Skew Orthogonal Convolutions

Appendix

A. Notation

For n € N, we use [n] to denote the set {0,...,n}. For
a vector v, we use v; to denote the element in the jth
position of the vector. We use A ;. and A. j; to denote the
4t row and k" column of the matrix A respectively. We
assume both A ., A. ;. to be column vectors (thus A . is
the transpose of j* row of A). A; ;. denotes the element
in j*" row and k'" column of A. A;.; and A ;; denote
the vectors containing the first k elements of the j** ro

and first j elements of k" column, respectively. A;j,;k
denotes the matrix containing the first j rows and k& columns
of A. The same rules can be directly extended to higher
order tensors. We use bold zero i.e O to denote the matrix
(or tensor) consisting of zero at all elements, I,, to denote
the identity matrix of size n x n. We use C to denote the
field of complex numbers and R for real numbers. For a
scalar a € C, @ denotes its complex conjugate. For a vector
v or matrix (or tensor) A, ¥ or A denotes the element-
wise complex conjugate. For A € C™*" A denotes the
hermitian transpose i.e A7 = AT. For a scalar a € C,
Re(a), Im(a) and |a| denote the real part, imaginary part
and modulus of a respectively. We use [a, b) where a,b € C
to denote the set consisting of complex scalars on the line
connecting a and b (including a, but excluding b). A ® B
denotes the kronecker product between matrices A and B.
We use ¢ to denote iota (i.e 12 = —1).

. —
For a matrix A € C?%" and a tensor B € CPX%*" A
denotes the vector constructed by stacking the rows of A

and ﬁ by stacking the vectors B, . ., j € [p — 1] so that:

(X)T — [AL,, AT, ..., AT ]
BT: ]?OTT7 ]?;jT,..., Bp717:,:T
(B) = () - (B) s (Bd)

For a 2D convolution filter, L € CP*9*"*$ we define the
tensor conv_transpose(L) € C7*P*"$ a5 follows:

[conv_transpose(L)]; j k1 = mj,im_l_hs_l_l @)

Note that this is very different from the usual matrix trans-
pose. Given an input X € C9*"*" we use L x X €
CP*m™*" to denote the convolution of filter L with X. The
notation L +* X = L %~ (L % X). Unless specified other-
wise, we assume zero padding and stride 1 in each direction.

B. Proofs

B.1. Proof of Theorem 1

Theorem. Consider a convolution filter L €
(C'm><m><(2p+1)><(2q+1) applzed to an ll”lpl/th c Cmxnxn

that results in output Y = L x X € C"™*"*" Let J be the

Jjacobian of Y with respect to i then the jacobian for
convolution with the filter conv_transpose(L) is equal to
JH,

Proof. We first prove the above result assuming m = 1.
Assuming m = 1:
We know that J is a doubly toeplitz matrix of size n? x n?:

ry© g1 J=p) 0 7
Jo g g1

J=1: J® JO
Jo . R (G
R I (O

In the above equation, each J (D isa toeplitz matrix of size
n X n. Define P*) as a n x n matrix with Pg? = 1if
i — j = k and 0 otherwise. Thus J can be written as:

p
J=> PUgJ®
i=—p

Since each matrix J(® is a toeplitz matrix, it can be written
as follows. Because the first two dimensions of filter L are
of size 1, we index L using only the last two indices:

q
JO — Z Lp+i,q+jP(j)
Jj=—q
Thus, J can be written as:
P q _ '
J= Z Z Lp—}-i,q-{-j (P(Z) ®P(‘j)>
i=—pj=—q

Thus, J7 can be written as:

I = Z Z Lpiigts (P )®Pj))

i=—pj=—¢q
p T

I = Z Z Lp+z a+j (P ) ( j))
i:pr:fq

I = Z Z Lptig+s (P( Y opt ”)
i=—pj=—q

=YY T (PO oY)
i=—pj=—gq

Thus J corresponds to the jacobian of the convolution
filter flipped along the third, fourth axis and each individual
element conjugated.
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Next, we prove the result when m > 1.

Assuming m > 1:

We know that J is a matrix of size mn? x mn?. Let J(:7)
denote the block of size n? x n? as follows:

J(i’j) = Jinz:(iJrl)nz,jnzz(jJrl)n2

Note that J(*7) is the jacobian of convolution with 1 x 1
filter Li;:;41,;.5+1,:,.. Now consider the (i, 4)" block of JH,
Using definition of conjugate transpose (i.e H operator):

Consider the 1 x 1 filter at the (i,7)!* index in
conv_transpose(L). By the definition of conv_transpose
operator, we have:

[conv_transpose(L)];.; 1 1 ;.41

= conv_transpose(L;.j 11 i:it1,:.:) &)

Using equations (8) and (9) and the proof for the case m =
1, we have the desired proof.

O

B.2. Proof of Theorem 2

Theorem. Consider a
(memx(2p+1)><(2q+l)'

convolution  filter L €
Given an input X € Cmxnxn

output Y = L« X € C™*"*" The jacobian 0f§2 with

respect to 2 (call it J) will be a matrix of size n®m x n?m.
J is a skew hermitian matrix if and only if:

L = M — conv_transpose(M)

for some filter M € C™>mx(2p+1)x(2¢+1).

Proof. We first prove that if J is a skew-hermitian matrix,
then:
L =M — conv_transpose(M)

Let J(7) denote the block of size n2 x n? as follows:
J(i’j) = Jin2:(i+l)n2,jn2:(j+1)n2

so that J can be written in terms of the blocks J(5:9):

J(0,0)
J,0)

JO,1)
J

J(O,m—l)
J(l,nz—l)
J =

J(m,;l,O) J(er;l,l) J(m—i,m—l)

Since J is skew-hermitian, we have:

300 = — (JW)H, Vi, j € [m—1]

It is readily observed that J(»7) corresponds to the jaco-
bian of convolution with 1 x 1 filter Lj;;;11,j:j41,::. For
some given filter A, we use A7) to denote the 1 x 1 filter
Aj.it1,j:j+1,:,: for simplicity. Thus, the above equation can
be rewritten as:

L) = —conv_transpose (L(j’i)) , Vi, jem—1]

(10)
Now construct a filter M such that for i # j:
o LG5 <
MW):{ C e (10
0, 1>
For v = 7, M is given as follows:
Lgfff), r<p-—1
o LY —p, s<qg—1
MS’L;) _ 58 (i i)r P, S>q (12)
’ O.5XLT“’9, r=p, s=¢q
0, otherwise

Next, our goal is to show that:
L = M — conv_transpose(M)
Now by the definition of conv_transpose, we have:
[M — conv_transpose(M)] )
=M [conv,transpose(M)](i’j)
= M) — conv_transpose (M(j’i)> (13)

Case 1: For i < j, using equations (10) and (11):
M3 — conv_transpose (M(j’i)> = M) = 1,7)
Case 2: For ¢ > j, using equations (10) and (11):
M9 — conv_transpose (M(j’i))
= —conv_transpose (M(j’i))
= —conv_transpose (L(j’i)) = L)

Case 3: For i = j, we further simplify equation (13):

M {convtranspose (M(i’i)) }

= Mg‘l,::) - Mgi;g'rﬂq—s (14)
Subcase 3(a): For (r < p—Dor(r=p, s < q—1), we
have: i)
MQZI;l—r,Qq—s =0
Thus for (r <p—1)or (r =p, s < g— 1): equation (14)

(%)

simplifies to M, ;”. The result follows trivially from the
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very definition of Mgf’;), i.e equation (12).
Subcase 3(b): For (r > p+ 1) or(r =p, s > q+ 1), we
have: N

MU =0

Thus, equation (14) simplifies to:

_ D

2p—r,2q—s

Since (r > p+1)or(r =p, s > q+1), wehave: 2p—r <
p—1Dor(2p—r=p, 2¢g —s < q— 1) respectively. Thus
using equation (12), we have:

(4,2) _ (i,1)
- M2p—r,2q—s - 7L2p—r72q—s
Since L9 is a skew-hermitian filter, we have from Theo-
rem 1:

ng) = _Lg;lz;i)r,qus

Thus in this subcase, equation (14) simplifies to L&f;“ again.
Subcase 3(c): For r = p, s = g, since L is a skew-

hermitian filter, we have:

L - 157
LD + LY =0

Thus, Lz(,i,’qi) is a purely imaginary number. In this subcase

M) — Mg

T8

2p—r,2q—s
_ 4,0 (4,4) __ iy
- Mz(xq) ~Myy = 2M1(1,q)

Using equation (12) , we have:
id) _ (4
2M§7,q - Lp,q)
Thus, we get:

Mg’;) — [convtranspose (M(i’i)) ] = Lq(f’si)

r,s ’
Thus we have established: L = M — conv_transpose(M).
Note that the opposite direction of the if and only if state-
ment follows trivially from the above proof. O

B.3. Proof of Theorem 3

Theorem. (a) For a scalar A € C with Re(\) = 0, the
error between exp(\) and approximation py(\) given
below can be bounded as follows:

oo )\k: k—1 )\z
expV) =D T mW=D_%5 (19
i=0 i=0

| exp(A) — pr(N)|

IA

VA:Re(A) =0

(b) For a skew-hermitian matrix A, the error between
exp(A) and the series approximation Si(A) can be
bounded as follows:

o : k—1
A’ A’
exp(A) = Z I Sk(A) = Z i
i=0 i=0
k
Jexp(A) - Se(A)]> < 122

Proof. Since A is skew-hermitian, it is a normal matrix and
eigenvectors for distinct eigenvalues must be orthogonal.
Let the eigenvalue decomposition of A be given as follows:

A =UAU"
Note that A is a diagonal matrix, and each element along the

diagonal is purely imaginary (since A is skew-hermitian).
Exponentiating both sides, we get:

exp(A) = Uexp(A)UH
Thus the error E;(A) is given by:

=exp(A) — Si(A) (16)
= U (exp(A) — Si(A) U

A)ll2 = [[U (exp(A) = Si(A)) Ul

A)llz = [ (exp(A) = Sk (7)) |2

| Ex
| Ex

o~ o~

Since (exp(A) — Sk(A)) is a diagonal matrix, we have:
1B (A)ll2 = max | (exp(Aii) — pr(Aiz)) | (D)

Let A be an arbitrary element along the diagonal of A i.e
A = A, ; for some i. First note that:

1
3 [ Hexpn) - pu(enyar
0
1
- / {exp(tA) — pr(tA)}Adt
0
Substituting © = At, we have:

A
- / {exp(u) — pi(u)}du

= /0A exp(u)du — /0)\ pr(u)du

A
— exp(X) —1— / (1)
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Substituting py (u) using equation (15):
A k-1 i

=exp(A) —1— / u_—'du
0 i—0 1!
k=1 X ut
=exp(A) —1— Z/ qu
i=0 70
k-1 i A
u
=exp(\) —1— .
; i+,
o
)\z+1
= exp(\) — 1 —
exp(Y) 2o i+ 1)
k .
Al
=exp(A\) —1-) —
i=1
FHL i
= exp(\) — Z T
i=0

= exp(A) — prr1(N)

This gives the following result:

1
exp) =) = A [ (explon) — (o) )t
(18)

We shall now prove the main result using induction and
equation (18):

Base case:

Use k& = 0 and the convention that po(A\) = 0. We know
that p; (\) = 1.

exp(A) —p1(A) = /\/01 (eXp(t/\) —po(tk))dt

1
|exp(A) — 1| = ’/\/ exp(tA)dt|
0

Since A is purely imaginary and ¢ is purely real, we have
|exp(tA)| = 1:

1 1
fexp()\)—1|§|)\|/ |exp(t)\)|dt=|)\|/ 1dt

0 0
lexp(A) — 1] < [

Induction step:
Assuming this holds for all & i.e:

k
Jexp(n) —pe(3)] < 2

Now let us consider |exp(A) — pr+1(A)[:

(19)

o)~ V] < 3 [ 1 (‘) - on)) o

|exp(/\) *pk+1(>\)| < |)‘| /0

(exp(t)\) - pk(t)\)> ’dt

Using equation (19), we have:

1 |t)\‘k
[expN) = presa (V] < 3] [ e

1 |t|k

[exp) = piss (0] < AT [ e
k+1
[exp0) i (] < s

This proves (a).
Since A is an arbitrary element along the diagonal of eigen-
value matrix A, using equations (16) and (17) we have:

lexp(A) — S(A)[l2 = max | exp(Aii) — pr(Aii)]

| k

Jexp(A) = S (Al < e
1
| exp(A) — Si(A)]l2 < 7 max A" 0)

Since A is skew-hermitian, it is a normal matrix and singular
values are equal to the magnitude of eigenvalues. Thus we
have from equation (20):

m?X|Ai,i’ = ||A||2 = HA||2

A k
Jexp(a) — Sy(A)], < 1212

This proves (b). O

B.4. Proof of Theorem 4

Theorem. Given a real skew-symmetric matrix A € R"*",
we can construct a real skew-symmetric matrix B € R"*"
such that B satisfies: (a) exp(A) = exp(B) and (b)
B2 < .

Proof. We know that for eigenvalues of real symmet-
ric matrices are purely imaginary and come in pairs:
A1t, —A1t, AL, — Aot wWhere each ); is real. When n is
an odd integer, 0 is an eigenvalue. Additionally, we know
that a real skew symmetric matrix can be expressed in a
block diagonal form as follows:

A =QzQ” 1)

Here Q is a real orthogonal matrix and ¥ is a block diagonal
matrix defined as follows:

209i:2i+2,2i:2i+2 = {_)\A O] ) 0<i< {§J (22)

In the above equation, \; € R and 4\ are the eigenvalues
of A. When n is odd, we additionally have:

E'rzfl,’nfl =0
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Taking the exponential of both sides of equation (21):

exp (A) = Qexp (%) QT (23)

We can compute exp (X) by computing the exponential of
each 2 x 2 block defined in equation (22):

< 0 N
R VI
_ 10 1) _ feos(N)
P (AZ [—1 0} ) - [sin()\i)
From equation (24), we observe each \; can be shifted by

integer multiples of 27« without changing the exponential.
For each \;,i € [[n/2] — 1], we define a scalar ;:

- 51n()\l)

cos(A;) 24)

Wi = N; + 27k, k, € Z (25)
Wi € [—me,me) (26)

Construct a new matrix B defined as follows:
B = QDQ" 27)

The matrix D in equation (27) is defined as follows:

Doii2it2,2i:2i42 [—M 0] ; 0<i< bJ (28)

Let us verify that B satisfies the following properties.
Using equations (24), (25) and (28), we know that:

exp(D) = exp(A)
This results in the following set of equations:
exp(B) = Qexp(D)Q”
exp(B) = Qexp(A)Q" = exp(A)
Using equations (26) and (28), we have:

IBll2 = |QDQ" |2 = D2
IDls <

Note that B is a product of 3 real matrices Q, D and Q”
and hence B is real. Moreover, since D is skew symmetric,
B is skew symmetric. O

B.5. Proof of Theorem 5

Theorem 5. Given a skew-hermitian matrix A, we can
construct a skew-hermitian matrix B by adding integer
multiples of 21 to eigenvalues of A such that B satisfies:
(a) exp(A) = exp(B) and (b) |B||2 < 7.

Proof. Let the eigenvalue decomposition of A be given:

A = UAUH

Let \; be some eigenvalue of A such that:

Aj =4
Construct a new diagonal matrix D of eigenvalues such that:
Dj,j = /\j + QTl'k‘jL, k‘j S/ 29)
D;; € [-m,m) (30)

Construct a new matrix B defined as follows:
B = UDU#

Let us verify that B satisfies the following properties.
Using equation (29), we have:

exp(B) = Uexp(D)U#

exp(B) = Uexp(A) U = exp(A)

Using equation (30), we have:
IBJlz = [UDU||; = [ID]|2
1Dz = max|Dj ;| < =

B.6. Proof of Theorem 6

Theorem 6. Consider a convolution filter L €
Cmxmx@2ptDx Qe+ 1)xQr+1) gpplied to an input X €
Cmxnxnxn that results in output Y = L x X €
Cmxnxnxn_ Jet J be the jacobian of ? with respect
to 2 , then the jacobian for convolution with the filter
conv3d_transpose(L) is equal to J.

Proof. We first prove the above result assuming m = 1.
Assuming m = 1:

Because the first two dimensions of filter LL are of size 1, we
index L using only the last two indices. Define P(*) as a
n X n matrix with Pg? = 1if ¢ — 5 = k and 0 otherwise.
We know that J is a triply toeplitz matrix of size n3 x n?
given as follows:

p q r
J= Z Z Z Lyptigtjrtk (P(i) @ PV @ P(’“))

i=—pj=—qk=-—r

xXn

Thus, J¥ can be written as:
JH

P q r

=Y Y T (PO PO @ PW)
i=—pj=—qk=—r

p q r

S 3 Y L PO @ PED g PR
i:*pj:*qk::—r

p q r

>3 > L PP @ PO @ P®

i=—pj=—qk=-—r
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Thus J# corresponds to the jacobian of the convolution
filter flipped along the third, fourth, fifth axis and each
individual element conjugated.

Next, we prove the above result when m > 1.

Assuming m > 1:

We know that J is a matrix of size mn® x mn3. Let J(:9)
denote the block of size n3 x n3 as follows:

J(Lj) = Jin3:(i+1)n3,jn3:(j+1)n3

Note that J(%7) is the jacobian of convolution with 1 x 1
filter Li;:i41,5.5+1,:,.. Now consider the (¢, 4)t" block of JH.
Using definition of conjugate transpose (i.e H operator):

Consider the 1 x 1 filter at the (i,5)"" index
in  conv3d_transpose(L). By the definition of
conv3d_transpose operator, we have:

[conv3d_transpose(L)];; 41 j.i11..

= conv3d_transpose(Lj.j41,i:i41,:,:) (32)

Using equations (31) and (32) and the proof for the case
m = 1, we have the desired proof.

O

B.7. Proof of Theorem 7

Theorem 7. Consider a convolution filter L €
Cmxmx@ptxQa+)xQr+1) - Given an input X €
Cmxnxnxn outpur Y = Lx X € Cm*XnxnXn" The ja-

cobian of ? with respect to 2 (call it J) will be a matrix of
size n3m x n3m. J is a skew hermitian matrix if and only

L = M — conv3d_transpose(M)

fOl’ someﬁlter M € (Cm><m><(2p+1)><(2q+1)><(27“+1)..

Proof. We first prove that if J is a skew-hermitian matrix,
then:
L = M — conv3d_transpose(M)

Let J(%7) denote the block of size n3 x n3 as follows:
JI) = Jins:(i+1)n3 jn3:(j+1)n?
Since J is skew-hermitian, we have:
36 = (JUVZ'))H, Vi, je[m—1]
It is readily observed that J(»7) corresponds to the jaco-

bian of convolution with 1 x 1 filter Lj.; 1 j.j41.:,:
some given filter A, we use A (/) to denote the 1 x 1 filter

Ajiit1,j:j+1,:,:,; for simplicity. Thus, the above equation
can be rewritten as:

LG — —conv3d_transpose (L(j’i)) , Vi, jem-—1]

(33)
Now construct a filter M such that for ¢ £ j:
. L(i,j)7 )< g
M) = { N (34)
0, 1>
For 7 = 7, M is given as follows:
LS’Z,ZU S S p— 1
L, s=pt<g-
O.5><L£Z7’ZL, s=p,t=q, u=r
0, otherwise

(35)
Next, our goal is to show that:
L =M — conv3d_transpose(M)
Now by the definition of conv3d_transpose, we have:

[M — conv3d_transpose(M)](#7)
= M@ — [conv3d_transpose(M)] "7
= M®7) — conv3d_transpose (M(jvi)) (36)

Case 1: For ¢ < j, using equations (33) and (34):
M9) — conv3d_transpose (M(j’i)) = M®) = 1,(:9)
Case 2: For ¢ > j, using equations (33) and (34):

M9) — conv3d_transpose <M<j’i))
= —conv3d_transpose (M(jvi)>

= —conv3d_transpose (L(j’i)) =L

Case 3: For i = j, we further simplify equation (36):

M) _ {conv?)dtranspose (M(i’i))}

s,t,u
s,t,u

=M — MY 37)

tu 2p—s,2q—t,2r—u
Subcase 3(a): For (s <p—1or(s=p, t < g—1)or
(s=p, t=¢q, u <r—1), we have:

My =0

2p—s,2q—t,2r—u
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Thus for (s < p—1)or(s = p,t < g—1) or
(s =p, t =q, u <r— 1) equation (37) simplifies to
M

of LU

s, t,u’

The result follows trivially from the very definition

i.e equation (35).

Subcase 3(b): For (s > p+ 1 or(s=p, t > g+ 1) or
(s =p, t=4q, u>r+1), wehave:

(i,i
1\

)

=0

)

Thus, equation (14) simplifies to:

2p—s,2q—t,2r—u

MSZL - Mgz;?s,2q7t,2r7u
Since (s > p+ Dor(s=p, t>qg+Dor(s=p, t=
q, u>r+1),wehave: Cp—s<p—1)or(2p —s =
p, 2q—t < g—1or(2p—s =p, 2q—t = q, 2u—r < r—1)
respectively. Thus using equation (35), we have:

(4,2) _ (1,2)
- M2p—s,2q—t,27'—u - _L2p—s,2q—t,27'—u
Since L9 is a skew-hermitian filter, we have from Theo-
rem 6:

LD _ LG

s,t,u T 2p—s,2q—t,2r—u
Thus in this subcase, equation (37) simplifies to Lg’tl)u again.
Subcase 3(c): For s = p, t = ¢, u = r, since L(*9 is a
skew-hermitian filter, we have:

1, = T

p,q,r

A .

p.q,T

Thus, Lz(f;’,;,)r is a purely imaginary number. In this subcase

s,t,u 2p—s,2q—t,2r—u

= MG MYy = am )

p,q,T p,q,T

Using equation (35) , we have:

id) _ 7 (i
2Mz(o,q,f‘ - Lé,q?r
Thus, we get:
Mz(fq‘)r — |conv3d_transpose (M(”)) } = LZ(,’";;})T
p.q,r
Thus we have established: L = M -

conv3d_transpose(M). Note that the opposite direc-
tion of the if and only if statement follows trivially from the
above proof. O

C. MaxMin Activation function

Given a feature map X € R?™*"X" (we assume the number
of channels in X is a multiple of 2), to apply the MaxMin
activation function, we first divide the input into two chunks
of equal size: A and B such that:

HS

Then the MaxMin activation function is given as follows:

MaxMin(X).,,,.. = max(A, B)
MaxMin(X),,. .. = min(A, B)

D. Additional Experiments
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Model Standard Accuracy Provably Robust Accuracy
BCOP-20 BCOP-30 BCOP-20 BCOP-30
LipConvnet-5 74.35% 74.93% 58.01% 58.97%
LipConvnet-10 74.47% 74.63% 58.48% 58.23%
LipConvnet-15 73.86% 74.09% 57.39% 57.42%
LipConvnet-20 69.84% 70.01% 52.10% 52.59%
LipConvnet-25 68.26% 66.66% 49.92% 47.63%
LipConvnet-30 64.11% 65.77% 43.39% 45.10%
LipConvnet-35 63.05% 63.45% 41.72% 42.41%
LipConvnet-40 60.17% 59.60% 38.87% 37.75%

Table 5. Comparing between results using BCOP with 20 (BCOP-20) and 30 (BCOP-30) Bjorck iterations for provable robustness against
adversarial examples (2 perturbation radius of 36,/255 and CIFAR-10 dataset).

Model BCOP SOC

LipConvnet-5 40.34% 42.01%
LipConvnet-10 40.77% 44.13%
LipConvnet-15 39.33% 44.24%
LipConvnet-20 34.75% 45.18%
LipConvnet-25 31.99% 43.50%
LipConvnet-30 25.02% 42.39%
LipConvnet-35 23.30% 41.75%
LipConvnet-40 21.20% 37.88%

Table 6. Comparing between BCOP and SOC for provably robust accuracy using o perturbation radius of 72/255.



