)
−O(NRmax)

≥ φγK,εUB[N,K]− φ
N∑
i=1

(
R̂i,j(di,j)/di,j −Ri(di,j)/di,j

)
− 2NRmax −O(NRmax)

≥ φγK,εUB[N,K]− φ
N∑
i=1

O

(
Rmax

√
log(KT)

di,j
√

max {ni,j−1(di,j), 1}

)
−O(NRmax),

where the first inequality is from (5). Summing over all phases, we can derive that the reward obtained under G is lower
bounded by

TγK,εUB[N,K]−
N∑
i=1

∑
j

O

(
φRmax

√
log(KT)

di,j
√

max {ni,j−1(di,j), 1}

)
−O

(
NRmaxT

φ

)

= TγK,εUB[N,K]−
N∑
i=1

∑
d∈Dφ[a∗]

∑
j:di,j=d

O

(
φRmax

√
log(KT)

di,j
√

max {ni,j−1(di,j), 1}

)
−O

(
NRmaxT

φ

)

Note that for all j such that di,j = d, we can list in the increasing order {j0, j1, j2, · · · } (j0 = 0), and we have

ni,j`−1(d) ≥ ni,j`−1
(d) ≥ ni,j`−1−1(d) +

⌈
φ

d

⌉
− 1 ≥ ni,j`−1−1(d) +

φ

3d
≥ φ

3d
, ∀` ≥ 2.

Thus, we have

φ

d
√

max{ni,j2−1(d), 1}
≤ φ

d
√
ni,j2−1(d)

≤ 3
√
ni,j2−1(d),

and

φ

d
√

max{ni,j`−1(d), 1}
≤ 3

ni,j`−1(d)− ni,j`−1−1(d)√
ni,j`−1(d)

≤ 6
ni,j`−1(d)− ni,j`−1−1(d)√
ni,j`−1(d) +

√
ni,j`−1−1(d)

Then we have

∑
j:di,j=d

O

(
φ

di,j
√

max {ni,j−1(di,j), 1}

)

=
∑
`

O

(
φ

d
√

max {ni,j`−1(d), 1}

)

=
∑
`=1

O

(
φ

d
√

max {ni,j`−1(d), 1}

)
+
∑
`=2

O

(
φ

d
√

max {ni,j`−1(d), 1}

)
+
∑
`≥3

O

(
φ

d
√

max {ni,j`−1(d), 1}

)

≤ O
(
φ

d

)
+O

(√
ni,j2−1(d)

)
+
∑
`≥3

O

(
ni,j`−1(d)− ni,j`−1−1(d)√
ni,j`−1(d) +

√
ni,j`−1−1(d)

)

≤ O
(
φ

d

)
+O

(√
ni(d)

)
,

Dynamic Planning and Learning under Recovering Rewards — Supplementary Material

where ni(d) is the number of samples we collected for Ri(d) throughout the whole time horizon. Combined with the loss
incurred under Gc, the overall reward can be further bounded by

TγK,εUB[N,K]−
N∑
i=1

∑
d∈Dφ[a∗]

∑
j:di,j=d

O

(
φRmax

√
log(KT)

di,j
√

max {ni,j−1(di,j), 1}

)
−O

(
NRmaxT

φ

)

≥ TγK,εUB[N,K]−Rmax

N∑
i=1

∑
d∈Dφ[a∗]

O

(
φ
√

log(KT)

d
+
√
ni(d) log(KT)

)
−O

(
NRmaxT

φ

)

≥ TγK,εUB[N,K]−RmaxO
(
φN log(K + 1)

√
log(KT) +

√
NTK

3
2 log φ log(KT) +

NT

φ

)
,

where in the last inequality we use

∑
d∈Dφ[a∗]

1

d
≤

a∗∑
a=1

∑
d∈Da

1

d
≤

a∗∑
a=1

2

a
= O (log(K + 1)) ,

and

N∑
i=1

∑
d∈Dφ[a∗]

√
ni(d) ≤

√√√√ N∑
i=1

∑
d∈Dφ[a∗]

ni(d).

√√√√ N∑
i=1

∑
d∈Dφ[a∗]

1

≤
√
KT ·N |Dφ[a∗]| = O

(√
NTK

3
2 log φ

)
.

With φ = Θ
(√

T
log(K+1)

)
and ε = Θ

(
T−

1
2

)
, the total reward is lower bounded by

TγKUB[N,K]−O
(

max{N,N 1
2K

3
4 }Rmax

√
T log(K + 1) log T log(KT)

)
,

since

TεUB[N,K] = O (εT ·KRmax) = O
(
KRmax

√
T
)

= O
(

max{N,N 1
2K

3
4 }Rmax

√
T
)
.

�

References
Bar-Noy, A., Bhatia, R., Naor, J., and Schieber, B. Minimizing service and operation costs of periodic scheduling.

Mathematics of Operations Research, 27(3):518–544, 2002.

Cella, L. and Cesa-Bianchi, N. Stochastic bandits with delay-dependent payoffs. In International Conference on Artificial
Intelligence and Statistics, pp. 1168–1177, 2020.

