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Appendix

A. Notation
For n ∈ N, we use [n] to denote the set {0, . . . , n}. For
a vector v, we use vj to denote the element in the jth

position of the vector. We use Aj,: and A:,k to denote the
jth row and kth column of the matrix A respectively. We
assume both Aj,:, A:,k to be column vectors (thus Aj,: is
the transpose of jth row of A). Aj,k denotes the element
in jth row and kth column of A. Aj,:k and A:j,k denote
the vectors containing the first k elements of the jth row
and first j elements of kth column, respectively. A:j,:k

denotes the matrix containing the first j rows and k columns
of A. The same rules can be directly extended to higher
order tensors. We use bold zero i.e 0 to denote the matrix
(or tensor) consisting of zero at all elements, In to denote
the identity matrix of size n × n. We use C to denote the
field of complex numbers and R for real numbers. For a
scalar a ∈ C, a denotes its complex conjugate. For a vector
v or matrix (or tensor) A, v or A denotes the element-
wise complex conjugate. For A ∈ Cm×n, AH denotes the
hermitian transpose i.e AH = AT . For a scalar a ∈ C,
Re(a), Im(a) and |a| denote the real part, imaginary part
and modulus of a respectively. We use [a, b) where a, b ∈ C
to denote the set consisting of complex scalars on the line
connecting a and b (including a, but excluding b). A⊗B
denotes the kronecker product between matrices A and B.
We use ι to denote iota (i.e ι2 = −1).

For a matrix A ∈ Cq×r and a tensor B ∈ Cp×q×r,
−→
A

denotes the vector constructed by stacking the rows of A
and
−→
B by stacking the vectors

−−−→
Bj,:,:, j ∈ [p− 1] so that:(−→

A
)T

=
[
AT

0,: , A
T
1,: , . . . , A

T
q−1,:

]
(−→
B
)T

=

[(−−−→
B0,:,:

)T
,
(−−−→
B1,:,:

)T
, . . . ,

(−−−−−→
Bp−1,:,:

)T]
For a 2D convolution filter, L ∈ Cp×q×r×s, we define the
tensor conv transpose(L) ∈ Cq×p×r×s as follows:

[conv transpose(L)]i,j,k,l = [L]j,i,r−1−k,s−1−l (7)

Note that this is very different from the usual matrix trans-
pose. Given an input X ∈ Cq×n×n, we use L ? X ∈
Cp×n×n to denote the convolution of filter L with X. The
notation L ?i X , L ?i−1 (L ?X). Unless specified other-
wise, we assume zero padding and stride 1 in each direction.

B. Proofs
B.1. Proof of Theorem 1

Theorem. Consider a convolution filter L ∈
Cm×m×(2p+1)×(2q+1) applied to an input X ∈ Cm×n×n

that results in output Y = L ?X ∈ Cm×n×n. Let J be the
jacobian of

−→
Y with respect to

−→
X , then the jacobian for

convolution with the filter conv transpose(L) is equal to
JH .

Proof. We first prove the above result assuming m = 1.
Assuming m = 1:
We know that J is a doubly toeplitz matrix of size n2 × n2:

J =



J(0) J(−1) · · · J(−p) 0

J(1) J(0) J(−1) . . . . . .
... J(1) J(0) . . . . . .

J(p) . . . . . . . . . J(−1)

0
. . . . . . J(1) J(0)


In the above equation, each J(i) is a toeplitz matrix of size
n × n. Define P(k) as a n × n matrix with P

(k)
i,j = 1 if

i− j = k and 0 otherwise. Thus J can be written as:

J =

p∑
i=−p

P(i) ⊗ J(i)

Since each matrix J(i) is a toeplitz matrix, it can be written
as follows. Because the first two dimensions of filter L are
of size 1, we index L using only the last two indices:

J(i) =

q∑
j=−q

Lp+i,q+jP
(j)

Thus, J can be written as:

J =

p∑
i=−p

q∑
j=−q

Lp+i,q+j

(
P(i) ⊗P(j)

)
Thus, JH can be written as:

JH =

p∑
i=−p

q∑
j=−q

Lp+i,q+j

(
P(i) ⊗P(j)

)T
JH =

p∑
i=−p

q∑
j=−q

Lp+i,q+j

(
P(i)

)T
⊗
(
P(j)

)T
JH =

p∑
i=−p

q∑
j=−q

Lp+i,q+j

(
P(−i) ⊗P(−j)

)
JH =

p∑
i=−p

q∑
j=−q

Lp−i,q−j

(
P(i) ⊗P(j)

)
Thus JH corresponds to the jacobian of the convolution
filter flipped along the third, fourth axis and each individual
element conjugated.
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Next, we prove the result when m > 1.
Assuming m > 1:
We know that J is a matrix of size mn2 ×mn2. Let J(i,j)

denote the block of size n2 × n2 as follows:

J(i,j) = Jin2:(i+1)n2,jn2:(j+1)n2

Note that J(i,j) is the jacobian of convolution with 1 × 1
filter Li:i+1,j:j+1,:,:. Now consider the (i, j)th block of JH .
Using definition of conjugate transpose (i.e H operator):(

JH
)(i,j)

=
(
J(j,i)

)H
(8)

Consider the 1 × 1 filter at the (i, j)th index in
conv transpose(L). By the definition of conv transpose
operator, we have:

[conv transpose(L)]i:i+1,j:j+1,:,:

= conv transpose(Lj:j+1,i:i+1,:,:) (9)

Using equations (8) and (9) and the proof for the case m =
1, we have the desired proof.

B.2. Proof of Theorem 2

Theorem. Consider a convolution filter L ∈
Cm×m×(2p+1)×(2q+1). Given an input X ∈ Cm×n×n,
output Y = L ?X ∈ Cm×n×n. The jacobian of

−→
Y with

respect to
−→
X (call it J) will be a matrix of size n2m× n2m.

J is a skew hermitian matrix if and only if:

L = M− conv transpose(M)

for some filter M ∈ Cm×m×(2p+1)×(2q+1):

Proof. We first prove that if J is a skew-hermitian matrix,
then:

L = M− conv transpose(M)

Let J(i,j) denote the block of size n2 × n2 as follows:

J(i,j) = Jin2:(i+1)n2,jn2:(j+1)n2

so that J can be written in terms of the blocks J(i,j):

J =


J(0,0) J(0,1) · · · J(0,m−1)

J(1,0) J(1,1) · · · J(1,m−1)

...
...

. . .
...

J(m−1,0) J(m−1,1) · · · J(m−1,m−1)


Since J is skew-hermitian, we have:

J(i,j) = −
(
J(j,i)

)H
, ∀ i, j ∈ [m− 1]

It is readily observed that J(i,j) corresponds to the jaco-
bian of convolution with 1 × 1 filter Li:i+1,j:j+1,:,:. For
some given filter A, we use A(i,j) to denote the 1× 1 filter
Ai:i+1,j:j+1,:,: for simplicity. Thus, the above equation can
be rewritten as:

L(i,j) = −conv transpose
(
L(j,i)

)
, ∀ i, j ∈ [m− 1]

(10)

Now construct a filter M such that for i 6= j:

M(i,j) =

{
L(i,j), i < j

0, i > j
(11)

For i = j, M is given as follows:

M(i,i)
r,s =


L
(i,i)
r,s , r ≤ p− 1

L
(i,i)
r,s , r = p, s ≤ q − 1

0.5× L
(i,i)
r,s , r = p, s = q

0, otherwise

(12)

Next, our goal is to show that:

L = M− conv transpose(M)

Now by the definition of conv transpose, we have:

[M− conv transpose(M)](i,j)

= M(i,j) − [conv transpose(M)]
(i,j)

= M(i,j) − conv transpose
(
M(j,i)

)
(13)

Case 1: For i < j, using equations (10) and (11):

M(i,j) − conv transpose
(
M(j,i)

)
= M(i,j) = L(i,j)

Case 2: For i > j, using equations (10) and (11):

M(i,j) − conv transpose
(
M(j,i)

)
= −conv transpose

(
M(j,i)

)
= −conv transpose

(
L(j,i)

)
= L(i,j)

Case 3: For i = j, we further simplify equation (13):

M(i,i)
r,s −

[
conv transpose

(
M(i,i)

)]
r,s

= M(i,i)
r,s −M

(i,i)
2p−r,2q−s (14)

Subcase 3(a): For (r ≤ p − 1) or (r = p, s ≤ q − 1), we
have:

M
(i,i)
2p−r,2q−s = 0

Thus for (r ≤ p− 1) or (r = p, s ≤ q − 1): equation (14)
simplifies to M

(i,i)
r,s . The result follows trivially from the
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very definition of M(i,i)
r,s , i.e equation (12).

Subcase 3(b): For (r ≥ p + 1) or (r = p, s ≥ q + 1), we
have:

M(i,i)
r,s = 0

Thus, equation (14) simplifies to:

M(i,i)
r,s −M

(i,i)
2p−r,2q−s = −M(i,i)

2p−r,2q−s

Since (r ≥ p+1) or (r = p, s ≥ q+1), we have: (2p−r ≤
p− 1) or (2p− r = p, 2q − s ≤ q − 1) respectively. Thus
using equation (12), we have:

−M
(i,i)
2p−r,2q−s = −L(i,i)

2p−r,2q−s

Since L(i,i) is a skew-hermitian filter, we have from Theo-
rem 1:

L(i,i)
r,s = −L(i,i)

2p−r,2q−s

Thus in this subcase, equation (14) simplifies to L
(i,i)
r,s again.

Subcase 3(c): For r = p, s = q, since L(i,i) is a skew-
hermitian filter, we have:

L(i,i)
p,q = −L(i,i)

p,q

L(i,i)
p,q + L

(i,i)
p,q = 0

Thus, L(i,i)
p,q is a purely imaginary number. In this subcase

M(i,i)
r,s −M

(i,i)
2p−r,2q−s

= M(i,i)
p,q −M

(i,i)
p,q = 2M(i,i)

p,q

Using equation (12) , we have:

2M(i,i)
p,q = L(i,i)

p,q

Thus, we get:

M(i,i)
r,s −

[
conv transpose

(
M(i,i)

)]
r,s

= L(i,i)
r,s

Thus we have established: L = M− conv transpose(M).
Note that the opposite direction of the if and only if state-
ment follows trivially from the above proof.

B.3. Proof of Theorem 3

Theorem. (a) For a scalar λ ∈ C with Re(λ) = 0, the
error between exp(λ) and approximation pk(λ) given
below can be bounded as follows:

exp(λ) =

∞∑
i=0

λk

i!
, pk(λ) =

k−1∑
i=0

λi

i!
(15)

∣∣ exp(λ)− pk(λ)
∣∣ ≤ |λ|k

k!
, ∀ λ : Re(λ) = 0

(b) For a skew-hermitian matrix A, the error between
exp(A) and the series approximation Sk(A) can be
bounded as follows:

exp(A) =

∞∑
i=0

Ai

i!
, Sk(A) =

k−1∑
i=0

Ai

i!

‖ exp(A)− Sk(A)‖2 ≤
‖A‖k2
k!

Proof. Since A is skew-hermitian, it is a normal matrix and
eigenvectors for distinct eigenvalues must be orthogonal.
Let the eigenvalue decomposition of A be given as follows:

A = UΛUH

Note that Λ is a diagonal matrix, and each element along the
diagonal is purely imaginary (since A is skew-hermitian).
Exponentiating both sides, we get:

exp(A) = U exp(Λ)UH

Thus the error Ek(A) is given by:

Ek(A) = exp(A)− Sk(A) (16)

Ek(A) = U (exp(Λ)− Sk(Λ))UH

‖Ek(A)‖2 = ‖U (exp(Λ)− Sk(Λ))UH‖2
‖Ek(A)‖2 = ‖ (exp(Λ)− Sk(Λ)) ‖2

Since (exp(Λ)− Sk(Λ)) is a diagonal matrix, we have:

‖Ek(A)‖2 = max
i

∣∣ (exp(Λi,i)− pk(Λi,i))
∣∣ (17)

Let λ be an arbitrary element along the diagonal of Λ i.e
λ = Λi,i for some i. First note that:

λ

∫ 1

0

{exp(tλ)− pk(tλ)}dt

=

∫ 1

0

{exp(tλ)− pk(tλ)}λdt

Substituting u = λt, we have:

=

∫ λ

0

{exp(u)− pk(u)}du

=

∫ λ

0

exp(u)du−
∫ λ

0

pk(u)du

= exp(λ)− 1−
∫ λ

0

pk(u)du
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Substituting pk(u) using equation (15):

= exp(λ)− 1−
∫ λ

0

k−1∑
i=0

ui

i!
du

= exp(λ)− 1−
k−1∑
i=0

∫ λ

0

ui

i!
du

= exp(λ)− 1−
k−1∑
i=0

ui+1

(i+ 1)!

∣∣∣∣λ
0

= exp(λ)− 1−
k−1∑
i=0

λi+1

(i+ 1)!

= exp(λ)− 1−
k∑
i=1

λi

i!

= exp(λ)−
k+1∑
i=0

λi

i!

= exp(λ)− pk+1(λ)

This gives the following result:

exp(λ)− pk+1(λ) = λ

∫ 1

0

(
exp(tλ)− pk(tλ)

)
dt

(18)

We shall now prove the main result using induction and
equation (18):
Base case:
Use k = 0 and the convention that p0(λ) = 0. We know
that p1(λ) = 1.

exp(λ)− p1(λ) = λ

∫ 1

0

(
exp(tλ)− p0(tλ)

)
dt

∣∣ exp(λ)− 1
∣∣ =

∣∣λ ∫ 1

0

exp(tλ)dt
∣∣

Since λ is purely imaginary and t is purely real, we have
| exp(tλ)| = 1:∣∣ exp(λ)− 1

∣∣ ≤ ∣∣λ∣∣ ∫ 1

0

∣∣ exp(tλ)
∣∣dt =

∣∣λ∣∣ ∫ 1

0

1dt∣∣ exp(λ)− 1
∣∣ ≤ ∣∣λ∣∣

Induction step:
Assuming this holds for all k i.e:∣∣ exp(λ)− pk(λ)

∣∣ ≤ |λ|k
k!

(19)

Now let us consider
∣∣ exp(λ)− pk+1(λ)

∣∣:∣∣ exp(λ)− pk+1(λ)
∣∣ ≤ ∣∣∣∣λ ∫ 1

0

(
exp(tλ)− pk(tλ)

)
dt

∣∣∣∣∣∣ exp(λ)− pk+1(λ)
∣∣ ≤ ∣∣λ∣∣ ∫ 1

0

∣∣∣∣( exp(tλ)− pk(tλ)

)∣∣∣∣dt

Using equation (19), we have:

∣∣ exp(λ)− pk+1(λ)
∣∣ ≤ ∣∣λ∣∣ ∫ 1

0

|tλ|k

k!
dt

∣∣ exp(λ)− pk+1(λ)
∣∣ ≤ ∣∣λ∣∣k+1

∫ 1

0

|t|k

k!
dt

∣∣ exp(λ)− pk+1(λ)
∣∣ ≤ ∣∣λ∣∣k+1

(k + 1)!

This proves (a).
Since λ is an arbitrary element along the diagonal of eigen-
value matrix Λ, using equations (16) and (17) we have:

‖ exp(A)− Sk(A)‖2 = max
i

∣∣ exp(Λi,i)− pk(Λi,i)
∣∣

‖ exp(A)− Sk(A)‖2 ≤ max
i

∣∣Λi,i∣∣k
k!

‖ exp(A)− Sk(A)‖2 ≤
1

k!
max
i

∣∣Λi,i∣∣k (20)

Since A is skew-hermitian, it is a normal matrix and singular
values are equal to the magnitude of eigenvalues. Thus we
have from equation (20):

max
i

∣∣Λi,i∣∣ = ‖Λ‖2 = ‖A‖2

‖ exp(A)− Sk(A)‖2 ≤
‖A‖k2
k!

This proves (b).

B.4. Proof of Theorem 4

Theorem. Given a real skew-symmetric matrix A ∈ Rn×n,
we can construct a real skew-symmetric matrix B ∈ Rn×n
such that B satisfies: (a) exp(A) = exp(B) and (b)
‖B‖2 ≤ π.

Proof. We know that for eigenvalues of real symmet-
ric matrices are purely imaginary and come in pairs:
λ1ι, −λ1ι, λ2ι,−λ2ι where each λi is real. When n is
an odd integer, 0 is an eigenvalue. Additionally, we know
that a real skew symmetric matrix can be expressed in a
block diagonal form as follows:

A = QΣQT (21)

Here Q is a real orthogonal matrix and Σ is a block diagonal
matrix defined as follows:

Σ2i:2i+2,2i:2i+2 =

[
0 λi
−λi 0

]
, 0 ≤ i <

⌊n
2

⌋
(22)

In the above equation, λi ∈ R and ±λiι are the eigenvalues
of A. When n is odd, we additionally have:

Σn−1,n−1 = 0
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Taking the exponential of both sides of equation (21):

exp (A) = Q exp (Σ)QT (23)

We can compute exp (Σ) by computing the exponential of
each 2× 2 block defined in equation (22):

exp

([
0 λi
−λi 0

])
= exp

(
λi

[
0 1
−1 0

])
=

[
cos(λi) − sin(λi)
sin(λi) cos(λi)

]
(24)

From equation (24), we observe each λi can be shifted by
integer multiples of 2πι without changing the exponential.
For each λi, i ∈ [bn/2c − 1], we define a scalar µi:

µi = λi + 2πkiι, ki ∈ Z (25)
µi ∈ [−πι, πι) (26)

Construct a new matrix B defined as follows:

B = QDQT (27)

The matrix D in equation (27) is defined as follows:

D2i:2i+2,2i:2i+2 =

[
0 µi
−µi 0

]
, 0 ≤ i <

⌊n
2

⌋
(28)

Let us verify that B satisfies the following properties.
Using equations (24), (25) and (28), we know that:

exp(D) = exp(Λ)

This results in the following set of equations:

exp(B) = Q exp(D)QT

exp(B) = Q exp(Λ)QT = exp(A)

Using equations (26) and (28), we have:

‖B‖2 = ‖QDQT ‖2 = ‖D‖2
‖D‖2 ≤ π

Note that B is a product of 3 real matrices Q, D and QT

and hence B is real. Moreover, since D is skew symmetric,
B is skew symmetric.

B.5. Proof of Theorem 5

Theorem 5. Given a skew-hermitian matrix A, we can
construct a skew-hermitian matrix B by adding integer
multiples of 2πι to eigenvalues of A such that B satisfies:
(a) exp(A) = exp(B) and (b) ‖B‖2 ≤ π.

Proof. Let the eigenvalue decomposition of A be given:

A = UΛUH

Let λj be some eigenvalue of A such that:

λj = Λj,j

Construct a new diagonal matrix D of eigenvalues such that:

Dj,j = λj + 2πkjι, kj ∈ Z (29)
Dj,j ∈ [−πι, πι) (30)

Construct a new matrix B defined as follows:

B = UDUH

Let us verify that B satisfies the following properties.
Using equation (29), we have:

exp(B) = U exp(D)UH

exp(B) = U exp(Λ)UH = exp(A)

Using equation (30), we have:

‖B‖2 = ‖UDUH‖2 = ‖D‖2
‖D‖2 = max

j
|Dj,j | ≤ π

B.6. Proof of Theorem 6

Theorem 6. Consider a convolution filter L ∈
Cm×m×(2p+1)×(2q+1)×(2r+1) applied to an input X ∈
Cm×n×n×n that results in output Y = L ? X ∈
Cm×n×n×n. Let J be the jacobian of

−→
Y with respect

to
−→
X , then the jacobian for convolution with the filter

conv3d transpose(L) is equal to JH .

Proof. We first prove the above result assuming m = 1.
Assuming m = 1:
Because the first two dimensions of filter L are of size 1, we
index L using only the last two indices. Define P(k) as a
n × n matrix with P

(k)
i,j = 1 if i − j = k and 0 otherwise.

We know that J is a triply toeplitz matrix of size n3 × n3
given as follows:

J =

p∑
i=−p

q∑
j=−q

r∑
k=−r

Lp+i,q+j,r+k

(
P(i) ⊗P(j) ⊗P(k)

)
Thus, JH can be written as:

JH

=

p∑
i=−p

q∑
j=−q

r∑
k=−r

Lp+i,q+j,r+k

(
P(i) ⊗P(j) ⊗P(k)

)T
=

p∑
i=−p

q∑
j=−q

r∑
k=−r

Lp+i,q+j,r+kP
(−i) ⊗P(−j) ⊗P(−k)

=

p∑
i=−p

q∑
j=−q

r∑
k=−r

Lp−i,q−j,r−kP
(i) ⊗P(j) ⊗P(k)
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Thus JH corresponds to the jacobian of the convolution
filter flipped along the third, fourth, fifth axis and each
individual element conjugated.

Next, we prove the above result when m > 1.
Assuming m > 1:
We know that J is a matrix of size mn3 ×mn3. Let J(i,j)

denote the block of size n3 × n3 as follows:

J(i,j) = Jin3:(i+1)n3,jn3:(j+1)n3

Note that J(i,j) is the jacobian of convolution with 1 × 1
filter Li:i+1,j:j+1,:,:. Now consider the (i, j)th block of JH .
Using definition of conjugate transpose (i.e H operator):(

JH
)(i,j)

=
(
J(j,i)

)H
(31)

Consider the 1 × 1 filter at the (i, j)th index
in conv3d transpose(L). By the definition of
conv3d transpose operator, we have:

[conv3d transpose(L)]i:i+1,j:j+1,:,:

= conv3d transpose(Lj:j+1,i:i+1,:,:) (32)

Using equations (31) and (32) and the proof for the case
m = 1, we have the desired proof.

B.7. Proof of Theorem 7

Theorem 7. Consider a convolution filter L ∈
Cm×m×(2p+1)×(2q+1)×(2r+1). Given an input X ∈
Cm×n×n×n, output Y = L ? X ∈ Cm×n×n×n. The ja-
cobian of

−→
Y with respect to

−→
X (call it J) will be a matrix of

size n3m× n3m. J is a skew hermitian matrix if and only
if:

L = M− conv3d transpose(M)

for some filter M ∈ Cm×m×(2p+1)×(2q+1)×(2r+1):

Proof. We first prove that if J is a skew-hermitian matrix,
then:

L = M− conv3d transpose(M)

Let J(i,j) denote the block of size n3 × n3 as follows:

J(i,j) = Jin3:(i+1)n3,jn3:(j+1)n3

Since J is skew-hermitian, we have:

J(i,j) = −
(
J(j,i)

)H
, ∀ i, j ∈ [m− 1]

It is readily observed that J(i,j) corresponds to the jaco-
bian of convolution with 1 × 1 filter Li:i+1,j:j+1,:,:,:. For
some given filter A, we use A(i,j) to denote the 1× 1 filter

Ai:i+1,j:j+1,:,:,: for simplicity. Thus, the above equation
can be rewritten as:

L(i,j) = −conv3d transpose
(
L(j,i)

)
, ∀ i, j ∈ [m− 1]

(33)

Now construct a filter M such that for i 6= j:

M(i,j) =

{
L(i,j), i < j

0, i > j
(34)

For i = j, M is given as follows:

M
(i,i)
s,t,u =



L
(i,i)
s,t,u, s ≤ p− 1

L
(i,i)
s,t,u, s = p, t ≤ q − 1

L
(i,i)
s,t,u, s = p, t = q, u ≤ r − 1

0.5× L
(i,i)
s,t,u, s = p, t = q, u = r

0, otherwise

(35)

Next, our goal is to show that:

L = M− conv3d transpose(M)

Now by the definition of conv3d transpose, we have:

[M− conv3d transpose(M)](i,j)

= M(i,j) − [conv3d transpose(M)]
(i,j)

= M(i,j) − conv3d transpose
(
M(j,i)

)
(36)

Case 1: For i < j, using equations (33) and (34):

M(i,j) − conv3d transpose
(
M(j,i)

)
= M(i,j) = L(i,j)

Case 2: For i > j, using equations (33) and (34):

M(i,j) − conv3d transpose
(
M(j,i)

)
= −conv3d transpose

(
M(j,i)

)
= −conv3d transpose

(
L(j,i)

)
= L(i,j)

Case 3: For i = j, we further simplify equation (36):

M
(i,i)
s,t,u −

[
conv3d transpose

(
M(i,i)

)]
s,t,u

= M
(i,i)
s,t,u −M

(i,i)
2p−s,2q−t,2r−u (37)

Subcase 3(a): For (s ≤ p − 1) or (s = p, t ≤ q − 1) or
(s = p, t = q, u ≤ r − 1), we have:

M
(i,i)
2p−s,2q−t,2r−u = 0
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Thus for (s ≤ p − 1) or (s = p, t ≤ q − 1) or
(s = p, t = q, u ≤ r − 1): equation (37) simplifies to
M

(i,i)
s,t,u. The result follows trivially from the very definition

of L(i,i)
s,t,u, i.e equation (35).

Subcase 3(b): For (s ≥ p + 1) or (s = p, t ≥ q + 1) or
(s = p, t = q, u ≥ r + 1), we have:

M
(i,i)
s,t,u = 0

Thus, equation (14) simplifies to:

M
(i,i)
s,t,u −M

(i,i)
2p−s,2q−t,2r−u = −M(i,i)

2p−s,2q−t,2r−u

Since (s ≥ p + 1) or (s = p, t ≥ q + 1) or (s = p, t =
q, u ≥ r + 1), we have: (2p − s ≤ p − 1) or (2p − s =
p, 2q−t ≤ q−1) or (2p−s = p, 2q−t = q, 2u−r ≤ r−1)
respectively. Thus using equation (35), we have:

−M
(i,i)
2p−s,2q−t,2r−u = −L(i,i)

2p−s,2q−t,2r−u

Since L(i,i) is a skew-hermitian filter, we have from Theo-
rem 6:

L
(i,i)
s,t,u = −L(i,i)

2p−s,2q−t,2r−u

Thus in this subcase, equation (37) simplifies to L(i,i)
s,t,u again.

Subcase 3(c): For s = p, t = q, u = r, since L(i,i) is a
skew-hermitian filter, we have:

L(i,i)
p,q,r = −L(i,i)

p,q,r

L(i,i)
p,q,r + L

(i,i)
p,q,r = 0

Thus, L(i,i)
p,q,r is a purely imaginary number. In this subcase

M
(i,i)
s,t,u −M

(i,i)
2p−s,2q−t,2r−u

= M(i,i)
p,q,r −M

(i,i)
p,q,r = 2M(i,i)

p,q,r

Using equation (35) , we have:

2M(i,i)
p,q,r = L(i,i)

p,q,r

Thus, we get:

M(i,i)
p,q,r −

[
conv3d transpose

(
M(i,i)

)]
p,q,r

= L(i,i)
p,q,r

Thus we have established: L = M −
conv3d transpose(M). Note that the opposite direc-
tion of the if and only if statement follows trivially from the
above proof.

C. MaxMin Activation function
Given a feature map X ∈ R2m×n×n (we assume the number
of channels in X is a multiple of 2), to apply the MaxMin
activation function, we first divide the input into two chunks
of equal size: A and B such that:

A = X:m,:,:

B = Xm:,:,:

Then the MaxMin activation function is given as follows:

MaxMin(X):m,:,: = max(A,B)

MaxMin(X)m:,:,: = min(A,B)

D. Additional Experiments
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Model Standard Accuracy Provably Robust Accuracy
BCOP-20 BCOP-30 BCOP-20 BCOP-30

LipConvnet-5 74.35% 74.93% 58.01% 58.97%
LipConvnet-10 74.47% 74.63% 58.48% 58.23%
LipConvnet-15 73.86% 74.09% 57.39% 57.42%
LipConvnet-20 69.84% 70.01% 52.10% 52.59%
LipConvnet-25 68.26% 66.66% 49.92% 47.63%
LipConvnet-30 64.11% 65.77% 43.39% 45.10%
LipConvnet-35 63.05% 63.45% 41.72% 42.41%
LipConvnet-40 60.17% 59.60% 38.87% 37.75%

Table 5. Comparing between results using BCOP with 20 (BCOP-20) and 30 (BCOP-30) Bjorck iterations for provable robustness against
adversarial examples (l2 perturbation radius of 36/255 and CIFAR-10 dataset).

Model BCOP SOC

LipConvnet-5 40.34% 42.01%
LipConvnet-10 40.77% 44.13%
LipConvnet-15 39.33% 44.24%
LipConvnet-20 34.75% 45.18%
LipConvnet-25 31.99% 43.50%
LipConvnet-30 25.02% 42.39%
LipConvnet-35 23.30% 41.75%
LipConvnet-40 21.20% 37.88%

Table 6. Comparing between BCOP and SOC for provably robust accuracy using l2 perturbation radius of 72/255.


