Structured World Belief

A. Additional Results
A.1. Ablation of SWB

We ablate two design choices of SWB. First, we investigate whether it is necessary for an object file to look at other files
when computing the match probability between the file and a slot. In Table 3 (in appendix), we note that this interaction
summary is necessary. In its absence, the number of MOT-A errors increase pointing to poor performance in matching
files to slots correctly. In the second ablation, the slots matched to the files were directly used to update the state of a file
without using an encoding of the glimpse region. We find the performance to be similar to the model that uses the glimpse.
However, when training the world model in the 3D environment, we found the glimpse encoding to lead to notably more
stable convergence of the model.

Tracking MOT-A Generation
Model Position LL ~ Segment LL FP Miss Switch Migrate Ascend Position LL Segment LL
SWB -53.28 16553 324 027 0.07 0.00 0.01 -184.1 15797
SWB No-Match-Interact -83.92 13481 6.01 173 0.81 0.78 0.83 -194.0 7662
SWB No-Glimpse -54.26 16416 1.30 1.06 0.26 0.20 0.35 -192.3 15716

Table 3. Ablation of File-Slot Matching and Inference in SWB in 2D Branching Sprites. All models were trained with K = 10. In SWB
No-Match-Interaction, we omit the file-interaction step that is performed as the first step of file-slot matching. In SWB No-Glimpse, the
slots that were matched to the files were directly used to update the file without using a glimpse encoding.

A.2. Qualitative Results

Generation

Initially Belief Tracking when Object(s) Invisible
o

e Sample 1 ..---.
e Sample 2 ..--..
e Sample ’ ...--.

Figure 10. Belief Tracking and Generation Samples in 2D Branching Sprites. The aim of these qualitative results is to show generated
object appearances along with object trajectories. In the top row, we show the observations. In the left block we show the object files
assigned to each object. Then during belief tracking, some objects can become invisible leading to multi-modal belief. Lastly, taking the
multi-modal belief, we perform generation. On the right, we see the generated object positions. We also show generated samples of object
appearances. In all three samples, we see that the object appearances match what the true object appearances as shown in the top row.

Structured World Belief

Figure 11. Comparison of Belief Tracking in SWB and GSWM. The top row shows the observations, the middle row shows position
particles maintained by SWB with K = 10 and the bottom row shows the object positions maintained by GSWM. Since GSWM deletes
object files for invisible objects due to lack of object permanence, we see that when objects become invisible, there is no belief in GSWM.

True

SWB

Samples

Figure 12. Comparison of Generation in SWB and GSWM. On the left, we show the conditioning observations and the scene
representation maintained by the models. These are followed by generations paths obtained by sampling 10 samples of future trajectories.
Because GSWM deletes object files for invisible objects, we made sure that the objects were visible in the conditioning period for fair
comparison in this figure. We note that the generated samples from GSWM are more inaccurate.

Structured World Belief

Position Segment
Observations Particles Particles

-y
|
3
el

-y
’.
Y

P4

1

SEE

o

>

2=

>
>

® o
s
>

=1,

=

:

Figure 13. Belief Tracking 3D Food Chase Game. Each row corresponds to one time-step and we show time-steps at increments of 4.
The left-most column shows the observations shown to the model. The second column shows the position particles maintained by the
model. The remaining columns show the rendering of the object segments for each of the 8 object files. In these, we make the cell-border
red when the belief infers the object file to be visible in that time-step. For each object file, we super-impose the segments for all particles
by averaging over /. We note that the model can maintain belief states over the invisible objects. The dashed green cells highlight when
the objects are invisible and the model is maintaining a belief of diverse and plausible states for those object files. Also note that when the
objects become visible again, the correct object files can re-attach to track them.

Structured World Belief

Observations

Particles

Figure 14. Demonstration of interaction between objects in SWB. In the observation, we see that one object becomes invisible while
the other remains visible. The grey arrows show the direction of motion of the true objects. We see that invisible object file (shown as
green colored particles) can simulate the collision with the visible object file (shown as red colored particles) and maintain correct belief

about the invisible object.

Conditioning Observations

RELh

Generation Samples

A A A AR R A AL

/

:

me

‘-

gy A
AL ik
RARAAAR LR
8 8 AL VAL A e
RARARRRAARS

Figure 15. Qualitative Results of Generation in SWB in 3D Food Chase Game. On the left we show the conditioning observations.
On the right, each row is one sample. Each column corresponds to time-steps at intervals of 2. We note that the generations are plausible

and diverse.

=

IHﬂ Iﬁ Iﬁ = IH Iﬁ
IEH--I

5}

-

ll-H
m
lM

I|H IH IFH E IFH Irﬂ

+3

+18

Figure 16. Belief Tracking in 2D Maze. In the top row, we show the observations. Middle row visualizes 8§ most recent position states of
each active object file. The color of the file denotes ID. The bottom row shows the reconstruction obtained from particle with index k£ = 1
at each time-step. We note in +3 that the green object is tracked by the blue object file. The green object becomes invisible in +6 and from
+6 to +15, the blue object file is able to track and maintain plausible particles for it (shown in bottom row).

Structured World Belief

A.3. Additional Quantitative Results

Model Position L. Segment LL
SWBK =10N =8 -39.18 23306
SWBK =20N =8 -23.31 23353
SWBK =30N =38 —-15.74 23365
GSWM -993.3 22457

Table 4. Generalization to more number of objects and object files in SWB belief tracking. We evaluate SWB trained on 2D
Branching Sprites (No-Spawn-2) with 4 object files and test on 2D Branching Sprites (Spawn-4) using 8 object files. We report the
average log-likelihood of ground truth position and ground truth object segments evaluated using kernel density estimation on SWB
particles. We note the benefits of using higher number of particles in obtaining improved density modeling. Furthermore, we show that we
outperform our baseline GSWM primarily because it does not have object permanence and does not maintain files for invisible objects.

B. Derivations

In this section, we provide the derivation of the ELBO training objective and the derivation of the belief update step.

B.1. Derivation of the ELBO

Our objective is to maximize the following marginal log-likelihood over the observations x1.7, i.e. log pp(x1.7) under our
latent variable model py(x1.7, s1.7). Here, integrating over the high-dimensional latent s1.7 is intractable. Hence, we resort
to AESMC and approximate this via an ELBO lower bound. To do this, we first re-write the objective log pg(x1.7) as:

K
1
log pg(x1.7) = log E ?pg(xLﬂSIS =null). (D
k=1

To evaluate this objective, we consider the following general expression and then proceed to approximate it.

K

log > " wf_ypo(xerlst_y). @
k=1

Here, wF_, are the normalized weights of the particles based on the observations seen thus far (bar denotes normalization),
sk | are the particle states for the previous time-step and x;.7- denotes all the observations starting from the current time-step
t up to the end of the training horizon 7. To evaluate this objective, we first perform re-sampling of the particles s;*% using
the normalized weights w; . This is done because some particles may have vanishingly small particle weights that explain
poorly the observations received so far. Hence, by performing resampling, we eliminate those particles from our particle

pool.

In resampling, we sample a set of ancestor indices a¥ | ~ qr (/@ %) from a categorical distribution. In our work, we use
soft-resampling as the sampling distribution gr for these ancestor indices and we can write (2) as follows.

K

k k
log E W, po(xerlsi). 3)
o o (1) ,; ' !
where
ar (Kl) = adfy + (1 - a) 5=, “)
af | ~qr(|lorE) VE=1,2,... K, (5)
=k

~ Wy_

WYy =L 6)

awf_; +(1-a)z

Structured World Belief

where « is a trade-off hyper-parameter. It can be verified that (3) is an unbiased estimator of (2). Next, we apply Jensen’s
inequality on (3) to get the following.
K

k k
log B Y @y pe(xerls;y') v
af_y~ar(lo}H) 1 5
K ok ak
z E log > 1y "3 po(Xe.rls;) o
af_~@w(Clos) T
K b k
= E logzwzﬁl/Pe(Xt\sf)]oe(sf\s(;ff)109(1’<t+1:T|Sf)dsic ®
ay_ ~qr(-lwgh) k=1
X) klodt—1
= E logZﬁ;fi‘ll E pG(Xt|Sf)M?’{1)p9(Xt+LT‘Sf) (10)
dh) A o (o s) G0.6(SF[s, 7" x¢)
K . klo%t—1
= LK E logZ@?illpo(xASf)M?il)Pe(xt+1:T‘Sf) an
Al b = qe,¢(Sflst’_’117xt),
wy
K
= E E log > wfpe(xei17sf) 2
atleQR("wt—l)Sf‘qu’d)(sl\s:f_'_ll,Xt) k=1
K\ XK wk
= E E o log| X wl | D> pe(xepirlst) (1
ag_ 1 ~ar (W) skrao g (s1ls, 7" x0) =t = Zj:l "

K
= k
= LBk E log <Zwt> (14)
/ P sk g g (s1ls, t7t xe)
K
+ E E . log
k

_ivar (|

U’f k
-pG(XtJrl:T‘St) (15)

K
1 Z_j:l W§

a
Sque,(ﬁ(sl\Still Xt)

K
— E E log (Z wf> (16)
k=1

@t~ (10:25) shrgos(s1lsy i1t xe)
K
+ E E logzwfpg(xtﬂ:ﬂsf). (17)

k o1 K k
a -|w a
F_1~ar (- til)SfNQf),q&(SﬂSti_ll,xt) k=1

Therefore, we have

i K
log Y wf_1pe(xerlsi 1) > E £, 8 <kz—:1 wf)

k =1 K
— ay_ ~qr(-|w;Hy) al_
k=1 -t = sh gy o (s1]s, 17t xe)

Term 1
18
. (18)
—k k
+ E _ E 10g§ Wy po(Xey1:78¢)
af,1~€(k('|@},;}§) k af | k=1
S{~Ge, ¢ (s1ls, 277 %) | 1

Term II.

Here, the term II can be expanded recursively by re-applying the inequality (18). Applying this inequality recursively on our
original objective log p(x1.7), we get the following ELBO.

T

K
logp(x1:7) > _E log <wa>) (19)
k=1

t=1 @1:t—1°51:¢

Structured World Belief

B.2. Decomposing the Weight Term w”
In the above derivation, we had
et palstlseh)
wf =y po() oL] (20)
a0,6(s¢ s, 7" x4)
Based on the generative model of SWB, we have

Pe (St,n|st71) = po(zt,n|zt—1,hs—1) P(an)y

Dynamics Prior 1D Prior

— vis obj .k

= Do (Zt7n|Zt71, h;_1)pe (Zt7n|Zt71, h; 1) P(Zt,n) .
L JL JL]
Visibility Prior Object Prior ID Prior

Additionally, for the sampled file-slot matching index m; ,,, we take a uniform categorical distribution as the prior p(mtm).
This stems from the idea that there is no inductive bias to prefer matching one slot over another. Similarly, based on the file
inference model of SWB, we have

90.6(StnlSt—1,Xe) = 00,0(Zoon 201, o1, %2) Go (iF 25, 851) 4(25 1201, 01, %) @ (mf |20 1, By 1, %)
L Il Il Il 1

Object Inference ID Inference Visibility Inference Slot Matching

Substituting these into (20), we get

b ek, i TI2 po (25 |2e—1, hy—1)po (20") |2e—1, 1)p (il)p ()
wy = ;" po(xe[sy) N

bj . . P)
ne1 40,6200z, 01, %) (iF ,|2Y5,, 5y) g (285, |21, by 1, Xe)ge (M), |2e— 1, hy 1, %)

21

vis

o (@S| 2e—1, hy—1)po (25 2| Ze—1, b1)p(if) p(1e)

. . b)
n=1 qe,<¢>(ztn|zt L1, X0)qe (i 215 15y)4 (285 |21, e, X0)qp (MY |21, 1, %)

::12

= wt 1'Po Xt|st

(22)
N bj .
o at X po(z}S |2¢ 1,y 1) pe(z(t)fﬂzt 1,hiq) P(ifn) p(min)
=W, "7 po(xelst) H v h = h .
el %(‘Zt 1 hy1, %) Qe ¢(Ztn|Zt 1hi1,%xy) %(tn‘ztm% ln) qfﬁ(mtnlzt*l? t71,Xt)l
k ,file k D wk match
t,n t,n t,n
(23)
O

C. Evaluation Details
C.1. Tracking and Generation Metrics

We measure the accuracy of our belief with respect to the ground truth object positions y}"; and segments y; 5, where j is an
object. Here, y}°; € IR refers to the object coordinates and y;% € RE*W > refers to a full-sized empty image with single
object rendered on it. Note that true values of these are avallable even when the object is invisible. We use the particles from
the models to perform kernel density estimation of the distribution over the ground truth quantities y; and we evaluate and
report the log-likelihood as follows.

log p(y) IOngk Hp (¥e,4[8tn,

Structured World Belief

where n; is the object file matched with a ground truth object j at every time-step using the MOT evaluation approach in
(Milan et al., 2016). If the object file s,’f’nj is not available due to deletion, we assign a random coordinate on the image
as the object position and a black image as the object segment. We call these metrics position log-likelihood and segment
log-likelihood. We also compute MOT-A components (such as False Positives or Switches) by counting them individually
per particle k and taking weighted average using the particle weights w¥.

C.2. Environments

2D Branching Sprites. This is a 2D environment with moving sprites. To create a long-occlusion setting, the sprites can
disappear for up to 40 time-steps before reappearing. To produce multi-modal position belief during the invisible period, the
object paths split recursively with objects randomly taking one branch at every split (see Fig. 17). To produce belief states
with appearance change during the invisible period, each sprite is associated with a pair of colors and the color switches
periodically every 5 time-steps. We evaluate three versions of this environment: i) Spawn-2: To evaluate the model in
handling new object discovery, we allow upto 2 sprites to spawn during the episode in this version. ii) Spawn-4: To evaluate
the model in handling new object discovery, we allow upto 4 sprites to spawn during the episode in this version. We show
the mean object counts during the episode in Fig. 19. iii) No-Spawn-2: To evaluate the accuracy of belief disentangled from
the ability to handle new objects, in this version, the number of sprites remain fixed to two during the episode. We show the
mean number of objects visible at each time-step in Fig. 18.

- - as

~ ~
L - -< === ay fr=—==<_ == as

- - ~
F--<C - ay fm==_ ”_-- ag..
S S ——¢ - == = +3
- ~ - ~

L - -< - asz f= == == a;
et e —-@-- -5
Sso oo S ag
(a) 2D Branching Sprites Paths (b) 2D Branching Sprites Game (c) 2D Branching Sprites Game Rewards

Figure 17. 2D Branching Sprites Environment Scheme. In (a), we show the paths which the sprites can take. Note the branching
pattern which enables multi-modal position belief to emerge when the objects are invisible. In (b), we turn the environment into a game.
The edges highlighted in red can be selected as 8 + 1 actions (1 for not selecting any edge). If an object is on that edge and is also invisible,
the agent receives a reward based on the color of the sprite as shown in (c).

Mean Count

— Branching Sprites (No-Spawn) |

-1 ! ! ! !
0 10 20 30 40 50 60 70 80 90

Tracking Time-Step ¢

Figure 18. Mean number of objects visible for each time-step in the episode for 2D Branching Sprites (No-Spawn-2). This periodic
variation takes place because the duration of invisibility is randomly sampled from Uniform(15, 20) and duration of visibility is sampled
from Uniform(15, 30). The total number of objects present in the scene is 2.

Mean Object Count

|— Branching Sprites (Spawn-4) |

0 10 20 30 40 50 60 70 80 90

Figure 19. Mean number of objects present in the scene (visible or invisible) in the 2D Branching Sprites (Spawn-4) in which up to 4
objects spawn during the episode.

Structured World Belief

2D Branching Sprites Game. To test the benefit of our belief for agent learning, we interpret the 2D Branching Sprites
environment as a game in which the agent takes an action by selecting a branch on which an invisible object is moving.
This requires agent to know which branches are likely to have an object. We make the reward and penalty depend on object
color. Hence, the agent also needs to accurately know the object color. The length of invisibility is sampled from range
Uniform(25, 40) and the length of visibility is sampled from range Uniform(15, 30).

2D Maze Game. We consider a 2D maze environment (see Fig. 20) with the blue square as the agent, a red colored
goal region and two randomly moving enemy objects. The maze is randomly generated in each episode with the objects
navigating through the corridors. The enemies can disappear to create partial observability. The agent receives positive +1
reward for reaching the goal, —1 reward for hitting an enemy and a small positive reward of 0.025 for each step it moves to
encourage exploration. The data set was created using (MattChanTK, 2020).

upP
Goal
Agent Enemy 1
I | — LEFT RIGHT
Enemy 2 r
DOWN
(a) 2D Maze Environment (b) 2D Maze Game : Agent Actions

Figure 20. 2D Maze Game Scheme. We illustrate the 2D Maze environment. The game comprises of an agent and a goal state which
needs to be reached. There are two enemies which need to be avoided.

3D Food Chase Game. We use this environment to test our model and our agent in a visually rich 3D game. The environment
is a 3D room with the agent as a red cube, food as a blue cylinder and two enemy objects. To enable multi-modal object
trajectories, the food and the enemies move along lanes and can randomly change lanes at the intersections. For long
invisibility, all objects can disappear for a randomly sampled duration of up to 40 time-steps. The agent receives negative
reward for hitting an enemy and positive reward for eating the food. We provide higher reward for eating the food when either
the agent or the food is invisible when the food is eaten. The length of invisibility is sampled from range Uniform(10, 25)
and the length of visibility is sampled from range Uniform(20, 30). The data set was implemented on MuJoCo physics
environment (Todorov et al., 2012).

C.3. Additional Results on the Analysis of AESMC
C.3.1. 2D BILLIARDS DATASET

We further analyse AESMC for varying number of objects in the scene and multi-modality. For this we build on the 2D
Billiards task as used in GSWM. For partial observability we use object flicker and for multi-modality/randomness we have
two invisible vertical reflectors at 0.33 and 0.66 of the width of the canvas. On colliding with these reflectors, the object
randomly either continues to have the same velocity or reverses its velocity in the opposite direction (reflection).

C.3.2. EXPERIMENT DETAILS

We run both AESMC and SWB with K = 10 particles and evaluate the positional log-likelihood as described in Section
7.1. In Figures 22, 23, 24, 25 we show qualitative results of AESMC with different objects N = {1, 2, 3} in the presence
of randomness (reflectors). We note that for smaller number of objects (N = 1), AESMC is able to generate coherent
sequences but as we increase the number of objects (with randomness present), learning of object dynamics becomes difficult
and thus generating implausible frames. We note that the capacity of the image encoder and decoder in SWB and AESMC
was matched and was not the bottleneck. We hypothesize that the lack of structure in case of AESMC is the reason for its
incorrect dynamics. With added randomness, the complexity in modelling the dynamics increases.

Structured World Belief

(a) 3D Food Chase Environment (b) Agent Actions

Figure 21. 3D Food Chase Game Scheme. The game comprises of an agent, a food and two enemies. The food and the enemies move
along the vertical lanes but they can randomly change to an adjacent lane at the horizontal crossings. The aim of the agent is to chase
and eat the food. Once the food is eaten the food re-spawns at a random location. The actions of the agent comprise of choosing an
acceleration in one of the § cardinal directions or choosing to not accelerate at all. There is negative reward of -2 for hitting the enemies.
There is positive reward of +10 for eating the food. The reward is higher when one of the agent or the food are invisible (+20) and still
higher when both of them are invisible (+30) when the food is eaten.

Figure 22. AESMC Generation in 2D Billiards We show the generation of AESMC with N = 1 in presence of randomness (reflectors).
The top row shows the ground truth and the bottom row shows the AESMC generation. Here we find that AESMC is able to learn the
dynamics well and is able to perform long term rollouts.

Figure 23. AESMC Generation in 2D Billiards We show the generation of AESMC with N = 2 objects and in presence of randomness.
The top row shows the ground truth and the bottom row shows the AESMC generation. Time steps shown in blue are the conditioned
images and the time steps shown in black are generation. We observe that as compared to N = 1 case, the dynamics are less coherent. For
example the motion of objects in between timesteps +6 and +9 is deterministic but there is deviation in the objects’ location compared to
the ground truth after time step +9.

D. SPACE-based Implementation of Structured World Belief

We implement our model by adopting the object-centric representation of SPACE and dynamics modeling of GSWM as our
framework. Hence, we decompose the object states in our object files as:

k,obj k, depth _k, scale _k, position _k, velocity _k, what _k, dynamics
Zt,n _(Zt,n » “t.n »“4tn » “t,n 7Zt,n »“tn)

(24)

Depth is used to resolve occlusions during rendering. Scale is the size of the bounding box that encloses the object. Position
is the center position of the bounding box. Velocity is the difference between the last object position and the current object
position, representing the velocity. What is a distributed vector representation that is used to decode the object glimpse
that is rendered inside the bounding box. Dynamics is a distributed vector representation which encodes noise that enables

Structured World Belief

1 2 3 4 5 6 7 8

Figure 24. AESMC Generation in 2D Billiards We show the generation of AESMC with N = 3 objects in presence of randomness.
The top row shows the ground truth and the bottom row shows the AESMC generation. Here, we show an example in which the dynamics
of red ball is not accurate. After ¢ = 3, the ball changes it’s trajectory abruptly and moves upwards.

1 2 3 4 5 6 7 8 9 10

Figure 25. AESMC Generation in 2D Billiards We show the generation of AESMC with N = 3 objects in presence of randomness.
The top row shows the ground truth and the bottom row shows the AESMC generation. Here, we show an example in which the model
generates incoherent objects at ¢ = 8. Additionally, the dynamics of the blue and red balls is incorrect. The red ball stops after colliding

with the blue ball.
T\ /TUNL Y\l TN\ r‘.V‘I /T .“V B\ /T T\
° ie : r -
/ a . / j
l/ \l/ \|/ TV \|/TRPV\ I/ P\ | / \l/ \l/ \l/ \l/ \l/ \I/ \l/ \
AR LR [8 WA AA LA AR AN A0 (20 LA VA
® LY L] L L]
| | L - |
3 6 9 +12 +15 +18 +21 +45 +48 +51 +54 +57
Figure 26. AESMC Generation in 3D Task The top row shows the ground truth and the bottom row shows the AESMC generation. We

observe that for example at ¢ = 51, the model is confused about the position of the pink pyramid. Also, there is an abrupt of position of
the blue cylinder from extreme right at ¢ = 51 to extreme left at ¢ = 54, which is incorrect.

multi-modal randomness in object trajectory during generation.

D.1. Generation

Here, we describe the process of doing future generation starting from a given file state sf 1. For brevity of the description
of the generative process, we will drop the superscript k.

Background Generation. We treat the background to be a special object file which is always visible. Furthermore, its
position is the center of the image and its scale stretches over the entire image. We use a background module similar to
GSWM (Lin et al., 2020a). The generative process for the background takes the background object file z}t’ﬁ ; from the
previous time-step and predicts the sufficient statistics (mean and sigma) for the new background object file. This is done as
follows.

bg, prior _bg, prior __ bg / bg
l‘l’t;n 7Ut,n - N[LPG (Zt—1>'

Then the new background state is sampled as follows.

zf,bg NN(ubg, prior a_bg, pr1or) (25)

t,n 'y Ytn

The background is rendered using a CNN with deconvolution layers and sigmoid output activation.

yltag — CNNgenderBG(Z?g) (26)

Structured World Belief

We then obtain separate background contexts for each object file to condition the generation. For this, a bounding box region
around the last object file position is used to crop the background RGB map.

bg __ bg _ scale position
Yitn = Crop(Yt y Lt n + Abg, proposaly Z¢) (27)

where Apg proposal 18 @ hyper-parameter taken as 0.25 in this work. The cropped context is then encoded using a CNN as
follows.

eggn _ CNNgncodeBGProposal(ngn) (28)

Foreground Generation. Then we perform file-file interaction of the foreground object files using a graph neural network.
This approach was also taken in (Kossen et al., 2019; Lin et al., 2020a; Veerapaneni et al., 2019). However, these files also
interact with the neighborhood region of the background through conditioning on the background context (Lin et al., 2020a)
obtained in the previous step.

file-interaction __ bg
et,n - GNNO(Zt71,11N7ht71,11N7et’1:N)o

We then compute sufficient statistics for the random variables that need to be sampled.
Hi o0, P, = MLPy eflsmemon).
Next, we sample the random variables.
vis

z}"5, ~ Bernoulli(-|p}™,),

bi b obi
zi o ~ N (B 000)-
We update the RNN as follows.
hig,n = RNN9 (Zif,rw hﬁfl,n)'
We carry over the previous object ID.

ttn = U—1,n-

D.2. Inference

D.2.1. IMAGE ENCODER

We feed the image to a CNN. We interpret the output feature cells as objects.
up Yoz = ONNg (xy).

where G x G is the number of output cells of the CNN encoder.

Like SPACE (Lin et al., 2020b), we interpret each feature uf’frg" to be composed of object presence, position and scale of
object bounding box and other inferred features.

CNN __ pres,CNN position,CNN scale, CNN features,CNN)
ut,m _(t,m » Yt.m » Ytm » Ytm .

pres,CNN
t,m

We pick the best M features based on the value of u . This results in the slots that we require for file-slot matching.

,CNN
U1 = SelectTopM(uﬁT%xg, key = u?ﬁf’cx& count = M).

To this set of slots, we add a nul1l slot when the file-slot matching need not attach to any of the detected features.

Ur0:M = U0 U Ut 1:0-

Structured World Belief

D.2.2. FILE-SLOT ATTACHMENT AND GLIMPSE PROPOSAL

In this step, we want each previous object file to perform attention on one of the slots provided by the image encoder. This is
done by sampling a stochastic index mfn for each previous object file sf’n as described in Algorithm 1.

In our SPACE-based implementation, we take the match index and obtain the proposal bounding box as:

k,proposal __ position _ scale
Ot,n - (uthn) t)mfn) (29)

k,crop

Using the proposal, we crop the image to get x;,

k,cro k,proposal
X = crop(x¢, 0.5) (30)

,glimpse
n

We then encode this cropped patch using a CNN to get a glimpse encoding efﬁ
k,glimpse CNN k,crop
et,n - ¢(Xt,n) (31)

D.2.3. STATE INFERENCE
We then use the glimpse encoding to infer new state of the object files. This is done as follows.

Background Inference. We will first infer and render the background. The inference process takes the input image and
feeds it to an encoder CNN to obtain an image encoding.

e = CNNEeodeBGx,) (32)

The encoding is concatenated with the object file of the background from the previous time-step and fed to an MLP to
predict the sufficient statistics (mean and sigma) for the inference distribution.

k,bg, post k,bg, post __ bg, k,bg bg
My 1Tt = MLP/ (1, €)-

Then the new background state is sampled as follows.
Zf’bg ~ N(“ic,bg, post, o_ic,bg, post) (33)
Lastly, we render the background using a CNN with deconvolution layers and sigmoid output activation.

ylt)g — CNNl;enderBG (Zgg) (34)

We then obtain separate background contexts for each object file to condition the inference. For this, a bounding box region
around the last object file position is used to crop the background RGB map.

kbg __ bg _k, scale k, position
Ytjn = crop(yt 1Lt + Abg, proposaly Z¢ n,) 35)

where Apg proposal 18 @ hyper-parameter taken as 0.25 in this work. The cropped context is then encoded using a CNN as
follows.

efjsg _ CNNgncodeBGProposal(yf’;l’b)g) (36)
Foreground Inference: We first perform file-file interaction for the foreground object files using a graph neural network.
This approach was also taken in (Kossen et al., 2019; Lin et al., 2020a; Veerapaneni et al., 2019) to model object interactions
such as collisions in physical dynamics. This interaction also takes into account the situation of the objects in the context of
the background.

k file-interaction __ k k k,bg
€in = GNNO(ZFLLM ht71,1:N7et,1:N)'

Structured World Belief

We then compute sufficient statistics for the random variables that need to be sampled.

k,obj, post k,obj, post _k,vis, post __ k,file-interaction _ k,glimpse
l’l't,n 7at,n 7pt,n - MLP¢(et,n 7et,n)

We then compute sufficient statistics for the prior distribution.

k,obj, prior _k,obj, prior _k,vis, prior __ k,file-interaction
t,n 1Ot n » Ptn - MLPQ(et,n)

Next, we sample the random variables.

k,vis

k,vis, post
t,n)

t,n

~ Bernoulli(+|p

Next, we sample the remaining random variables. We perform object-wise imagination or bottom-up inference depending
on whether the object is visible or not.

k,obj k,obj, post _k,obj, posty z Vi k ,obj, prior k,obj, priory1—z"*
Zt,nJ ~ '/\/'('“'Lt,nJ P 7Gt,nJ P)Zt’n N("“t,n] P yOtn o prlor) B

We update the RNN as follows using the sampled object states.
hf,n = RNNy (zfﬂm hf—l,n)'

To update the ID, if the file is set to visible for the first time, we assign a new ID to the file. Otherwise, we simply carry over
the previous ID. That is inactive file remains inactive. And active file remains active with the same ID.

k

. new.id() ifz,)°=1landif_, , =null
U 1n otherwise

D.2.4. POSITION PREDICTION VIA VELOCITY OFFSET

Similarly to STOVE (Kossen et al., 2019) and GSWM (Lin et al., 2020a), we predict the position (both during inference and

generation) by adding velocity zfy}‘{elomy to the previous object position. All other attributes are directly predicted without
adding offsets.
Zﬁ;}zosition _ Zf;plo;sri;ion + zﬁ,;elocity (37)

D.2.5. RENDERING

Our final image is rendered similarly to SPACE and GSWM (Lin et al., 2020b;a). Rendering process takes the object files
for the background zf 2 and the foreground objects zﬁl: and returns pixel-wise means of the RGB values in the final
image. The sigma is set as a hyper-parameter.

py " = renderg(z, ", 2} 1.y) (38)

o.i%rendered = Set as hyperparameter. (39

D.3. Training

In this section, we describe details related to training that were not described in the main text.

D.3.1. CURRICULUM

For training iterations up to 3000, we train the image encoder using the auto-encoding objective of SPACE. This allows
image encoder to learn to detect objects in images. After 3000 iterations, the SPACE objective is removed. Hereafter, the
output of image encoder is directly treated as M slots which are provided as input for file-slot matching as described in
Appendix D.2.1 and in the main text. The encoder is jointly trained with the rest of the model.

Structured World Belief

D.3.2. SOFT-RESAMPLING

To prevent low-weight particles from propagating, we resample the particles based on the particle weights. However, when
we resample the particles from the distribution g"*™P'*" (k) = w?F, we obtain a non-differentiable sampling process which
prevents gradient from flowing back. This problem is commonly addressed by applying soft-resampling (Karkus et al.,

2017) as follows:

1
qresampler(k) _ Otwf + (1 o a)?

pa(k) ~ qresampler(.) , vk

wga(k)

k
Pak) and wy

k
St,n A St,n 1

awfa(k) +(1-a)%

where « is a trade-off parameter. We choose oo = 0.6 during training.

(40)
(41)

(42)

Structured World Belief

D.3.3. HYPER-PARAMETERS

Parameter 2D Branching Sprites 2D Maze 3D Food Chase
Image Width/Height 64 64 64

N 4 8 8

K 10 10 10
Learning Rate 0.0001 0.0001 0.0001
Optimizer Adam Adam Adam
Image Encoder Grid Cells 8 x 8 16 x16 16 x 16
Background Module Off On On
Glimpse Width/Height 16 16 16
Glimpse Encoding Size 128 128 128
RNN hidden state size 128 128 128
depth attribute size 1 1 1
scale attribute size 2 2 2
position attribute size 2 2 2
offset attribute size 2 2 2

what attribute size 32 32 32
dynamics attribute size 8 8 8
Reconstruction Sigma 0.05 0.075 0.1

Table 5. Model Specifications

