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Abstract
Most current classifiers are vulnerable to adver-
sarial examples, small input perturbations that
change the classification output. Many existing
attack algorithms cover various settings, from
white-box to black-box classifiers, but typically
assume that the answers are deterministic and of-
ten fail when they are not. We therefore propose a
new adversarial decision-based attack specifically
designed for classifiers with probabilistic outputs.
It is based on the HopSkipJump attack by Chen
et al. (2019), a strong and query efficient decision-
based attack originally designed for deterministic
classifiers. Our P(robabilisticH)opSkipJump
attack adapts its amount of queries to maintain
HopSkipJump’s original output quality across
various noise levels, while converging to its query
efficiency as the noise level decreases. We test our
attack on various noise models, including state-
of-the-art off-the-shelf randomized defenses, and
show that they offer almost no extra robustness
to decision-based attacks. Code is available at
https://github.com/cjsg/PopSkipJump.

1. Introduction
Over the past decade, many state-of-the-art neural network
classifiers turned out to be vulnerable to adversarial exam-
ples: small, targeted input perturbations that manipulate the
classification output. The many existing attack algorithms
to create adversarial inputs cover a wide range of settings:
from white- to black-box algorithms (a.k.a. decision-based)
over various gray-box and transfer-based settings, targeted
and untargeted attacks for various kinds of data (images, text,
speech, graphs); etc. Decision-based attacks are arguably
among the most general attacks, because they try not to rely
on any classifier specific information, except final decisions.
Said differently, they can attack anything that can be queried
often enough; in principle, even humans. Surprisingly how-
ever, despite this generality, they typically cannot deal with
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noisy or probabilistic classification outputs – a quite natural
and common setting in the real world. There could indeed
be many reasons for this noise: occasional measurement
errors, classifiers’ uncertainty about the answer, queries
coming from different/changing classifiers, or intentional
variations from a randomized adversarial defense. Yet, as
shown by Table 1 and Appendix B.1, randomly changing
the output label of only 1 out of 20 queries when applying
SOTA decision-based attacks suffices to make them fail.

One way to deal with probabilistic outcomes would be to
apply majority voting on repeated queries. In practice, how-
ever, some input regions may need more queries than others,
either because they are noisier, or because they are more
important for the success of the attack. So a naive implemen-
tation where every point gets queried equally often would
require unnecessarily many queries, which is often not ac-
ceptable in real-world applications.

Contributions We therefore propose to adapt Chen et al.
(2019)’s HopSkipJump (HSJ) algorithm, a query efficient,
decision-based, iterative attack for deterministic classifiers,
to make it work with noisy, probabilistic outputs. We take
a model-based, Bayesian approach that, at every iteration,
evaluates the local noise level (or probabilities) and uses it
to optimally adapt the number of queries to match HSJ’s
original performance. The result is a probabilistic version
of HopSkipJump, PopSkipJump (PSJ), that

1. outperforms majority voting on repeated queries;
2. efficiently adapts its amount of queries to maintain

HSJ’s original output quality at every iteration over
increasing noise levels;

3. gracefully converges to HSJ’s initial query efficiency
when answers become increasingly deterministic;

4. works with various noise models.

In particular, we test our attack on several recent state-of-
the-art off-the-shelf randomized defenses, which all rely
on some form of deterministic base model. PSJ achieves
the same performance as HSJ on the original base models,
showing that these defense strategies offer no extra robust-
ness to decision-based attacks. Finally, most parameters of
HSJ have a direct counterpart in PSJ. So by optimizing the
parameters of HSJ or PSJ in the deterministic setting we get
automatic improvements in the various stochastic settings.

https://github.com/cjsg/PopSkipJump
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Related Literature. White-box attacks are the one extreme
case where the attacker has full knowledge of the classifiers’
architecture and weights. They typically use gradient in-
formation to find directions of high sensitivity to changes
of the input, e.g., FGSM (Goodfellow et al., 2015), PGD
(Madry et al., 2018), Carlini&Wagner attack (Carlini & Wag-
ner, 2017) and DeepFool (Moosavi-Dezfooli et al., 2016).
At the other extreme, decision-based attacks only assume
access to the classifiers’ decisions, i.e., the top-1 class as-
signments. State-of-the-art decision-based attacks include
the boundary attack by Brendel et al. (2018), HopSkipJump
by Chen et al. (2019) and qFool by Liu et al. (2019). In
between these two extremes, many intermediate, gray-box
settings have been considered in the literature. When the
architecture is at least roughly known but not the weights,
one can use transfer attacks, which compute adversarial
examples on a similar, substitute network in the hope that
they will also fool (‘transfer to’) the targeted net. Ilyas
et al. (2018) consider cases where the attacker knows the
top-k output logits/probabilities, or the top-k output ranks.
However, all these attacks were originally designed for de-
terministic classifiers, and typically break when answers are
just slightly noisy. This has led several authors to propose
alleged “defenses” using one or another form of randomiza-
tion, such as neural dropout, adversarial smoothing, random
cropping and resizing, etc. (details in Section 4). Shortly
later however, Athalye et al. (2018) managed to circumvent
many of these randomized defenses in the white-box setting,
by adapting existing white-box attacks to cope with noise.
Cardelli et al. (2019b;a) studied white-box attacks and certi-
fications for Gaussian process classifiers and Bayesian nets.
To date however, and to the best of our knowledge, there
has been no such attempt in the decision-based setting. In
particular, we do not know of any SOTA decision-based
attack that can handle noisy or randomized outputs. Our
paper closes this gap: we provide a decision-based attack
that achieves the same performance on randomized defenses
than SOTA decision-based attacks on the undefended nets.

Notations Vectors are bold italic (x, δ, g, . . .), their coor-
dinates and 1d variables are non-bold italic (x, δ, g, . . .).
Random vectors are bold and upright (δ,g,φ, . . .), their
coordinates and 1d random variables are non-bold upright
(δ, g, φ, . . .) When it cannot be avoided, we will also use the
index-notation (e.g., δi) to designate the (i-th) coordinate of
vector (δ). Ber(p) denotes the Bernoulli distribution with
values in {−1, 1}, returning 1 with probability p.

2. Probabilistic Classifiers

Definition. We define a probabilistic classifier as a random
function (or stochastic process) φ from a set of inputs X
to a set of K classes K := {1, ...,K}. Said differently, for

FLIP PSJ HSJ HSJ x3
ν = 0% 0.006 (1x) 0.006 (0.90x) 0.005 (2.70x)
ν = 5% 0.006 (1x) 0.022 (0.74x) 0.007 (2.35x)
ν = 10% 0.006 (1x) 0.036 (0.73x) 0.013 (2.27x)

Table 1: Median size of adversarial perturbation (“border-
distance”, see Section 4) and relative number of model calls
(in brackets) for different attacks (columns) and different
noise levels (rows) on MNIST. All attacks perform similarly
on deterministic classifiers. Randomly changing ν percent
of outputs however suffices to break HopSkipJump (HSJ),
even with majority voting on 3 repeated queries, whereas
PopSkipJump (PSJ, our method) remains unaffected.

any x ∈ X, φ(x) is a random variable taking values in K.1

Repeated queries of φ at x yield i.i.d. copies of φ(x).
Remark 1. For every probabilistic classifier ϕ, there exists
a function of logits x 7→ ϕ(x) := (ϕ(x)1, . . . ,ϕ(x)K) ∈
(R ∪ {±∞})K which (after a softmax) defines the distribu-
tion of φ(x) at every point x. Conversely, every such logit
function defines a unique probabilistic classifier. So a proba-
bilistic classifier is nothing but an arbitrary function ϕ with
values in (R ∪ {±∞})K for which querying at x means
returning a random draw φ(x) from the distribution defined
by the logits ϕ(x). In this paper, ϕ is a priori unknown.
But it can of course be recovered with arbitrary precision at
any point x by repeatedly querying φ at x.

Examples. Any deterministic classifier can be turned into a
probabilistic classifier with noise level ν by swapping the
original output with probability ν for another label, chosen
uniformly at random among the remaining classes. This
could, e.g., model a noisy communication channel between
the classifier and the attacker, noisy human answers, or
answers that get drawn at random from a set of different
classifiers. Sometimes, noise is also injected intentionally
into the classifier as a form of defense, e.g., by adding Gaus-
sian noise to the inputs as in adversarial smoothing (Cohen
et al., 2019), or via dropout of neural weights (Cardelli
et al., 2019a; Feinman et al., 2017), random cropping, re-
sizing and/or compression of the inputs (Guo et al., 2018).
All these defenses yield random outputs, i.e., probabilistic
classifiers. Finally, any neural network with logit outputs
ϕ(x) ∈ RK can be turned into a probabilistic classifier
by sampling from its logits instead of returning the usual
arg maxk ϕ(x)k. Even though perhaps not common in
practice, such randomized selection is indeed used, e.g., in
softmax-exploration in RL. Moreover, as Remark 1 shows,
sampling from logits can in principle model all the previous
examples, if the neural network is given sufficient capacity
to model arbitrary logit functions ϕ, which is why we also

1Note however that, starting from Section 3, we will convene
that φ takes its values in {−1, 1}.
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Figure 1: Original HopSkipJump algorithm for determinis-
tic classifiers (Chen et al., 2019). Illustrations correspond to
steps (a), (b), (c) and (a) from the text.

consider this setting in our experiments (Section 4).

Adversarial risk and accuracy. For a given norm ‖·‖, loss
L and perturbation size η > 0, we generalize the notion of
ε-adversarial (or robust) risk AR (Madry et al., 2018) from
the deterministic to the probabilistic setting as

AR(‖·‖,L, η,φ) := E
(x,c)

E
φ(x)

[
max
‖δ‖≤η

L(φ(x + δ), c)

]
.

For deterministic classifiers, the expectation is taken only
over the distribution of the labeled datapoints (x, c) ∈ X×
K. For probabilistic classifiers, it is also taken over the ran-
domness of the output φ(x) (at fixed input x). We define ad-
versarial accuracy as 1−AR(L0/1) where L0/1 denotes the
0-1 loss. In this work, ‖·‖ will always be the `2-norm ‖·‖2.

3. The PopSkipJump Algorithm
From now on, let us fix the attacked image x∗ with true
label c, and assume that the classifier φ returns values in
{−1, 1} with 1 meaning class c and −1 not class c.

3.1. HopSkipJump algorithm for deterministic outputs

Given an image x∗ with label c and a neural network
classifier ϕ which correctly assigns label c to x∗, i.e.,
c = arg maxk∈Kϕ(x∗)k, and let b(x) := ϕ(x)c −
maxk∈K\{c}ϕ(x)k. Then b(x) > 0 if ϕ assigns class c
to x, and b(x) < 0 if it does not. Consequently, we call
boundary the set of points x such that b(x) = 0.

Similar to the boundary attack (Brendel et al., 2018) or
qFool (Liu et al., 2019), HopSkipJump (HSJ) is a decision
based attack that gradually improves an adversarial proposal
xt over iterations t by moving it along the decision boundary
to get closer to the attacked image x∗. More precisely, each
iteration consists of three steps (see Fig. 1):

(a) binary search on the line between an adversarial image
x̃t and the target x∗, which yields an adversarial point
xt near the classification border.

(b) gradient estimation, which estimates g(xt) :=
∇xb(xt)/‖∇xb(xt)‖2, the normal vector to the

boundary at xt, as

ĝ(xt) :=
u

‖u‖2
with u :=

nt∑
i=1

φ(xt + δ(i))δ(i) (1)

where the δ(i) are uniform i.i.d. samples from a
centered sphere with radius δt. We will often simply
refer to g as “the gradient” and to ĝ as “the gradient
estimate”.

(c) gradient step, a step of size ξt in the direction of the gra-
dient estimate ĝ(xt), yielding x̃t+1 := xt + ξtĝ(xt).

Chen et al. (2019) provide various convergence re-
sults to justify their approach and fix the size of the
main parameters, which are (a) the minimal bin size
θdet
t = d−3/2‖xt − x∗‖2 for stopping the binary search;

(b) the sample size ndet
t = ndet

0

√
t and sampling radius

δdet
t = θdet

t

√
d used to estimate the gradient; (c) the step

size ξdet
t = ‖xt − x∗‖2/

√
t.

3.2. From HopSkipJump to PopSkipJump

While HSJ is very effective on deterministic classifiers,
small noise on the answers suffices to break the attack: see
Table 1. This is because, for one reason, binary search is
very noise sensitive: one wrong answer of the classifier
during the binary search and xt can end up being non-
adversarial and/or far from the classification border. For
another, even if binary search worked, the gradient estimate
ĝ needs more sample points δ(i) to reach the same average
performance with noise than without.

Overview of PopSkipJump. To solve these issues, our
Probabilistic HopSkipJump attack, PopSkipJump, replaces
the binary search procedure by (sequential) Bayesian ex-
perimental design, NoisyBinSearch, that not only yields
a point xt, but also evaluates the noise level around that
point. We then use this evaluation of the noise to compute
analytically (eq. 4) how many sample points nt we need
to get a gradient estimate ĝ(xt) with the same expected
performance – as measured by E[cos(ĝ, g)] using Eq. 3 –
than that of the same estimator with ndet

t points on a de-
terministic classifiers. Interestingly, when the noise level
decreases, our noisy binary search procedure recovers usual
binary search, and nt decreases to ndet

t . PopSkipJump can
therefore automatically adapt to the noise level and recover
the original HopSkipJump algorithm if the classifier is deter-
ministic. We now explain in more detail the two parts of our
algorithm, noisy binary search and sample size estimation.

3.3. Noisy bin-search via Bayesian experimental design

Sigmoid assumption. Our noisy binary search procedure
assumes that the probability pc(x) of the class c of x∗ (the
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Algorithm 1 PopSkipJump

Input: attacked point x∗; starting point x̃0 from adversarial class; probabilistic classifier φ; input dim d;
HSJ parameters: sampling sizes ndet

t , sampling radii δdet
t , min bin-sizes θdet

t and gradient step sizes ξdet
t .

for t = 1 to end do
# Compute expected cosine Cdet

t of the HSJ gradient estimate when classifier is deterministic
Cdet
t ← f(s =∞, ε = 0, n = ndet

t ,∆ = θdet
t ) where f = RHS of Eq. 3

# Do noisy bin-search btw. x̃t and x∗ with target cos = Cdet
t used in the stopping criterion

posterior(z, s, ε)← NoisyBinSearch(x̃t,x∗, Cdet
t ) # (z, s, ε) = sigmoid parameters

(ẑ, ŝ, ε̂)← Eposterior[(z, s, ε)] # Compute mean a posteriori of sigmoid parameters
xt ← ẑx̃t + (1− ẑ)x∗ # Move to sigmoid center (“border”)

# Compute query size nt for grad estimate on prob classifier to match HSJ’s performance on det classifier
nt = Ez∼post[f

−1(∆ = z − ẑ, s = ŝ, ε = ε̂, C = Cdet
t )] where f−1 = RHS Eq. 4

ĝ(xt) = RHS of Eq. 1 # Estimate gradient g at point xt
x̃t+1 ← xt + ξtĝ(xt) # Make step in the estimated gradient direction
x̃t+1 ← x∗ + 1.5(xt+1 − x∗) # Enlarge obtained interval [xt+1,x∗] to improve next bin-search

end for and return xt, ẑ, ŝ, ε̂

Algorithm 2 NoisyBinSearch
Input: attacked point x∗; x̃t from adv. class; probabilistic
classifier φ with query model φ(x) ∼ pc(x) from Eq. 2; target
cos Cdet

t ; prior p(z, s, ε)
for i = 1 to∞ do

# Compute acquisition fct for all x ∈ [x̃t,x∗]
a(x) = I(φ(x), z, s, ε) with p(z, s, ε) & φ(x) ∼ pc(x)
# Sample at argmax of acquisition function
φ(x̂) ∼ pc(x̂) where x̂ = argmaxx a(x)

# Update prior and estimates with posterior
p(z, s, ε)← p(z, s, ε|φ(x̂))
ẑ, ŝ, ε̂← Ep(z,s,ε[p(z, s, ε]
# Use current posterior to compute query size for the next
grad estimate to reach an expected cos = Cdet

t

ni = Ep(z,s,ε)
[
f−1(z − ẑ, s, ε)

]
, f−1 := RHS of Eq. 4

# Stop if k bin-search queries spare ≤ k grad queries
if |ni − ni−k| ≤ k : break

end for
Output: posterior p(z, s, ε), posterior means (ẑ, ŝ, ε̂).

attacked image) has a sigmoidal shape along the line seg-
ment [xt,x∗]. More precisely, for x = (1 − x)xt + xx∗
with x ∈ [0, 1], we assume that

pc(x) ≡ pc(x) = ε+ (1− 2ε)σ(s(x− z)) (2)

where ε models an overall noise level, and where σ(x) :=
1/1+e−4x is the usual sigmoid, rescaled to get a slope = 1 in
its center z when the inverse scale parameter s is equal to
1. This assumption is particularly well-suited for the exam-
ples discussed in Section 2, such as a probabilistic classifier
whose answers are sampled from a final logit layer. This as-
sumption is also confirmed by Appendix B.3, where we plot
the output probabilities along the bin-search line [xt,x∗] at
various iterations t of an attack on two sample images x∗.
Note that when s =∞, we recover the deterministic case,

with or without noise on top of the deterministic output,
depending on ε.

Bayesian experimental design. The noisy binary search
procedure follows the standard paradigm of Bayesian ex-
perimental design. We put a (joint) prior p(k) on ε, z
and s, query the classifier at a point x(k) ∈ [0, 1] to get
a random label φ(x(k)), update our prior with the poste-
rior distribution of (ε, z, s) and iterate over these steps for
k = 0, 1, ... until convergence. The stopping criterion will
be discussed in Section 3.4. We choose x(k) by maximizing
a so-called acquisition function acq(x|p(k)), which evalu-
ates how “informative” it would be to query the classifier at
point x given our current prior p(k) on its parameters. We
tested two standard acquisition functions: (i) mutual infor-
mation I(φ(x) ‖ s, z, ε) between the random answer φ(x)
to a query at x and the parameters s, z, ε; (ii) an expected
improvement approach, where we choose x to minimize the
expected sample size Es,t,ε[nt|φ(x)] that will be required
for the next gradient estimation and where nt is computed
using Eq. 4 below. Mutual information worked best, which
is why we keep it as default. We can then use the final
prior/posterior to get an estimate (ẑ, ŝ, ε̂) of the true param-
eters (z, s, ε), for example with the maximum or the mean a
posteriori. We compute all involved quantities by discretiz-
ing the parameter space of (x, z, s, ε) and start with uniform
priors. See details in Section 4.

3.4. Sample size for the gradient estimate

From sphere to normal distribution. Although the origi-
nal gradient estimate in the HopSkipJump attack samples
the perturbations δ(i) of the near-boundary point xt on a
sphere, we instead sample them from a normal distribution
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N (0, βt Id) with diagonal standard deviation βt := δt/d.
This will simplify our analytical derivations and makes no
difference in practice, since, in high dimensions d, this nor-
mal distribution is almost a uniform over the sphere with
radius δt (in particular, ‖δ(i)‖2 ≈ δt).

Sample size nt. We use the previous hypothesis to approx-
imate the expected cosine E[cos(ĝ, g)] between the gradient
g(x) at point x and its estimate ĝ(x) for a sample size n as
follows (justification in Appendix A.0.1).

E[cos(ĝ, g)] ≈ 1√
1 + d−1

nα2

where

{
α(∆, s, β, ε) := Eδ,yε

[
yε
(
s(∆ + βδ)

)
δ
]

δ ∼ N (0, 1), yε(x) ∼ Ber(ε+ (1− 2ε)σ(x)) ,
(3)

where we defined the displacement ∆ := x − z between
the gradient sampling center x and the sigmoid center z and
where Ber denotes the Bernoulli distribution with values in
{−1, 1}. This equation is easily inverted to get the sample
size n as a function of the expected cosine C:

n ≈ C2

α2(∆, s, β, ε)

d− 1

1− C2
, C := E[cos(ĝ, g)] . (4)

Finally, the following result shows how to compute α when
replacing the usual sigmoid by its close approximation, a
clipped linear function (proof in Appendix A.0.2).

Proposition 2. Assume that, in Eq. 3, σ is the clipped linear
function σ(x) = clip(x+ 1/2, 0, 1). Then

α(∆, s, β, ε) =

{
(1− 2ε)sβ ·(

erf
(∆+1/2s

β
√

2

)
− erf

(∆−1/2s

β
√

2

)) (5)

α(∆,∞, β, ε) = (1− 2ε)

√
2

π
e−

(β∆)2/2 . (6)

We now explain how to use these four formulae, together
with the estimates (ẑ, ŝ, ε̂) from the binary search procedure,
to evaluate the sample size nt that we need to get the same
expected cosine value than with ndet

t points sampled from
a deterministic classifier. First we set s = ∞, ε = 0, and
n = ndet

t in Eq. 3 and compute the expected cosine Cdet
t on

a deterministic classifier with ndet
t sample points; then we

apply Eq. 4 with our estimates (ẑ, ŝ, ε̂) and use the obtained
value nt. (Alternatively, instead of using the point estimate
(ẑ, ŝ, ε̂), we could also use Eq. 4 to compute the Ez,s,ε[nt]
using the full posterior over (t, s, ε).)

Stopping criterion for bin-search. We leverage Eq. 4 to
design a stopping criterion for the (noisy) bin-search proce-
dure that minimizes the overall amount of queries in PSJ. We
use it to stop the binary search when one additional query
there spares, on average, less than one query in the gradient
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Figure 2: HSJ’s performance on deterministic deep net clas-
sifiers is largely independent of the effective sampling radius
δt = β‖x̃t − x∗‖2 of the gradient estimator. So we can
safely increase β (hence δt) by several orders of magnitude,
which greatly enhance PSJ’s query efficiency in the noisy
setting (see Section 3.5) without affecting PSJ/HSJ’s output
quality in the deterministic setting. Here we let β range
from HSJ’s original choice 1/d to 1, and adjusted the mini-
mal bin-size θt to preserve the ratio δt/θt =

√
d, as in Chen

et al. (2019), IV.C.b. and eq. 15.

estimation procedure. Concretely, every k queries (typically,
k = 10), we use our current bin-search estimate of (z, s, ε)
(or the full posterior) to compute n (or Ez,s,ε∼posterior[n])
using Eq. 4 and stop the binary search when the absolute dif-
ference |nnew−nold| between the new and old result is≤ k.
The idea is that, the better we estimate the center z of the
sigmoid, the closer x (center of ĝ) will be to z. This in turn
will reduce the number of queries required for ĝ to reach
a certain expected cosine. (To see that, notice for example
that Eq. 4 decreases with |∆|.) Since a query tends to yield
more information about the position of z at the beginning
of the bin-search procedure than later on, |nnew − nold|
tends to decrease with the amount of bin-search queries.
The order of magnitude of |∆| when meeting the stopping
criterion depends on the shape parameter s and noise level
ε of the underlying sigmoid. For a deterministic classifier
(s = ∞, ε = 0), it must be at least of the order of β, the
standard deviation of the samples δ(i) in ĝ (see eq. 1): oth-
erwise, all points x+ δ(i) would belong to the same class
and yield no information about the border. (See also IV.C.a.
in Chen et al. 2019.) But if β � 1/s, the characteristic size
of the linear part of the sigmoid, then |∆| ≥ β is acceptable,
as long as it is ≤ 1/s. Our stopping criterion provides a
natural and systematic way to trade off these considerations.

3.5. PopSkipJump versus HopSkipJump

Here we discuss additional small differences between HSJ
and PSJ, besides the obvious ones that we already mentioned
– binary search, its stopping criterion, and the sample size
for the gradient estimate.

Gradients: variance reduction and size of δt. The au-
thors of HSJ propose a procedure to slightly reduce the
variance of the gradient estimate (Sec. III.C.c), which we
do not use here. Moreover, they use δt = ‖x̃t − x∗‖2/d,
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Figure 3: Adversarial accuracy versus attack size η for PSJ and HSJ for a fixed noise model (logit-sampling) and various
noise levels (temperatures T ) in Figs. (a) &(b); and for various noise models and fixed, high noise levels in Figs. (c) & (d).
The curves obtained with PSJ are well below their HSJ counterparts in all noisy settings and both curves coincide in the
deterministic case (Figs. a & b, T=0.). This illustrates the clear superiority of PSJ over HSJ. Note that, even though all
classifiers use a same underlying base classifier, their PSJ curves do not coincide (even when η = 0, i.e., for usual accuracy).
This confirms that adversarial accuracy is ill-suited for comparisons between different noise levels and that the median
border distance should be preferred, as in Figs. 4 and 5. See paragraph “Adversarial accuracy” and Remark 4.

whereas we use δt =
√
d‖x̃t − x∗‖2/100. The reason is

that, whenever s < ∞, smaller δt yield noisier answers
which increases the queries needed both in the gradient esti-
mation and in the bin-search. Given that the logits of deep
nets typically have shape parameters s ≈ 1, HSJ’s original
choice would require prohibitively many samples. To re-
duce noise, the larger the radius δt, the better. In practice
however, the size of δt is limited by the curvature of the bor-
der and by the validity range of the sigmoidal assumption
(Eq. 2). To trade of these considerations, we evaluated the
empirical performance of HSJ (on deterministic classifiers)
with various choices of δt and chose one of the largest for
which results did not differ significantly from the original
ones. See Fig. 2. A more theoretically grounded approach
that would evaluate the curvature is left for future work.

No geometric progression on ξt. For HSJ, it is crucial that
x̃t be on the adversarial side of the border. Therefore, it
always tests whether the point x̃t := xt−1 + ξtĝ(xt−1) is
indeed adversarial. If not, it divides ξt by 2 and tests again.
Since by design xt−1 is adversarial, this “geometric progres-
sion” procedure is bound to converge. In the probabilistic
case, however, testing if a point is adversarial can be expen-
sive, and is not needed since, on the one hand, the noisy
bin-search procedure can estimate the sigmoid’s parameters
even if z is outside of [x̃t,x∗]; and on the other, we are less
interested in the point xt and the point value pc(xt) than in
the global direction from x∗ to xt. We therefore use ξt as
is, without geometric progression.

Enlarging bin-search interval [x̃t,x∗]. It is easier for the
noisy bin-search procedure to estimate the sigmoid parame-
ters if it can sample from both sides of the sigmoid center z.
In practice however, we noticed that after a few iterations
t, the point x̃t tends to be very close to z. We therefore
increase the size of the sampling interval, from [x̃t,x∗] to

[x∗ + 1.5(x̃t − x∗),x∗], which performed much better.

4. Experiments
The goal of our experiments is to verify points 1. to 4. from
the introduction. That is, we want to show that, contrary
to the existing decision-based attacks, the performance of
PSJ is largely independent of the strength and type of ran-
domness considered, i.e., of both the noise level and the
noise model. At every iteration, PSJ adjusts its amount of
queries to keep HSJ’s original output quality, and is almost
as query efficient as HSJ on near-deterministic classifiers.
To show all this, we apply PSJ (and other attacks) to a de-
terministic base classifier whose outputs we randomize by
injecting an adjustable amount of randomness. We test var-
ious randomization methods, i.e., noise models, described
below, including several randomized defenses proposed at
the ICLR’18 and ICML’19 conferences. Figures 4 and 5
summarize our main results.

Remark 3. Although we do compare PSJ to SOTA decision-
based attacks, with or without repeated queries, we do not
compare PSJ to any decision-based attack specifically de-
signed for probabilistic classifiers because, to the best of
our knowledge, there is not any.2 There are however some
white-box attacks (e.g., Athalye et al., 2018; Cardelli et al.,
2019b;a) that can deal with some specific noise models
considered in this paper (see below).

Noise models and randomized defenses. For a given de-
terministic classifier ϕ, we consider the following random-
ization schemes.

2The decision-based attack by Ilyas et al. (2018) for determin-
istic classifiers may still work to some extent with randomized
outputs, but it is less effective than HSJ on deterministic classifiers
(Chen et al., 2019). Since we will show that, despite the noise, PSJ
stays on par with HSJ, there is no need for further comparisons.
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Figure 4: PopSkipJump’s performance (lower is better) for a fixed noise model (dropout) and various noise levels (dropout
rate α). Performance is shown as a function of the number of algorithm iterations (a & c) and model queries (b & d).
Shaded areas depict the 40th to 60th percentiles. Plots (a) & (c) illustrate property 2.: the per iteration performance of PSJ
is largely independent of the noise level (here, the dropout rate) and is on par with the performance achieved by HSJ on
the deterministic base classifier. Plots (b) & (d) illustrate property 1.: when the noise level (dropout rate) decreases and
the classifier becomes increasingly deterministic, the PSJ curves converge to the limiting HSJ curve, i.e., the per query
performance of PSJ converges to that of HSJ. See Fig. 9 in appendix for similar curves, but with other noise models.
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Figure 5: PopSkipJump’s performance (lower is better) for various noise models. Plots (a) & (c): Performance as a function
of the number of algorithm iterations, when using, for each noise model, the highest noise levels considered in Fig. 4 (see
also Fig. 9 in appendix). All curves are very similar, showing that PSJ is largely invariant to the specific type of randomness
used, even at high noise levels. Plots (b) & (d): Performance after 32 algorithm iterations (right-most part of curves in a & c)
of PSJ and HSJ as a function of the noise level. While small noise levels suffice to break HSJ (large border-distances at end
of attack), PSJ’s performance stays almost constant accross all noise levels and noise models.

• logit sampling: divide the output logits ϕ(x) by a tem-
perature parameter T to get ϕT (x) := ϕ(x)/T and sam-
ple from the new logits ϕT (x). By changing T we can
smoothly interpolate between the deterministic classifier
(T → 0) and sampling from the original logits (T = 1).
• dropout: apply dropout with a uniform dropout rate
α ∈ [0, 1](Srivastava et al., 2014). Taking α = 0 yields
the deterministic base classifier; increasing α increases the
randomness. Dropout and its variants have been proposed
as adversarial defenses, e.g., in Cardelli et al. (2019a); Fein-
man et al. (2017). Note that a network with dropout can be
interpreted as a form of Bayesian neural net (Gal & Ghahra-
mani, 2016). As such, sampling from it can be understood
as sampling from an ensemble of nets.
• adversarial smoothing: add centered Gaussian noise with
standard deviation σ to every input before passing it to the
classifier. Taking σ = 0 yields the original base classifier.
Cohen et al. (2019) proposed majority voting over several
such queries as an off-the-shelf adversarial robustification.
• random cropping & resizing: randomly crop and resize
every input image before passing it to the classifier. Chang-

ing the cropping size allows to interpolate between the deter-
ministic setting (no cropping) and more noise. This method
and a variant were proposed by Guo et al. (2018) and Xie
et al. (2018) as adversarial defenses.

We ran all experiments on the MNIST (LeCun et al., 1998)
and CIFAR10 (Krizhevsky, 2009) image datasets. Since,
at high noise levels, the attack may need a million queries,
it could take a minute per attack on a GeForce GTX 1080
for MNIST and a few minutes for CIFAR10 (larger net; see
Appendix D for a time and complexity analysis and accel-
eration tricks.) We therefore restricted all experiments to
a same random subset of 500 images of the MNIST and
CIFAR10 test sets respectively, where we kept only images
that were labeled correctly with probability ≥ .75 when us-
ing the cropping noise model with s = 22. On CIFAR10 we
use a DenseNet-121 and on MNIST a CNN with architecture
‘conv2d(1, 10, 5), conv2d(10, 20, 5), dropout2d, linear(320,
50), linear(50,10)‘. In all plots, shaded areas mark the 40th to
60th percentiles. To simplify the comparison across datasets
(cf. Eq. 3 in Simon-Gabriel et al. 2019), we divide all `2-
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Figure 6: Ratio NHSJr/NPSJ as a function of noise level,
where NHSJr is the total amount of queries needed by HSJ-
with-repeated-queries to match the performance of PSJ with
NPSJ queries. HSJr needs several orders of magnitude
more queries than PSJ, even when the classifier becomes
increasingly deterministic, and even when using PSJ’s larger
sampling radius δ for the gradient estimator (see paragraph
“PSJ outperforms HSJr”).

distances by
√
d, where the input dimension d is 27×27 for

MNIST and 3× 32× 32 for CIFAR-10. Code is available
at https://github.com/cjsg/PopSkipJump.

Adversarial accuracy (AA). Fig. 3 plots adversarial accu-
racy as a function of the attack size η for various noise
levels and a fixed noise model using logit sampling (Figs.
a & b), and for various noise models at fixed, high noise
levels (Figs. c & d). The accuracy curves obtained with PSJ
are well below their HSJ counterparts in all noisy settings
and both curves coincide in the deterministic case (Figs. a
& b, T=0). This illustrates the clear superiority of PSJ over
HSJ. However, despite its standard use in the deterministic
setting and its straight-forward generalization to probabilis-
tic classifiers, AA is ill-suited for comparing performances
between different noise models and noise levels. An easy
way to see this is to notice that the AA curves do not even
coincide at η = 0, even though the value at that point is just
standard accuracy and does not depend on the attack algo-
rithm. Instead, we will now introduce the (median) border
distance, which generalizes the usual “median `2-distance
of adversarial examples” to the probabilistic setting, and
which is better suited for comparisons across noise models
and noise levels.
Remark 4. A deeper reason why AA is ill-suited for the
comparison between noise levels is the following. From
any probabilistic classifier one can define the deterministic
classifier obtained by returning, at every point, the majority
vote over an infinite amount of repeated queries at that point.
This deterministic classifier is “canonically” associated to
the probabilistic one in the sense that it defines the same
classification boundaries. Naturally, any metric that com-
pares an attack’s performance across various noise levels
should be invariant to this canonical transformation. Con-
cretely, it means that a set of adversarial candidates {x}
should get the same score on a probabilistic classifier than
on its deterministic counterpart. The border distance defined
below satisfies this property; AA does not.

Performance metric: border distance. In the determinis-
tic case, the border distance is essentially the `2-distance
of the proposed adversarial examples to the original image.
In the probabilistic case, however, an attack like PSJ may
return points that are close to the boundary, but actually lie
on the wrong side, because the underlying (typically un-
known) logit of the true class is only marginally greater than
the logit of the adversarial one. So, to ensure that we only
measure distances to true adversarials and for the purpose
of evaluation only, we will assume white-box access to the
true underlying logits and then project all outputs x to the
closest boundary point that lies on the line (x∗,x), i.e., the
closest point x′ where the true and adversarial class have
same probability. We define the border-distance of x to x∗
as the `2-distance ‖x′ − x∗‖2 (re-scaled by 1/

√
d). Note

that for this evaluation metric, what matters is not so much
the output point x than finding an output-direction (x∗,x)
of steep(est) descent for the underlying output probabilities.

PSJ is invariant to noise level and noise model. Figure 4
fixes the noise model (dropout) and compares PSJ’s per-
formance at various noise levels (dropout rate α). (Similar
curves for the other noise models can be found in appendix,
Fig. 9.) Figure 5 instead studies PSJ’s performance on vari-
ous noise models. More precisely, Fig. 4 shows the median
border-distance at various noise levels (dropout rates α) as
a function of PSJ iterations (a & c) and as a function of
the median number of model queries obtained after each
iteration (b & d). Shaded areas show the 40th and 60th per-
centiles of border-distances. Figs. (a) & (c) illustrate point
2. from the introduction: the per iteration performance of
PSJ is largely independent of the noise level and on par
with HSJ’s performance on the deterministic base classi-
fier. This suggests that PSJ adapts its amount of queries
optimally to the noise level: just enough to match HSJ’s
deterministic performance, and not more. Figs. (b) & (d)
illustrate point 3.: when the noise level decreases and the
classifier becomes increasingly deterministic, the per query
performance of PSJ converges to that of HSJ, in the sense
that the PSJ curves become more and more similar to the
limiting HSJ curve. Note that the log-scale of the x-axis can
amplify small, irrelevant difference at the very beginning
of the attack. Figure 5 show that the performance of PSJ is
largely invariant to the different noise models considered
here. Figs. 5 (b) & (d) also confirm that, contrary to HSJ
that fails even with small noise, PSJ is largely invariant to
changing noise levels and noise models.

PSJ outperforms HSJ-with-repeated-queries. Let HSJ-
r be the HSJ attack with majority voting on r repeated
queries at every point. Figure 6 studies how many total
queries HSJ-r requires to match the performance of PSJ
at various noise levels with logit-sampling. It reports the
ratio NHJSr/NPSJr of total amount of queries. Concretely,

https://github.com/cjsg/PopSkipJump


PopSkipJump: Decision-Based Attack for Probabilistic Classifiers

0.0 0.5 1.0
temperature (T)

0.00

0.04

0.08

0.12

m
ed

ia
n

b
or

d
er

d
is

t MNIST

PSJ

PSJ-TrueGrad

Brendel

PGD

0.0 0.5 1.0
temperature (T)

0.000

0.003

0.006

0.009

0.012
CIFAR10

PSJ

PSJ-TrueGrad

Brendel

PGD

Figure 7: PSJ’s adversarial examples are on par with the
white-box attacks, even in noisy regimes (high T ), and even
though the white box attacks use the true gradients of the
tempered logits and therefore never face any actual noise.

for logit sampling with a given temperature T (the noise
level), we first compute the median border-distance DPSJ

of PSJ after 32 iterations and the 40th, 50th, 60th percentiles
N40, N50, N60 of the total amount of queries used in each
attack. We then run HSJ-r for increasingly high values of
r, which improves the median border-distance DHSJr(r)
and increases the total number of queries N(r). We stop
when DHSJr = DPSJ and plot the resulting ratio N/N50

(solid line), and N/N40, N/N60 (small shaded area around
the median line). The result, Fig. 6, confirms property 1.:
PSJ is much more query efficient than HSJr. At first, we
were surprised that, even at very low noise levels, HSJr
needed several order of magnitudes more model queries than
PSJ. The reason, we found, is that HSJ uses a very small
sampling radius (β = 1/d) for the gradient estimator, which
impedes the estimation in the event of noise, as discussed in
Section 3.5. We therefore also compare PSJ to a version of
HSJr where we replaced the original sampling radius by the
same one we used in PSJ (dashed line). The performance
of HSJr improved dramatically, even though PSJ remains
much more query efficient overall.

Small noise breaks HSJ. To confirm that small noise suf-
fices to break HSJ, we compare the performance of HSJ and
PSJ on MNIST, on a deterministic classifier where labels get
corrupted (flipped) with probability ν ∈ {0, .05, .1} (as in
Example φν of Section 2). Results are reported in Table 1.
Corrupting only 1 out of 20 queries (ν = 5%) suffices to
greatly deteriorate HSJ’s performance (i.e., increase the me-
dian border-distance) – even with queries repeated 3 times –,
while PSJ, with almost the same amount of queries than HSJ,
is almost not affected. Appendix B.1 shows similar results
when we replace HSJ by the boundary attack (Brendel et al.,
2018). This inability of HSJ to deal with noise can also be
seen on Figs. 5 (b) & (d) and 6.

PSJ vs white-box attacks. To evaluate how much perfor-
mance we lose by ignoring information about the network
architecture, we compare PSJ to several white-box attacks:
to `2-PGD with 50 gradient steps (Madry et al., 2018) and
to the `2-attack by Brendel et al. (2019), using their Fool-
box implementations by Rauber et al. (2017; 2020); and

to a homemade “PSJ-TrueGrad” attack, where we replaced
every gradient estimate in PSJ by the true gradient. We
compare these attacks on 100 MNIST and 50 CIFAR10 test
images, using the “logit sampling” noise model at various
temperatures T . That way, the true underlying logits and
their gradients are known and can be used by the white-box
attacks without resorting to any averaging over random sam-
ples. This trick is not applicable to other noise models and
makes the comparison with PSJ doubly unfair: first because
the white-box attacks have access to the model’s gradients;
and second, because here they never face any actual noise.
Given these burdens, PSJ’s performance shown in Fig. 7 is
surprisingly good: it is on par with the white-box attacks.

5. Conclusion
Although recent years have seen the development of several
decision-based attacks for deterministic classifiers, small
noise on the classification outputs typically suffices to break
them. We therefore re-designed the particularly query-
efficient HopSkipJump attack to make it work with prob-
abilistic outputs. By modeling and learning the local output
probabilities, the resulting probabilistic HopSkipJump
algorithm, PopSkipJump, optimally adapts its queries to
match HSJ’s performance at every iteration over increasing
noise levels. It is much more query-efficient than the
off-the-shelf alternative “HSJ (or any other SOTA decision-
based attack) with repeated queries and majority voting”,
and matches HSJ’s query-efficiency on deterministic and
near-deterministic classifiers. We successfully applied PSJ
to randomized adversarial defenses proposed at major recent
conferences, and showed that they offer almost no extra
robustness against decision-based attack as compared to
their underlying deterministic base model. Our adaptations
and statistical analysis of HSJ could be straightforwardly
used to extend another decision-based attack, qFool by Liu
et al. (2019), to cope with probabilistic answers. Overall,
we hope that our method will help crafting adversarial ex-
amples in more real-world settings with intrinsic noise, such
as for sets of classifiers or for humans. However, our results
also suggest that the feasibility of such attacks will greatly
depend on the noise level, since PSJ can require orders of
magnitude more queries to achieve the same performance
in the probabilistic setting than in the deterministic one.
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Supplementary Materials

A. Justifications and Proofs for Section 3.4
A.0.1. JUSTIFYING EQ. 3

First, let us extend Eq. 2 and assume that, near the point xt (where we estimate the gradient), the classification probabilities
pc(x) are given (approximately) by a planar sigmoid, meaning:

pc(x) = ε+ (1− 2ε)σ(s〈x− z , g〉2) = ε+ (1− 2ε)σ(s(x− z)) (7)

where s ∈ (0,+∞], g = g(z) is a unit vector in the gradient direction at point z (given by z in Eq. 2), and where x, z are
the first coordinates of x, z in an orthonormal basis B = (e1, e2, ..., ed) where e1 = g. In the deterministic case, when
s =∞, Eq. 7 amounts to assuming that the boundary is a linear hyperplane H going through z and orthogonal to g. Also,
notice that Eq. 7 is independent of the choice of z, as long as z is contained in the hyperplane H.
Remark 5 (Link between Eq. 2 and Eq. 7). Equation 7 is consistent with Eq. 2 in the sense that pc(x) will indeed be a
sigmoid along any arbitrary line, as in Eq. 2. However, the notations are different: in Eq. 7, s, x, z are coordinates along g,
whereas in Eq. 2, they are coordinates along the line [x̃t,x∗]. There is a factor cos(x̃t − x∗, g) between the two, which,
upon convergence, should converge to 1 (Chen et al., 2019, Thm.1).
Lemma 6. Let n be a positive integer and δ(i) ∼ N (0, Id) for i = 1, ...n. Let β > 0 and φ(x+βδ(i)) ∼ Ber(pc(x+βδ))

with values in {−1, 1} and where pc given by Eq. 7. Let ĝ(x) := u/‖u‖2 with u :=
∑n
i=1 φ(x+ βδ(i))δ(i). Then

cos(ĝ(x), g) =
ξ√

ξ2 + χ2
d−1/n

where


χ2
d−1 ∼ chi-square distribution of order d− 1

ξ := 1
n

∑n
i=1 yε(s(∆ + βδ(i)))δ(i)

yε(x) ∼ Ber(ε+ (1− 2ε)σ(x)) and ∆ := x− z.
(8)

Moreover, when (d, n)→ (∞,∞) with d−1
n converging to a fixed ratio denoted d̃−1

ñ , then, almost surely,

cos(ĝ(x), g)
a.s.−→ 1√

1 + d̃−1
ñα

where α := E
δ,y

[y(s(∆ + βδ))δ] . (9)

Equation 9 says that, if n and d are large enough, we can replace the random quantities ξ and χ2
d−1 of Eq. 8 by their

expectations, d− 1 and α respectively, and get the RHS of Eq. 3. Hence, it proves Eq. 3 in the large n and d limit. However,
one may wonder whether Eqs. 3 and 9 also hold with good approximations for finite n, d. It is not difficult to estimate the
order of magnitude of n and d needed in Eq. 9 by computing the variances of ξ and χ2

d−1 and using the central limit theorem.
However, since Eq. 3 has an additionnal expectation on the LHS which may quicken the convergence, we will prefer to
approximate E[cos(ĝ, g)] by the average over many random draws from Eq. 8 (Monte-Carlo method) and comparing it with
the results obtained by the RHS of Eq. 3. Results are shown in Fig. 8.

Proof. (Lemma 6.) Let us work in an orthonormal basis B := (e1 = g, e2, ..., ed) of Rd and possibly drop the index ‘1’ for
the first coordinate (as in x for x1). Since cos(ĝ(x), g) is invariant by orthogonal translations to g, i.e., by changes in the
coordinates (x2, x3, . . . , xd) of x, let us assume, w.l.o.g., that x = (x, 0, 0, . . . , 0). Then

cos(ĝ(x), g) =
〈ĝ(x) , g〉2
‖ĝ‖2‖g‖2

(∗)
=

∑n
i=1 φ(x+ βδ(i))〈δ(i) , g〉2
‖∑n

i=1 φ(x+ βδ(i))δ(i)‖2

=

∑n
i=1 φ(x+ βδ(i))δ(i)√(∑n

i=1 φ(x+ βδ(i))δ(i)
)2

+
∑d
j=2

(∑n
i=1 φ(x+ βδ(i))δ

(i)
j

)2
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Figure 8: Comparing analytical and numerical approximations of E[cos(ĝ, g)]. Dotted line: = (1 + d−1
nα2 )−1/2 (eq. 3).

Points: E[cos(ĝ, g)] computed by averaging repeated draws from Eq. 8. Each point represents one such average for a given
combination of (n, d, s) ∈ N×D×S∪{∞}, where N = D and S where computed using numpy’s logspace(1, 4, num = 13)
and logspace(−2, 2, num = 17) respectively. For all points, we fixed β = 1 and x− s = 0. Points for s =∞ are colored
orange.

=
ξ1√

ξ2
1 +

∑d
j=1 ξ

2
j

,

where we defined ξj := 1
n

∑n
i=1 φ(x+βδ(i))δ

(i)
j . With the change of variable y(s(∆ +βδ(i))) = φ(x+βδ(i)) and using

Eq. 7, we see that y(x) ∼ ε+ (1− ε)σ(x) and get ξj := 1
n

∑n
i=1 y(s(∆ + βδ(i)))δ(i).

Since, for any i, y(s(∆ + βδ(i))) follows a Bernoulli distribution that is independent of δ(i)
j ∼ N (0, 1) whenever j ≥ 2,

the products y(s(∆ + βδ(i)))δ
(i)
j follows again a standard normal distribution. So, for any j ≥ 2, ξj is the mean of n

independent Gaussians N (0, 1), hence ξj ∼ N (0, σ2 = 1/n). Since all (δ
(i)
j )ij are mutually independent, so are the

products (y(s(∆ +βδ(i)))δ
(i)
j )ij , and therefore also all (ξj)j . Hence χ2

d−1 := n
∑d
j=2 ξ

2
j follows a chi-squared distribution

of order d− 1, which yields Eq. 8, where ξ = ξ1.

For Eq. 9, note that, by the law of large numbers, almost surely, ξ1 → E[ξ1] = α as n → ∞, and χ2
d−1/d−1 → 1 as

d → ∞, i.e., χ2
d−1/n = d−1

n

χ2
d−1

(d−1) → d̃−1
ñ . We conclude by applying the continuous mapping theorem with the function

(x1, x2) 7→ x1/
√
x2

1 + x2 to (ξ1, χ
2
d−1/n) when n, d→∞ with d−1

n → d̃−1
ñ .

A.0.2. PROOF OF PROPOSITION 2

First, the following computations shows that we can recover the case of arbitrary β > 0 from the case β = 1.

α(∆, s, β, ε) := E[yε(s(∆ + βδ))δ] = E[yε(sβ(∆/β + δ))δ] = α(∆/β, sβ, 1, ε)

So, from now on, let us assume that β = 1. Then

E[yε(s(x+ δ))δ] =

∫ +∞

δ=−∞
δ
(
p(δ = δ, yε(s(∆ + δ)) = 1)︸ ︷︷ ︸
p(δ=δ)(ε+(1−2ε)σ(s(δ+∆)))

+ p(δ = −δ, yε(s(∆ + δ)) = −1)︸ ︷︷ ︸
p(δ=δ)(1−ε−(1−2ε)σ(s(−δ+∆)))

)
dδ

=

∫ +∞

δ=−∞
δN (δ; 0, 1)

(
(1− 2ε)σ(s(δ + ∆)) + 1− (1− 2ε)σ(s(∆− δ))

)
dδ

= (1− 2ε)

(∫ +∞

δ=−∞
δN (δ; 0, 1)σ(s(δ + ∆)) dδ︸ ︷︷ ︸

(∗∗)

+

∫ +∞

δ=−∞
δN (δ; 0, 1)σ(s(δ −∆)) dδ︸ ︷︷ ︸

(∗)

)
.
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Next we compute (∗) and (∗∗).

(∗) =

∫ ∆−1/2s

−∞
0 dδ +

∫ ∆+1/2s

∆−1/2s

δN (δ; 0, 1)(1/2 + s(δ −∆)) dδ︸ ︷︷ ︸
(a)

+

∫ +∞

∆+1/2s

δN (δ; 0, 1) dδ︸ ︷︷ ︸
(b)

(a) =
1√
2π

∫ ∆+1/2s

∆−1/2s

s(δ2 − 1)eδ
2/2 + seδ

2/2 + (1/2− s∆)δe−∆2/2 dδ

=
1√
2π

[
−sδe−δ2/2 + s

√
2πΦ(δ)− (1/2− s∆)e−δ

2/2
]∆+1/2s

∆−1/2s

(b) =
1√
2π
e−

1
2 ( 1

2s+∆)2

,

where Φ designates the cumulative distribution function of the standard normal. Noticing that (∗∗) is (∗) with ∆ replaced
by −∆ (in (a) and (b)) and adding everything up, we get

E[yε(s(∆ + δ))δ] = (1− 2ε)2s (Φ(1/2s + ∆) + Φ(1/2s−∆)− 1)

= (1− 2ε)2s (Φ(1/2s + ∆) + Φ(∆− 1/2s))

= (1− 2ε)s

(
erf

(
∆ + 1/2s√

2

)
− erf

(
∆− 1/2s√

2

))
. (10)

As for the (deterministic) case s =∞, we can either redo the previous calculations with σ being the step function 1(x) = 1
if x ≥ 0 and 0 otherwise; or we can let s→∞ in Eq. 10 and use a Taylor development the error-function erf centered on
∆/
√

2, which gives

E[yε(s(∆ + δ))δ] = (1− 2ε)s

(
erf ′

(
∆√

2

)
1

s
√

2
+ erf ′′′

(
∆√

2

)
2

3!(2s
√

2)3
+O(

1

s5
)

)
with erf ′(x) = 2√

π
e−x

2

and erf ′′′(x) = 4√
π

(2x2 − 1)e−x
2

. Hence

E[yε(s(∆ + δ))δ] = (1− 2ε)

√
2

π
e−∆2/2

(
1 + (∆2 − 1)

1

24s2
+O

(
1

s4

))
→ (1− 2ε)

√
2

π
e−

∆2/2.
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B. Additionnal Plots and Tables
B.1. Extension of Table 1

In Tables 2 and 3 we extend Table 1 on the performance of decision-based attacks in presence of small noise. The extended
tables also show the performance of the boundary attack (Brendel et al., 2018) (BA) and of the boundary attack with three
repeated queries and majority voting (BA-repeat3). We have now broken the results into two tables: Table 2 shows the
performance of the various attacks in terms of border-distance (see definition Section 4); where Table 3 reports the total
number of model calls needed. Overall, both tables confirm Table 1: small noise suffices to break traditional decision-based
attacks, even with repeated queries. The performance of PSJ stays identical, with only a few more queries in the noisy
setting (and far less queries than the repeated queries based attacks).

Table 2: Extension of Table 1, showing the median border-distance achieved by various decision-based attacks at various
noise levels. PSJ, HSJ, BA stand for PopSkipJump (our attack), HopSkipJump and boundary attack (Brendel et al., 2018)
respectively. HSJ-repeat3 and BA-repeat3 are HSJ and BA where we repeat every query 3 times and apply majority voting.
First number reports the median border-distance, as defined in Section 4. The two numbers in bracket are the 40th and 60th

percentiles. All numbers were computed on the MNIST test subset of 500 images using the CNN described in Section 4. A
noise level ν = 5% means that the CNN outputs its argmax label with probability .95, and some other random label with
probability .05. Conclusion: all attacks perform similarly in the deterministic case (ν = 0), but small noise ν suffices to
break HSJ and BA (with or without repeated queries), but not PSJ.

FLIP PSJ HSJ HSJ-repeat3 BA BA-repeat3
ν = 0% 0.60[0.45-0.72] 0.61[0.51-0.72] 0.59[0.48-0.72] 0.46[0.38-0.55] 0.49[0.36-0.56]
ν = 5% 0.63[0.53-0.76] 2.16[1.76-2.93] 0.75[0.58-1.01] 15.58[13.66-16.94] 15.60[12.94-16.73]
ν = 10% 0.65[0.55-0.80] 3.67[3.15-4.26] 1.32[0.98-1.61] 15.84[14.35-16.85] 15.90[14.24-16.96]

Table 3: Same as Table 2 but showing the median model calls. In the deterministic setting, PSJ only needs a few more calls
than HSJ, and much less calls than BA. In the noisy setting, the number of calls increase only slightly for PSJ, while its
performance (Table 2) is often much better than the repeated-query attacks, which need much more calls.

FLIP PSJ HSJ HSJ-repeat3 BA BA-repeat3
ν = 0% 14270 12844 38532 27560 82665
ν = 5% 17856 13333 42009 27561 82716
ν = 10% 17931 13108 40813 27551 82677
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B.2. From PSJ to HSJ for various attacks noise levels
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Figure 9: Evolution of PopSkipJump’s performance (median border-distance) with the amount of algorithm iterations
(columns a & c) and model queries (columns b & d). Each row uses a different noise model (i.e., randomization scheme)
applied to a same deterministic base classifier (CNN for MNIST, Densenet for CIFAR10). Each curve uses a different noise
level. Columns a & c illustrate property 2.: the per iteration performance of PSJ is largely independent of the noise level and
noise model, and is on par with HSJ’s performance on the deterministic base classifier. Columns b & d illustrate property 1.:
when the noise level decreases and the classifier becomes increasingly deterministic, the per query performance of PSJ
converges to that of HSJ, in the sense that the PSJ curves become more and more similar to the limiting HSJ curve.
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B.3. Output probabilities along bin-search lines are sigmoids

In this section we briefly corroborate our assumption from equation 2 that the probabilities of neural networks along the
binary search lines [xt,x∗] have a sigmoidal shape. We do so by plotting these probabilities in Figs. 10 and 11 on two
randomly chosen images – one from MNIST and one from CIFAR10 – at various iterations of the attack. Note that we got
similar plots for almost all images that we tested.
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Figure 10: Output probabilities of the CNN along binary search direction [x̃t,x∗] for different iterations t of an attack
on some fixed MNIST image x∗. These plots match our assumption that the model’s probabilities along binary search
directions are given by a sigmoid, as in Eq. 2. This assumption was satisfied for almost all images x∗ that we checked.
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Figure 11: Same as Fig. 10, but for the Densenet used on a CIFAR-10 image x∗. There again, the output probabilities
sigmoidal, but closer to a step-function than in Fig. 10.
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C. How sensitive is HSJ to the number of gradient queries nt per iteration?
In Section 3.4 we showed how to use the estimated output distribution from the binary search step to compute the number of
gradient queries required to get the same estimation quality in the noisy case than in the deterministic one. This makes PSJ’s
per-iteration performance independent of the noise level and would in particular allow us to optimize the number of gradient
queries in the deterministic setting only, and then automatically infer the optimal number of queries for all noisy settings
without any additional optimization. One natural question then, however, is how sensitive HSJ is to the number of gradient
queries nt per round t. To get a rough idea, we plot the performance of HSJ in the deterministic setting when multiplying
the original, default number of gradient queries nt = 100

√
t by a factor r = 1, 2, ..., 5. The results are shown in Fig. 12.

Not surprisingly, the performance per iteration of HSJ (Fig. a) increases with r, since more queries means a better gradient
estimate. However, the performance as a function of the overall number of queries (Fig. b) seems independent of r. This
suggests that the overall performance of HSJ – and therefore also of PSJ – is not very sensitive to the actual number of
gradient queries per iteration, which in turn suggests that the considerations in Section 3.4 and formulae Eqs. 3 and 4 are not
essential to the query efficiency and success of PSJ.
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Figure 12: Performance of HSJ on a deterministic classifier when multiplying the default number of gradient queries nt at
every iteration t by a constant factor r. Not surprisingly, the performance per iteration (Fig. a) increases with the query
factor r, since more queries means a better gradient estimate. However, the performance as function of the overall number
of queries (Fig. b) seems independent of r, which suggests that the considerations in Section 3.4 and formulae Eqs. 3 and 4,
however beautiful in theory, are not essential to the query efficiency and success of PSJ.
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D. Time, query and computational complexity of PopSkipJump
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Figure 13: Number of queries versus time spent in different parts of the PSJ algorithm. Gradient estimation needs many
(≥ 100×) more queries than noisy bin-search but less time, because its queries are independent, hence batchable and
parallelizable, whereas noisy bin-search is sequential and has an expensive information maximization step after each query.
Here, gradient estimation queries are computed in batches of 256 queries (on a single GPU). For every noise model, we used
the highest noise levels that we considered in this paper (temperature T , dropout rate α, standard deviation σ and cropped
size s).

Overview. PopSkipJump has two resource-intensive parts: noisy binary search and the gradient estimation step (points (a)
and (b) in Section 3.1 respectively). Gradient estimation typically needs many more queries than binary search (≥ 100×
more). Every query has same time and computational complexity, which increases with the network architecture. But
the queries for gradient estimation are all independent and can therefore be batched and parallelized. The overall time
for gradient estimation can in principle be driven down arbitrarily with enough cores or GPUs. Noisy bin-search on the
other side is sequential by essence and has an expensive mutual information maximization step after every query. In
our experiments, this leads to comparable time complexities, as shown in Fig. 13. We will now first discuss in more
details the query complexities of bin-search and gradient estimation, then the computational complexity of the information
maximization step, and finish with two tricks to accelerate the noisy bin-search steps.

D.1. Query complexities.

Both for the noisy bin-search and for the gradient estimation, the number of queries depends mainly on the true parameters ε
and s of the underlying sigmoid (i.e., roughly speaking, on the noisiness of the classifier): increasing the noise ε and/or
decreasing the shape s (i.e., flattening the sigmoid) tends to increase the expected amount of queries. For gradient estimation,
the exact number of queries is computed as described by Algorithm 1 and its formula for nt (see also Section 3.4). There,
for the computation of Cdett (the expected cosine at step t for a deterministic classifier), we used ndett = 100

√
t (as in the

original HSJ algorithm), and θdett = 0.010 and β = 0.280 for MNIST, and θdett = 0.003 and β = 0.185 for CIFAR10. (As
explained in the caption of Fig. 2, since we use a larger β than in the original HSJ algorithm, we also use a larger “bin-size”
θdett .) As for noisy bin-search, the number of queries is driven by the number of queries needed to determine the posterior
distribution of the sigmoid parameters with sufficient precision to meet the stopping criterium from Section 3.4. More noise
ε and flatter sigmoid shapes (i.e., smaller values of s) both decrease the expected amount of information on the sigmoid’s
center z carried by every query, which increases the expected total number of queries needed.
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D.2. Computational complexity.

As discussed above, the computational complexity of every query – be it for bin-search or for gradient estimation – is mainly
driven by the network architecture and its size. The complexity of the mutual information maximization, however, depends
on the discretizations used to model the prior/posterior probabilities of the sigmoid parameters z, ε and s. More precisely,
we represent our priors/posteriors over z, ε and s by constraining them to intervals Iz , Iε, Is that are discretized into nz , nε
and ns bins/points respectively. At every bin-search step, and for nx values of x ∈ Iz , we compute the mutual information
I(φ(x) ‖ s, z, ε) given by:

I(φ(x) ‖ s, z, ε) =
∑

z∈Iz,ε∈Iε,s∈Is
p(φ(x), s, z, ε) log

p(φ(x), s, z, ε)

p(φ(x))p(s, z, ε)

where p(φ(x), s, z, ε) = p(φ(x) | s, z, ε)p(s, z, ε) = pc(x)p(s, z, ε) (see Eq. 2), p(φ(x)) is given by marginalizing out
s, z, ε in p(φ(x), s, z, ε) and where p(s, z, ε) is the current prior/posterior. Hence, I(φ(x) ‖ s, z, ε) is a sum of nznεns terms
with same complexity each, so it costs O(nznεns). Since we repeat this computation for every location x ∈ Iz , the overall
computation of the mutual information acquisition function has complexity

complexity of mutual info maximization = O(nxnznεns). (11)

In practice, we chose Iε = {0.9, 1} (i.e., nε = 2), and log10(Is) = [1, 3] with ns = 31, and

• for MNIST, Iz = Ix = [0, 1] with nz = nx = 101;
• for CIFAR10, Iz = Ix = [0, 1] with nz = nx = 301.

The values of nz were chosen so that the step-size θ̃ would roughly respect the ratio β/θ̃ = δt/θt =
√
d suggested by Chen

et al. (2019) . They could probably be optimized further.

D.3. Accelerating noisy binary search

In this section we study the following two tricks to accelerate the noisy bin-search steps.

(1) sampling multiple points after each information maximization step: since one of the bottle-necks of noisy bin-search is
that queries cannot be batched, we considered altering the algorithm by querying the classifier multiple times after every
mutual information maximization step. These multiple queries could occur either at the same point x – the maximizer
of the mutual information –, or uniformly over all points that are within a range of, say, 90% of the maximum. Thereby,
one may lose some query efficiency (more queries needed for a same average information gain), but spare a lot of time
via query batching. Since when writing this paper, we were primarily thinking of applications were query efficiency
mattered most, we did not include this acceleration trick in our experiments. However, in many other applications,
using a bit more queries to save wall-clock time of computation can be the better option.

(2) reducing the range of priors: we noticed that the parameters of the sigmoid found by the noisy bin-search procedure
become increasingly similar from one PSJ iteration to other. So, instead of re-initializing the priors uniformly over the
same intervals Iz and log10(Is) at the beginning of every bin-search procedure, we used intervals Ĩz and log10(Ĩs) that
were centered on the output ẑ and log10 ŝ of the previous iteration and whose length we decreased at every iteration.
We chose this length to be a fraction 1/k of the length of the original intervals Iz and log10(Is), with k = 1 . . . 10 for
iterations 1 to 10, and k = 10 for iterations ≥ 10.

We tested these acceleration tricks on 20 images with results shown in Figs. 14 to 17. Figure 14 confirms that both tricks
accelerate the bin-search steps and can be combined for further acceleration. Figure 15 confirms that trick (1), despite
decreasing wall-clock time, increases the amount of bin-search queries, and that trick (2) decreases it (with tighter priors we
need less queries to determine the parameters up to a given precision). Figures 16 and 17 show that, despite accelerating the
attack (column c and Fig. 14), the tricks do not significantly affect PSJ’s output quality (column a) and number of median
model queries (column c).
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Figure 14: Median time (over 20 images) spent for bin-search and gradient estimation with and without acceleration tricks.
As expected, the acceleration tricks (1) and (2) do help accelerating the binary search step. Note that the acceleration tricks
should not affect the gradient estimation step. For the multiple sampling trick (1), we made 5 queries per information
maximization step.
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Figure 15: Median amount (over 20 images) of total bin-search queries with and without acceleration tricks. Acceleration
trick (1) (multiple queries after each information maximization) increases the number of queries, since the expected amount
of information conveyed by each query is reduced. Acceleration trick (2) (tightening the priors on the sigmoid’s parameters)
reduce the amount of bin-search queries. Note however that the number of noisy bin-search queries is 2 orders of magnitudes
smaller than the number of queries for gradient estimations. So the variations observed here have almost affect the overall
amount of queries per attack. For the multiple sampling trick (1), we made 5 queries per information maximization step.
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Figure 16: MNIST: Effects of acceleration tricks. Column (a) shows that acceleration has no significant effect on the
algorithm’s output (i.e., on the median border distance after every iteration). Column (b) shows that, as expected, the
algorithm runs faster (in wall-clock time), with a similar output performance. Column (c) shows that the median number of
model calls is not significantly affected by the acceleration.



PopSkipJump: Decision-Based Attack for Probabilistic Classifiers

0 10 20 30

10−2

10−1

m
ed

ia
n

b
or

d
er

d
is

t. no-acc

acc1

acc2

acc1+2

0 1 2 3 4

10−2

10−1

×105

0 100 200 300 400 500

10−2

10−1

lo
gi

t
sa

m
p

li
n

g

0 10 20 30

10−2

10−1

m
ed

ia
n

b
or

d
er

d
is

t. no-acc

acc1

acc2

acc1+2

0 1 2 3

10−2

10−1

×105

0 200 400

10−2

10−1

d
ro

p
ou

t

0 10 20 30

10−2

10−1

m
ed

ia
n

b
or

d
er

d
is

t. no-acc

acc1

acc2

acc1+2

0 1 2 3

10−2

10−1

×104

0 50 100 150

10−2

10−1

sm
o
ot

h
in

g

0 10 20 30

iterations

10−1

m
ed

ia
n

b
or

d
er

d
is

t. no-acc

acc1

acc2

acc1+2

0 2 4 6

median model calls

10−1

×105

0 200 400 600 800

median time (in seconds)

10−1

cr
op

p
in

g

Figure 17: CIFAR10: Same comments as for Fig. 16.


