Appendix

A. Notation

For $n \in \mathbb{N}$, we use $[n]$ to denote the set $\{0, \ldots, n\}$. For a vector \mathbf{v}, we use \mathbf{v}_{j} to denote the element in the $j^{t h}$ position of the vector. We use $\mathbf{A}_{j,:}$ and $\mathbf{A}_{:, k}$ to denote the $j^{\text {th }}$ row and $k^{\text {th }}$ column of the matrix \mathbf{A} respectively. We assume both $\mathbf{A}_{j,:}, \mathbf{A}_{:, k}$ to be column vectors (thus $\mathbf{A}_{j,:}$ is the transpose of $j^{\text {th }}$ row of \mathbf{A}). $\mathbf{A}_{j, k}$ denotes the element in $j^{t h}$ row and $k^{t h}$ column of \mathbf{A}. $\mathbf{A}_{j,: k}$ and $\mathbf{A}_{: j, k}$ denote the vectors containing the first k elements of the $j^{\text {th }}$ row and first j elements of $k^{t h}$ column, respectively. $\mathbf{A}_{: j, k}$ denotes the matrix containing the first j rows and k columns of \mathbf{A}. The same rules can be directly extended to higher order tensors. We use bold zero i.e $\mathbf{0}$ to denote the matrix (or tensor) consisting of zero at all elements, \mathbf{I}_{n} to denote the identity matrix of size $n \times n$. We use \mathbb{C} to denote the field of complex numbers and \mathbb{R} for real numbers. For a scalar $a \in \mathbb{C}, \bar{a}$ denotes its complex conjugate. For a vector \mathbf{v} or matrix (or tensor) $\mathbf{A}, \overline{\mathbf{v}}$ or $\overline{\mathbf{A}}$ denotes the elementwise complex conjugate. For $\mathbf{A} \in \mathbb{C}^{m \times n}, \mathbf{A}^{H}$ denotes the hermitian transpose i.e $\mathbf{A}^{H}=\overline{\mathbf{A}^{T}}$. For a scalar $a \in \mathbb{C}$, $\operatorname{Re}(a), \operatorname{Im}(a)$ and $|a|$ denote the real part, imaginary part and modulus of a respectively. We use $[a, b)$ where $a, b \in \mathbb{C}$ to denote the set consisting of complex scalars on the line connecting a and b (including a, but excluding b). $\mathbf{A} \otimes \mathbf{B}$ denotes the kronecker product between matrices \mathbf{A} and \mathbf{B}. We use ι to denote iota (i.e $\iota^{2}=-1$).
For a matrix $\mathbf{A} \in \mathbb{C}^{q \times r}$ and a tensor $\mathbf{B} \in \mathbb{C}^{p \times q \times r}, \overrightarrow{\mathbf{A}}$ denotes the vector constructed by stacking the rows of \mathbf{A} and $\overrightarrow{\mathbf{B}}$ by stacking the vectors $\overrightarrow{\mathbf{B}_{j,:, i}}, j \in[p-1]$ so that:

$$
\begin{aligned}
& (\overrightarrow{\mathbf{A}})^{T}=\left[\mathbf{A}_{0,::}^{T}, \mathbf{A}_{1,:}^{T}, \ldots, \mathbf{A}_{q-1,:}^{T}\right] \\
& (\overrightarrow{\mathbf{B}})^{T}=\left[\left(\overrightarrow{\mathbf{B}_{0,:,:}}\right)^{T},\left(\overrightarrow{\mathbf{B}_{1,:,:}}\right)^{T}, \ldots,\left(\overrightarrow{\mathbf{B}_{p-1,:,:}}\right)^{T}\right]
\end{aligned}
$$

For a 2 D convolution filter, $\mathbf{L} \in \mathbb{C}^{p \times q \times r \times s}$, we define the tensor conv_transpose $(\mathbf{L}) \in \mathbb{C}^{q \times p \times r \times s}$ as follows:

$$
\begin{equation*}
\left[\operatorname{conv_ transpose}(\mathbf{L})\right]_{i, j, k, l}=\overline{[\mathbf{L}}_{j, i, r-1-k, s-1-l} \tag{7}
\end{equation*}
$$

Note that this is very different from the usual matrix transpose. Given an input $\mathbf{X} \in \mathbb{C}^{q \times n \times n}$, we use $\mathbf{L} \star \mathbf{X} \in$ $\mathbb{C}^{p \times n \times n}$ to denote the convolution of filter \mathbf{L} with \mathbf{X}. The notation $\mathbf{L} \star^{i} \mathbf{X} \triangleq \mathbf{L} \star^{i-1}(\mathbf{L} \star \mathbf{X})$. Unless specified otherwise, we assume zero padding and stride 1 in each direction.

B. Proofs

B.1. Proof of Theorem 1

Theorem. Consider a convolution filter $\mathbf{L} \in$ $\mathbb{C}^{m \times m \times(2 p+1) \times(2 q+1)}$ applied to an input $\mathbf{X} \in \mathbb{C}^{m \times n \times n}$
that results in output $\mathbf{Y}=\mathbf{L} \star \mathbf{X} \in \mathbb{C}^{m \times n \times n}$. Let \mathbf{J} be the jacobian of $\overrightarrow{\mathbf{Y}}$ with respect to $\overrightarrow{\mathbf{X}}$, then the jacobian for convolution with the filter conv_transpose (\mathbf{L}) is equal to \mathbf{J}^{H}.

Proof. We first prove the above result assuming $m=1$.
Assuming $\mathrm{m}=1$:
We know that \mathbf{J} is a doubly toeplitz matrix of size $n^{2} \times n^{2}$:

$$
\mathbf{J}=\left[\begin{array}{ccccc}
\mathbf{J}^{(0)} & \mathbf{J}^{(-1)} & \cdots & \mathbf{J}^{(-p)} & 0 \\
\mathbf{J}^{(1)} & \mathbf{J}^{(0)} & \mathbf{J}^{(-1)} & \ddots & \ddots \\
\vdots & \mathbf{J}^{(1)} & \mathbf{J}^{(0)} & \ddots & \ddots \\
\mathbf{J}^{(p)} & \ddots & \ddots & \ddots & \mathbf{J}^{(-1)} \\
0 & \ddots & \ddots & \mathbf{J}^{(1)} & \mathbf{J}^{(0)}
\end{array}\right]
$$

In the above equation, each $\mathbf{J}^{(i)}$ is a toeplitz matrix of size $n \times n$. Define $\mathbf{P}^{(k)}$ as a $n \times n$ matrix with $\mathbf{P}_{i, j}^{(k)}=1$ if $i-j=k$ and 0 otherwise. Thus \mathbf{J} can be written as:

$$
\mathbf{J}=\sum_{i=-p}^{p} \mathbf{P}^{(i)} \otimes \mathbf{J}^{(i)}
$$

Since each matrix $\mathbf{J}^{(i)}$ is a toeplitz matrix, it can be written as follows. Because the first two dimensions of filter \mathbf{L} are of size 1 , we index \mathbf{L} using only the last two indices:

$$
\mathbf{J}^{(i)}=\sum_{j=-q}^{q} \mathbf{L}_{p+i, q+j} \mathbf{P}^{(j)}
$$

Thus, \mathbf{J} can be written as:

$$
\mathbf{J}=\sum_{i=-p}^{p} \sum_{j=-q}^{q} \mathbf{L}_{p+i, q+j}\left(\mathbf{P}^{(i)} \otimes \mathbf{P}^{(j)}\right)
$$

Thus, \mathbf{J}^{H} can be written as:

$$
\begin{aligned}
\mathbf{J}^{H} & =\sum_{i=-p}^{p} \sum_{j=-q}^{q} \overline{\mathbf{L}_{p+i, q+j}}\left(\mathbf{P}^{(i)} \otimes \mathbf{P}^{(j)}\right)^{T} \\
\mathbf{J}^{H} & =\sum_{i=-p}^{p} \sum_{j=-q}^{q} \overline{\mathbf{L}_{p+i, q+j}}\left(\mathbf{P}^{(i)}\right)^{T} \otimes\left(\mathbf{P}^{(j)}\right)^{T} \\
\mathbf{J}^{H} & =\sum_{i=-p}^{p} \sum_{j=-q}^{q} \overline{\mathbf{L}_{p+i, q+j}}\left(\mathbf{P}^{(-i)} \otimes \mathbf{P}^{(-j)}\right) \\
\mathbf{J}^{H} & =\sum_{i=-p}^{p} \sum_{j=-q}^{q} \overline{\mathbf{L}_{p-i, q-j}}\left(\mathbf{P}^{(i)} \otimes \mathbf{P}^{(j)}\right)
\end{aligned}
$$

Thus \mathbf{J}^{H} corresponds to the jacobian of the convolution filter flipped along the third, fourth axis and each individual element conjugated.

Next, we prove the result when $m>1$.
Assuming m >1 :
We know that \mathbf{J} is a matrix of size $m n^{2} \times m n^{2}$. Let $\mathbf{J}^{(i, j)}$ denote the block of size $n^{2} \times n^{2}$ as follows:

$$
\mathbf{J}^{(i, j)}=\mathbf{J}_{i n^{2}:(i+1) n^{2}, j n^{2}:(j+1) n^{2}}
$$

Note that $\mathbf{J}^{(i, j)}$ is the jacobian of convolution with 1×1 filter $\mathbf{L}_{i: i+1, j: j+1,:,:}$. Now consider the $(i, j)^{t h}$ block of \mathbf{J}^{H}. Using definition of conjugate transpose (i.e H operator):

$$
\begin{equation*}
\left(\mathbf{J}^{H}\right)^{(i, j)}=\left(\mathbf{J}^{(j, i)}\right)^{H} \tag{8}
\end{equation*}
$$

Consider the 1×1 filter at the $(i, j)^{t h}$ index in conv_transpose (\mathbf{L}). By the definition of conv_transpose operator, we have:

$$
\begin{align*}
& {[\text { conv_transpose }(\mathbf{L})]_{i: i+1, j: j+1,:,:}} \\
& =\text { conv_transpose }\left(\mathbf{L}_{j: j+1, i: i+1,:,:}\right) \tag{9}
\end{align*}
$$

Using equations (8) and (9) and the proof for the case $\mathbf{m}=$ 1 , we have the desired proof.

B.2. Proof of Theorem 2

Theorem. Consider a convolution filter $\mathbf{L} \in$ $\mathbb{C}^{m \times m \times(2 p+1) \times(2 q+1)}$. Given an input $\mathbf{X} \in \mathbb{C}^{m \times n \times n}$, output $\mathbf{Y}=\mathbf{L} \star \mathbf{X} \in \mathbb{C}^{m \times n \times n}$. The jacobian of $\overrightarrow{\mathbf{Y}}$ with respect to $\overrightarrow{\mathbf{X}}$ (call it \mathbf{J}) will be a matrix of size $n^{2} m \times n^{2} m$. \mathbf{J} is a skew hermitian matrix if and only if:

$$
\mathbf{L}=\mathbf{M}-\text { conv_transpose }(\mathbf{M})
$$

for some filter $\mathbf{M} \in \mathbb{C}^{m \times m \times(2 p+1) \times(2 q+1)}$.
Proof. We first prove that if \mathbf{J} is a skew-hermitian matrix, then:

$$
\mathbf{L}=\mathbf{M}-\text { conv_transpose }(\mathbf{M})
$$

Let $\mathbf{J}^{(i, j)}$ denote the block of size $n^{2} \times n^{2}$ as follows:

$$
\mathbf{J}^{(i, j)}=\mathbf{J}_{i n^{2}:(i+1) n^{2}, j n^{2}:(j+1) n^{2}}
$$

so that \mathbf{J} can be written in terms of the blocks $\mathbf{J}^{(i, j)}$:

$$
\mathbf{J}=\left[\begin{array}{cccc}
\mathbf{J}^{(0,0)} & \mathbf{J}^{(0,1)} & \cdots & \mathbf{J}^{(0, m-1)} \\
\mathbf{J}^{(1,0)} & \mathbf{J}^{(1,1)} & \cdots & \mathbf{J}^{(1, m-1)} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{J}^{(m-1,0)} & \mathbf{J}^{(m-1,1)} & \cdots & \mathbf{J}^{(m-1, m-1)}
\end{array}\right]
$$

Since \mathbf{J} is skew-hermitian, we have:

$$
\mathbf{J}^{(i, j)}=-\left(\mathbf{J}^{(j, i)}\right)^{H}, \quad \forall i, j \in[m-1]
$$

It is readily observed that $\mathbf{J}^{(i, j)}$ corresponds to the jacobian of convolution with 1×1 filter $\mathbf{L}_{i: i+1, j: j+1,:,:,}$. For some given filter \mathbf{A}, we use $\mathbf{A}^{(i, j)}$ to denote the 1×1 filter $\mathbf{A}_{i: i+1, j: j+1, i,:}$ for simplicity. Thus, the above equation can be rewritten as:

$$
\begin{equation*}
\mathbf{L}^{(i, j)}=\text {-conv_transpose }\left(\mathbf{L}^{(j, i)}\right), \quad \forall i, j \in[m-1] \tag{10}
\end{equation*}
$$

Now construct a filter \mathbf{M} such that for $i \neq j$:

$$
\mathbf{M}^{(i, j)}= \begin{cases}\mathbf{L}^{(i, j)}, & i<j \tag{11}\\ \mathbf{0}, & i>j\end{cases}
$$

For $i=j, \mathbf{M}$ is given as follows:

$$
\mathbf{M}_{r, s}^{(i, i)}=\left\{\begin{array}{l}
\mathbf{L}_{r, s}^{(i, i)}, \quad r \leq p-1 \tag{12}\\
\mathbf{L}_{r, s}^{(i, i)}, \quad r=p, s \leq q-1 \\
0.5 \times \mathbf{L}_{r, s}^{(i, i)}, \quad r=p, s=q \\
0, \quad \text { otherwise }
\end{array}\right.
$$

Next, our goal is to show that:

$$
\mathbf{L}=\mathbf{M}-\text { conv_transpose }(\mathbf{M})
$$

Now by the definition of conv_transpose, we have:

$$
\begin{align*}
& {[\mathbf{M}-\text { conv_transpose }(\mathbf{M})]^{(i, j)}} \\
& =\mathbf{M}^{(i, j)}-[\text { conv_transpose }(\mathbf{M})]^{(i, j)} \\
& =\mathbf{M}^{(i, j)}-\text { conv_transpose }\left(\mathbf{M}^{(j, i)}\right) \tag{13}
\end{align*}
$$

Case 1: For $i<j$, using equations (10) and (11):

$$
\mathbf{M}^{(i, j)}-\text { conv_transpose }\left(\mathbf{M}^{(j, i)}\right)=\mathbf{M}^{(i, j)}=\mathbf{L}^{(i, j)}
$$

Case 2: For $i>j$, using equations (10) and (11):

$$
\begin{aligned}
& \mathbf{M}^{(i, j)}-\text { conv_transpose }\left(\mathbf{M}^{(j, i)}\right) \\
& =- \text { conv_transpose }\left(\mathbf{M}^{(j, i)}\right) \\
& =- \text { conv_transpose }\left(\mathbf{L}^{(j, i)}\right)=\mathbf{L}^{(i, j)}
\end{aligned}
$$

Case 3: For $i=j$, we further simplify equation (13):

$$
\begin{align*}
& \mathbf{M}_{r, s}^{(i, i)}-\left[\text { conv_transpose }\left(\mathbf{M}^{(i, i)}\right)\right]_{r, s} \\
& =\mathbf{M}_{r, s}^{(i, i)}-\overline{\mathbf{M}_{2 p-r, 2 q-s}^{(i, i)}} \tag{14}
\end{align*}
$$

Subcase 3(a): For $(r \leq p-1)$ or $(r=p, s \leq q-1)$, we have:

$$
\mathbf{M}_{2 p-r, 2 q-s}^{(i, i)}=0
$$

Thus for $(r \leq p-1)$ or $(r=p, s \leq q-1)$: equation (14) simplifies to $\mathbf{M}_{r, s}^{(i, i)}$. The result follows trivially from the
very definition of $\mathbf{M}_{r, s}^{(i, i)}$, i.e equation (12).
Subcase 3(b): For $(r \geq p+1)$ or $(r=p, s \geq q+1)$, we have:

$$
\mathbf{M}_{r, s}^{(i, i)}=0
$$

Thus, equation (14) simplifies to:

$$
\mathbf{M}_{r, s}^{(i, i)}-\overline{\mathbf{M}_{2 p-r, 2 q-s}^{(i, i)}}=-\overline{\mathbf{M}_{2 p-r, 2 q-s}^{(i, i)}}
$$

Since $(r \geq p+1)$ or $(r=p, s \geq q+1)$, we have: $(2 p-r \leq$ $p-1$) or ($2 p-r=p, 2 q-s \leq q-1$) respectively. Thus using equation (12), we have:

$$
-\overline{\mathbf{M}_{2 p-r, 2 q-s}^{(i, i)}}=-\overline{\mathbf{L}_{2 p-r, 2 q-s}^{(i, i)}}
$$

Since $\mathbf{L}^{(i, i)}$ is a skew-hermitian filter, we have from Theorem 1:

$$
\mathbf{L}_{r, s}^{(i, i)}=-\overline{\mathbf{L}_{2 p-r, 2 q-s}^{(i, i)}}
$$

Thus in this subcase, equation (14) simplifies to $\mathbf{L}_{r, s}^{(i, i)}$ again. Subcase 3(c): For $r=p, s=q$, since $\mathbf{L}^{(i, i)}$ is a skewhermitian filter, we have:

$$
\begin{aligned}
& \mathbf{L}_{p, q}^{(i, i)}=-\overline{\mathbf{L}_{p, q}^{(i, i)}} \\
& \mathbf{L}_{p, q}^{(i, i)}+\overline{\mathbf{L}_{p, q}^{(i, i)}}=0
\end{aligned}
$$

Thus, $\mathbf{L}_{p, q}^{(i, i)}$ is a purely imaginary number. In this subcase

$$
\begin{aligned}
& \mathbf{M}_{r, s}^{(i, i)}-\overline{\mathbf{M}_{2 p-r, 2 q-s}^{(i, i)}} \\
& =\mathbf{M}_{p, q}^{(i, i)}-\overline{\mathbf{M}_{p, q}^{(i, i)}}=2 \mathbf{M}_{p, q}^{(i, i)}
\end{aligned}
$$

Using equation (12), we have:

$$
2 \mathbf{M}_{p, q}^{(i, i)}=\mathbf{L}_{p, q}^{(i, i)}
$$

Thus, we get:

$$
\mathbf{M}_{r, s}^{(i, i)}-\left[\text { conv_transpose }\left(\mathbf{M}^{(i, i)}\right)\right]_{r, s}=\mathbf{L}_{r, s}^{(i, i)}
$$

Thus we have established: $\mathbf{L}=\mathbf{M}$ - conv_transpose(\mathbf{M}). Note that the opposite direction of the if and only if statement follows trivially from the above proof.

B.3. Proof of Theorem 3

Theorem. (a) For a scalar $\lambda \in \mathbb{C}$ with $\operatorname{Re}(\lambda)=0$, the error between $\exp (\lambda)$ and approximation $p_{k}(\lambda)$ given below can be bounded as follows:

$$
\begin{aligned}
& \exp (\lambda)=\sum_{i=0}^{\infty} \frac{\lambda^{k}}{i!}, \quad p_{k}(\lambda)=\sum_{i=0}^{k-1} \frac{\lambda^{i}}{i!} \\
& \left|\exp (\lambda)-p_{k}(\lambda)\right| \leq \frac{|\lambda|^{k}}{k!}, \quad \forall \lambda: \operatorname{Re}(\lambda)=0
\end{aligned}
$$

(b) For a skew-hermitian matrix \mathbf{A}, the error between $\exp (\mathbf{A})$ and the series approximation $\mathbf{S}_{k}(\mathbf{A})$ can be bounded as follows:

$$
\begin{aligned}
& \exp (\mathbf{A})=\sum_{i=0}^{\infty} \frac{\mathbf{A}^{i}}{i!}, \quad \mathbf{S}_{k}(\mathbf{A})=\sum_{i=0}^{k-1} \frac{\mathbf{A}^{i}}{i!} \\
& \left\|\exp (\mathbf{A})-\mathbf{S}_{k}(\mathbf{A})\right\|_{2} \leq \frac{\|\mathbf{A}\|_{2}^{k}}{k!}
\end{aligned}
$$

Proof. Since A is skew-hermitian, it is a normal matrix and eigenvectors for distinct eigenvalues must be orthogonal. Let the eigenvalue decomposition of \mathbf{A} be given as follows:

$$
\mathbf{A}=\mathbf{U} \Lambda \mathbf{U}^{H}
$$

Note that Λ is a diagonal matrix, and each element along the diagonal is purely imaginary (since \mathbf{A} is skew-hermitian). Exponentiating both sides, we get:

$$
\exp (\mathbf{A})=\mathbf{U} \exp (\Lambda) \mathbf{U}^{H}
$$

Thus the error $\mathbf{E}_{k}(\mathbf{A})$ is given by:

$$
\begin{align*}
& \mathbf{E}_{k}(\mathbf{A})=\exp (\mathbf{A})-\mathbf{S}_{k}(\mathbf{A}) \tag{16}\\
& \mathbf{E}_{k}(\mathbf{A})=\mathbf{U}\left(\exp (\Lambda)-\mathbf{S}_{k}(\Lambda)\right) \mathbf{U}^{H} \\
& \left\|\mathbf{E}_{k}(\mathbf{A})\right\|_{2}=\left\|\mathbf{U}\left(\exp (\Lambda)-\mathbf{S}_{k}(\Lambda)\right) \mathbf{U}^{H}\right\|_{2} \\
& \left\|\mathbf{E}_{k}(\mathbf{A})\right\|_{2}=\left\|\left(\exp (\Lambda)-\mathbf{S}_{k}(\Lambda)\right)\right\|_{2}
\end{align*}
$$

Since $\left(\exp (\Lambda)-\mathbf{S}_{k}(\Lambda)\right)$ is a diagonal matrix, we have:

$$
\begin{equation*}
\left\|\mathbf{E}_{k}(\mathbf{A})\right\|_{2}=\max _{i}\left|\left(\exp \left(\Lambda_{i, i}\right)-p_{k}\left(\Lambda_{i, i}\right)\right)\right| \tag{17}
\end{equation*}
$$

Let λ be an arbitrary element along the diagonal of Λ i.e $\lambda=\Lambda_{i, i}$ for some i. First note that:

$$
\begin{aligned}
& \lambda \int_{0}^{1}\left\{\exp (t \lambda)-p_{k}(t \lambda)\right\} d t \\
& =\int_{0}^{1}\left\{\exp (t \lambda)-p_{k}(t \lambda)\right\} \lambda d t
\end{aligned}
$$

Substituting $u=\lambda t$, we have:

$$
\begin{aligned}
& =\int_{0}^{\lambda}\left\{\exp (u)-p_{k}(u)\right\} d u \\
& =\int_{0}^{\lambda} \exp (u) d u-\int_{0}^{\lambda} p_{k}(u) d u \\
& =\exp (\lambda)-1-\int_{0}^{\lambda} p_{k}(u) d u
\end{aligned}
$$

Substituting $p_{k}(u)$ using equation (15):

$$
\begin{aligned}
& =\exp (\lambda)-1-\int_{0}^{\lambda} \sum_{i=0}^{k-1} \frac{u^{i}}{i!} d u \\
& =\exp (\lambda)-1-\sum_{i=0}^{k-1} \int_{0}^{\lambda} \frac{u^{i}}{i!} d u \\
& =\exp (\lambda)-1-\left.\sum_{i=0}^{k-1} \frac{u^{i+1}}{(i+1)!}\right|_{0} ^{\lambda} \\
& =\exp (\lambda)-1-\sum_{i=0}^{k-1} \frac{\lambda^{i+1}}{(i+1)!} \\
& =\exp (\lambda)-1-\sum_{i=1}^{k} \frac{\lambda^{i}}{i!} \\
& =\exp (\lambda)-\sum_{i=0}^{k+1} \frac{\lambda^{i}}{i!} \\
& =\exp (\lambda)-p_{k+1}(\lambda)
\end{aligned}
$$

This gives the following result:

$$
\begin{equation*}
\exp (\lambda)-p_{k+1}(\lambda)=\lambda \int_{0}^{1}\left(\exp (t \lambda)-p_{k}(t \lambda)\right) d t \tag{18}
\end{equation*}
$$

We shall now prove the main result using induction and equation (18):

Base case:

Use $k=0$ and the convention that $p_{0}(\lambda)=0$. We know that $p_{1}(\lambda)=1$.

$$
\begin{aligned}
& \exp (\lambda)-p_{1}(\lambda)=\lambda \int_{0}^{1}\left(\exp (t \lambda)-p_{0}(t \lambda)\right) d t \\
& |\exp (\lambda)-1|=\left|\lambda \int_{0}^{1} \exp (t \lambda) d t\right|
\end{aligned}
$$

Since λ is purely imaginary and t is purely real, we have $|\exp (t \lambda)|=1$:

$$
\begin{aligned}
& |\exp (\lambda)-1| \leq|\lambda| \int_{0}^{1}|\exp (t \lambda)| d t=|\lambda| \int_{0}^{1} 1 d t \\
& |\exp (\lambda)-1| \leq|\lambda|
\end{aligned}
$$

Induction step:

Assuming this holds for all k i.e:

$$
\begin{equation*}
\left|\exp (\lambda)-p_{k}(\lambda)\right| \leq \frac{|\lambda|^{k}}{k!} \tag{19}
\end{equation*}
$$

Now let us consider $\left|\exp (\lambda)-p_{k+1}(\lambda)\right|$:

$$
\begin{aligned}
& \left|\exp (\lambda)-p_{k+1}(\lambda)\right| \leq\left|\lambda \int_{0}^{1}\left(\exp (t \lambda)-p_{k}(t \lambda)\right) d t\right| \\
& \left|\exp (\lambda)-p_{k+1}(\lambda)\right| \leq|\lambda| \int_{0}^{1}\left|\left(\exp (t \lambda)-p_{k}(t \lambda)\right)\right| d t
\end{aligned}
$$

Using equation (19), we have:

$$
\begin{aligned}
& \left|\exp (\lambda)-p_{k+1}(\lambda)\right| \leq|\lambda| \int_{0}^{1} \frac{|t \lambda|^{k}}{k!} d t \\
& \left|\exp (\lambda)-p_{k+1}(\lambda)\right| \leq|\lambda|^{k+1} \int_{0}^{1} \frac{|t|^{k}}{k!} d t \\
& \left|\exp (\lambda)-p_{k+1}(\lambda)\right| \leq \frac{|\lambda|^{k+1}}{(k+1)!}
\end{aligned}
$$

This proves (a).
Since λ is an arbitrary element along the diagonal of eigenvalue matrix Λ, using equations (16) and (17) we have:

$$
\begin{align*}
& \left\|\exp (\mathbf{A})-\mathbf{S}_{k}(\mathbf{A})\right\|_{2}=\max _{i}\left|\exp \left(\Lambda_{i, i}\right)-p_{k}\left(\Lambda_{i, i}\right)\right| \\
& \left\|\exp (\mathbf{A})-\mathbf{S}_{k}(\mathbf{A})\right\|_{2} \leq \max _{i} \frac{\left|\Lambda_{i, i}\right|^{k}}{k!} \\
& \left\|\exp (\mathbf{A})-\mathbf{S}_{k}(\mathbf{A})\right\|_{2} \leq \frac{1}{k!} \max _{i}\left|\Lambda_{i, i}\right|^{k} \tag{20}
\end{align*}
$$

Since \mathbf{A} is skew-hermitian, it is a normal matrix and singular values are equal to the magnitude of eigenvalues. Thus we have from equation (20):

$$
\begin{aligned}
& \max _{i}\left|\Lambda_{i, i}\right|=\|\Lambda\|_{2}=\|\mathbf{A}\|_{2} \\
& \left\|\exp (\mathbf{A})-\mathbf{S}_{k}(\mathbf{A})\right\|_{2} \leq \frac{\|\mathbf{A}\|_{2}^{k}}{k!}
\end{aligned}
$$

This proves (b).

B.4. Proof of Theorem 4

Theorem. Given a real skew-symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, we can construct a real skew-symmetric matrix $\mathbf{B} \in \mathbb{R}^{n \times n}$ such that \mathbf{B} satisfies: (a) $\exp (\mathbf{A})=\exp (\mathbf{B})$ and (b) $\|\mathbf{B}\|_{2} \leq \pi$.

Proof. We know that for eigenvalues of real symmetric matrices are purely imaginary and come in pairs: $\lambda_{1} \iota,-\lambda_{1} \iota, \lambda_{2} \iota,-\lambda_{2} \iota$ where each λ_{i} is real. When n is an odd integer, 0 is an eigenvalue. Additionally, we know that a real skew symmetric matrix can be expressed in a block diagonal form as follows:

$$
\begin{equation*}
\mathbf{A}=\mathbf{Q} \Sigma \mathbf{Q}^{T} \tag{21}
\end{equation*}
$$

Here \mathbf{Q} is a real orthogonal matrix and Σ is a block diagonal matrix defined as follows:

$$
\Sigma_{2 i: 2 i+2,2 i: 2 i+2}=\left[\begin{array}{cc}
0 & \lambda_{i} \tag{22}\\
-\lambda_{i} & 0
\end{array}\right], \quad 0 \leq i<\left\lfloor\frac{n}{2}\right\rfloor
$$

In the above equation, $\lambda_{i} \in \mathbb{R}$ and $\pm \lambda_{i} \iota$ are the eigenvalues of \mathbf{A}. When n is odd, we additionally have:

$$
\Sigma_{n-1, n-1}=0
$$

Taking the exponential of both sides of equation (21):

$$
\begin{equation*}
\exp (\mathbf{A})=\mathbf{Q} \exp (\Sigma) \mathbf{Q}^{T} \tag{23}
\end{equation*}
$$

We can compute $\exp (\Sigma)$ by computing the exponential of each 2×2 block defined in equation (22):

$$
\begin{align*}
& \exp \left(\left[\begin{array}{cc}
0 & \lambda_{i} \\
-\lambda_{i} & 0
\end{array}\right]\right) \\
& =\exp \left(\lambda_{i}\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\right)=\left[\begin{array}{cc}
\cos \left(\lambda_{i}\right) & -\sin \left(\lambda_{i}\right) \\
\sin \left(\lambda_{i}\right) & \cos \left(\lambda_{i}\right)
\end{array}\right] \tag{24}
\end{align*}
$$

From equation (24), we observe each λ_{i} can be shifted by integer multiples of $2 \pi \iota$ without changing the exponential. For each $\lambda_{i}, i \in[\lfloor n / 2\rfloor-1]$, we define a scalar μ_{i} :

$$
\begin{align*}
& \mu_{i}=\lambda_{i}+2 \pi k_{i} \iota, \quad k_{i} \in \mathbb{Z} \tag{25}\\
& \mu_{i} \in[-\pi \iota, \pi \iota) \tag{26}
\end{align*}
$$

Construct a new matrix B defined as follows:

$$
\begin{equation*}
\mathbf{B}=\mathbf{Q D Q}^{T} \tag{27}
\end{equation*}
$$

The matrix \mathbf{D} in equation (27) is defined as follows:

$$
\mathbf{D}_{2 i: 2 i+2,2 i: 2 i+2}=\left[\begin{array}{cc}
0 & \mu_{i} \tag{28}\\
-\mu_{i} & 0
\end{array}\right], \quad 0 \leq i<\left\lfloor\frac{n}{2}\right\rfloor
$$

Let us verify that \mathbf{B} satisfies the following properties. Using equations (24), (25) and (28), we know that:

$$
\exp (\mathbf{D})=\exp (\Lambda)
$$

This results in the following set of equations:

$$
\begin{aligned}
& \exp (\mathbf{B})=\mathbf{Q} \exp (\mathbf{D}) \mathbf{Q}^{T} \\
& \exp (\mathbf{B})=\mathbf{Q} \exp (\Lambda) \mathbf{Q}^{T}=\exp (\mathbf{A})
\end{aligned}
$$

Using equations (26) and (28), we have:

$$
\begin{aligned}
& \|\mathbf{B}\|_{2}=\left\|\mathbf{Q D Q}^{T}\right\|_{2}=\|\mathbf{D}\|_{2} \\
& \|\mathbf{D}\|_{2} \leq \pi
\end{aligned}
$$

Note that \mathbf{B} is a product of 3 real matrices \mathbf{Q}, \mathbf{D} and \mathbf{Q}^{T} and hence \mathbf{B} is real. Moreover, since \mathbf{D} is skew symmetric, \mathbf{B} is skew symmetric.

B.5. Proof of Theorem 5

Theorem 5. Given a skew-hermitian matrix A, we can construct a skew-hermitian matrix \mathbf{B} by adding integer multiples of $2 \pi \iota$ to eigenvalues of \mathbf{A} such that \mathbf{B} satisfies: (a) $\exp (\mathbf{A})=\exp (\mathbf{B})$ and $(b)\|\mathbf{B}\|_{2} \leq \pi$.

Proof. Let the eigenvalue decomposition of \mathbf{A} be given:

$$
\mathbf{A}=\mathbf{U} \Lambda \mathbf{U}^{H}
$$

Let λ_{j} be some eigenvalue of \mathbf{A} such that:

$$
\lambda_{j}=\Lambda_{j, j}
$$

Construct a new diagonal matrix \mathbf{D} of eigenvalues such that:

$$
\begin{align*}
& \mathbf{D}_{j, j}=\lambda_{j}+2 \pi k_{j} \iota, \quad k_{j} \in \mathbb{Z} \tag{29}\\
& \mathbf{D}_{j, j} \in[-\pi \iota, \pi \iota) \tag{30}
\end{align*}
$$

Construct a new matrix \mathbf{B} defined as follows:

$$
\mathbf{B}=\mathbf{U D U}^{H}
$$

Let us verify that \mathbf{B} satisfies the following properties.
Using equation (29), we have:

$$
\begin{aligned}
& \exp (\mathbf{B})=\mathbf{U} \exp (\mathbf{D}) \mathbf{U}^{H} \\
& \exp (\mathbf{B})=\mathbf{U} \exp (\Lambda) \mathbf{U}^{H}=\exp (\mathbf{A})
\end{aligned}
$$

Using equation (30), we have:

$$
\begin{aligned}
\|\mathbf{B}\|_{2} & =\left\|\mathbf{U D U}^{H}\right\|_{2}=\|\mathbf{D}\|_{2} \\
\|\mathbf{D}\|_{2} & =\max _{j}\left|D_{j, j}\right| \leq \pi
\end{aligned}
$$

B.6. Proof of Theorem 6

Theorem 6. Consider a convolution filter $\mathbf{L} \in$ $\mathbb{C}^{m \times m \times(2 p+1) \times(2 q+1) \times(2 r+1)}$ applied to an input $\mathbf{X} \in$ $\mathbb{C}^{m \times n \times n \times n}$ that results in output $\mathbf{Y}=\mathbf{L} \star \mathbf{X} \in$ $\mathbb{C}^{m \times n \times n \times n}$. Let \mathbf{J} be the jacobian of $\overrightarrow{\mathbf{Y}}$ with respect to $\overrightarrow{\mathbf{X}}$, then the jacobian for convolution with the filter conv3d_transpose (\mathbf{L}) is equal to \mathbf{J}^{H}.

Proof. We first prove the above result assuming $m=1$.

Assuming $\mathbf{m}=1$:

Because the first two dimensions of filter \mathbf{L} are of size 1, we index \mathbf{L} using only the last two indices. Define $\mathbf{P}^{(k)}$ as a $n \times n$ matrix with $\mathbf{P}_{i, j}^{(k)}=1$ if $i-j=k$ and 0 otherwise. We know that \mathbf{J} is a triply toeplitz matrix of size $n^{3} \times n^{3}$ given as follows:

$$
\mathbf{J}=\sum_{i=-p}^{p} \sum_{j=-q}^{q} \sum_{k=-r}^{r} \mathbf{L}_{p+i, q+j, r+k}\left(\mathbf{P}^{(i)} \otimes \mathbf{P}^{(j)} \otimes \mathbf{P}^{(k)}\right)
$$

Thus, \mathbf{J}^{H} can be written as:
\mathbf{J}^{H}

$$
\begin{aligned}
& =\sum_{i=-p}^{p} \sum_{j=-q}^{q} \sum_{k=-r}^{r} \overline{\mathbf{L}_{p+i, q+j, r+k}}\left(\mathbf{P}^{(i)} \otimes \mathbf{P}^{(j)} \otimes \mathbf{P}^{(k)}\right)^{T} \\
& =\sum_{i=-p}^{p} \sum_{j=-q}^{q} \sum_{k=-r}^{r} \overline{\mathbf{L}_{p+i, q+j, r+k}} \mathbf{P}^{(-i)} \otimes \mathbf{P}^{(-j)} \otimes \mathbf{P}^{(-k)} \\
& =\sum_{i=-p}^{p} \sum_{j=-q}^{q} \sum_{k=-r}^{r} \overline{\mathbf{L}_{p-i, q-j, r-k}} \mathbf{P}^{(i)} \otimes \mathbf{P}^{(j)} \otimes \mathbf{P}^{(k)}
\end{aligned}
$$

Skew Orthogonal Convolutions

Thus \mathbf{J}^{H} corresponds to the jacobian of the convolution filter flipped along the third, fourth, fifth axis and each individual element conjugated.

Next, we prove the above result when $m>1$.
Assuming $m>1$:
We know that \mathbf{J} is a matrix of size $m n^{3} \times m n^{3}$. Let $\mathbf{J}^{(i, j)}$ denote the block of size $n^{3} \times n^{3}$ as follows:

$$
\mathbf{J}^{(i, j)}=\mathbf{J}_{i n^{3}:(i+1) n^{3}, j n^{3}:(j+1) n^{3}}
$$

Note that $\mathbf{J}^{(i, j)}$ is the jacobian of convolution with 1×1 filter $\mathbf{L}_{i: i+1, j: j+1,:,: \text {. }}$. Now consider the $(i, j)^{t h}$ block of \mathbf{J}^{H}. Using definition of conjugate transpose (i.e H operator):

$$
\begin{equation*}
\left(\mathbf{J}^{H}\right)^{(i, j)}=\left(\mathbf{J}^{(j, i)}\right)^{H} \tag{31}
\end{equation*}
$$

Consider the 1×1 filter at the $(i, j)^{t h}$ index in conv3d_transpose (\mathbf{L}). By the definition of conv3d_transpose operator, we have:

$$
\begin{align*}
& {[\text { conv3d_transpose }(\mathbf{L})]_{i: i+1, j: j+1,:,:}} \\
& =\text { conv3d_transpose }\left(\mathbf{L}_{j: j+1, i: i+1,:,:}\right) \tag{32}
\end{align*}
$$

Using equations (31) and (32) and the proof for the case $\mathbf{m}=1$, we have the desired proof.

B.7. Proof of Theorem 7

Theorem 7. Consider a convolution filter $\mathbf{L} \in$ $\mathbb{C}^{m \times m \times(2 p+1) \times(2 q+1) \times(2 r+1)}$. Given an input $\mathbf{X} \in$ $\mathbb{C}^{m \times n \times n \times n}$, output $\mathbf{Y}=\mathbf{L} \star \mathbf{X} \in \mathbb{C}^{m \times n \times n \times n}$. The jacobian of $\overrightarrow{\mathbf{Y}}$ with respect to $\overrightarrow{\mathbf{X}}$ (call it \mathbf{J}) will be a matrix of size $n^{3} m \times n^{3} m$. \mathbf{J} is a skew hermitian matrix if and only $i f$:

$$
\mathbf{L}=\mathbf{M}-\text { conv3d_transpose }(\mathbf{M})
$$

for some filter $\mathbf{M} \in \mathbb{C}^{m \times m \times(2 p+1) \times(2 q+1) \times(2 r+1)}$:
Proof. We first prove that if \mathbf{J} is a skew-hermitian matrix, then:

$$
\mathbf{L}=\mathbf{M}-\text { conv3d_transpose }(\mathbf{M})
$$

Let $\mathbf{J}^{(i, j)}$ denote the block of size $n^{3} \times n^{3}$ as follows:

$$
\mathbf{J}^{(i, j)}=\mathbf{J}_{i n^{3}:(i+1) n^{3}, j n^{3}:(j+1) n^{3}}
$$

Since \mathbf{J} is skew-hermitian, we have:

$$
\mathbf{J}^{(i, j)}=-\left(\mathbf{J}^{(j, i)}\right)^{H}, \quad \forall i, j \in[m-1]
$$

It is readily observed that $\mathbf{J}^{(i, j)}$ corresponds to the jacobian of convolution with 1×1 filter $\mathbf{L}_{i: i+1, j: j+1,:,,,:,}$. For some given filter \mathbf{A}, we use $\mathbf{A}^{(i, j)}$ to denote the 1×1 filter
$\mathbf{A}_{i: i+1, j: j+1,:,:,:}$ for simplicity. Thus, the above equation can be rewritten as:
$\mathbf{L}^{(i, j)}=$-conv3d_transpose $\left(\mathbf{L}^{(j, i)}\right), \quad \forall i, j \in[m-1]$

Now construct a filter \mathbf{M} such that for $i \neq j$:

$$
\mathbf{M}^{(i, j)}= \begin{cases}\mathbf{L}^{(i, j)}, & i<j \tag{34}\\ \mathbf{0}, & i>j\end{cases}
$$

For $i=j, \mathbf{M}$ is given as follows:

$$
\mathbf{M}_{s, t, u}^{(i, i)}= \begin{cases}\mathbf{L}_{s, t, u}^{(i, i)}, & s \leq p-1 \tag{35}\\ \mathbf{L}_{s, t, u}^{(i, i)}, & s=p, t \leq q-1 \\ \mathbf{L}_{s, t, u}^{(i, i)}, \quad s=p, t=q, u \leq r-1 \\ 0.5 \times \mathbf{L}_{s, t, u}^{(i, i)} \quad s=p, t=q, u=r \\ 0, \quad \text { otherwise }\end{cases}
$$

Next, our goal is to show that:

$$
\mathbf{L}=\mathbf{M}-\text { conv3d_transpose }(\mathbf{M})
$$

Now by the definition of conv3d_transpose, we have:

$$
\begin{align*}
& {[\mathbf{M}-\text { conv3d_transpose }(\mathbf{M})]^{(i, j)}} \\
& =\mathbf{M}^{(i, j)}-[\text { conv3d_transpose }(\mathbf{M})]^{(i, j)} \\
& =\mathbf{M}^{(i, j)}-\text { conv3d_transpose }\left(\mathbf{M}^{(j, i)}\right) \tag{36}
\end{align*}
$$

Case 1: For $i<j$, using equations (33) and (34):
$\mathbf{M}^{(i, j)}-$ conv3d_transpose $\left(\mathbf{M}^{(j, i)}\right)=\mathbf{M}^{(i, j)}=\mathbf{L}^{(i, j)}$
Case 2: For $i>j$, using equations (33) and (34):

$$
\begin{aligned}
& \mathbf{M}^{(i, j)}-\text { conv3d_transpose }\left(\mathbf{M}^{(j, i)}\right) \\
& =- \text { conv3d_transpose }\left(\mathbf{M}^{(j, i)}\right) \\
& =- \text { conv3d_transpose }\left(\mathbf{L}^{(j, i)}\right)=\mathbf{L}^{(i, j)}
\end{aligned}
$$

Case 3: For $i=j$, we further simplify equation (36):

$$
\begin{align*}
& \mathbf{M}_{s, t, u}^{(i, i)}-\left[\text { conv3d_transpose }\left(\mathbf{M}^{(i, i)}\right)\right]_{s, t, u} \\
& =\mathbf{M}_{s, t, u}^{(i, i)}-\overline{\mathbf{M}_{2 p-s, 2 q-t, 2 r-u}^{(i, i)}} \tag{37}
\end{align*}
$$

Subcase 3(a): For $(s \leq p-1)$ or $(s=p, t \leq q-1)$ or ($s=p, t=q, u \leq r-1$), we have:

$$
\mathbf{M}_{2 p-s, 2 q-t, 2 r-u}^{(i, i)}=0
$$

Thus for $(s \leq p-1)$ or $(s=p, t \leq q-1)$ or ($s=p, t=q, u \leq r-1$): equation (37) simplifies to $\mathbf{M}_{s, t, u}^{(i, i)}$. The result follows trivially from the very definition of $\mathbf{L}_{s, t, u}^{(i, i)}$, i.e equation (35).

Subcase 3(b): For $(s \geq p+1)$ or $(s=p, t \geq q+1)$ or ($s=p, t=q, u \geq r+1$), we have:

$$
\mathbf{M}_{s, t, u}^{(i, i)}=0
$$

Thus, equation (14) simplifies to:

$$
\mathbf{M}_{s, t, u}^{(i, i)}-\overline{\mathbf{M}_{2 p-s, 2 q-t, 2 r-u}^{(i, i)}}=-\overline{\mathbf{M}_{2 p-s, 2 q-t, 2 r-u}^{(i, i)}}
$$

Since $(s \geq p+1)$ or $(s=p, t \geq q+1)$ or $(s=p, t=$ $q, u \geq r+1)$, we have: $(2 p-s \leq p-1)$ or $(2 p-s=$ $p, 2 q-t \leq q-1)$ or ($2 p-s=p, 2 q-t=q, 2 u-r \leq r-1$) respectively. Thus using equation (35), we have:

$$
-\overline{\mathbf{M}_{2 p-s, 2 q-t, 2 r-u}^{(i, i)}}=-\overline{\mathbf{L}_{2 p-s, 2 q-t, 2 r-u}^{(i, i)}}
$$

Since $\mathbf{L}^{(i, i)}$ is a skew-hermitian filter, we have from Theorem 6:

$$
\mathbf{L}_{s, t, u}^{(i, i)}=-\overline{\mathbf{L}_{2 p-s, 2 q-t, 2 r-u}^{(i, i)}}
$$

Thus in this subcase, equation (37) simplifies to $\mathbf{L}_{s, t, u}^{(i, i)}$ again. Subcase 3(c): For $s=p, t=q, u=r$, since $\mathbf{L}^{(i, i)}$ is a skew-hermitian filter, we have:

$$
\begin{aligned}
& \mathbf{L}_{p, q, r}^{(i, i)}=-\overline{\mathbf{L}_{p, q, r}^{(i, i)}} \\
& \mathbf{L}_{p, q, r}^{(i, i)}+\overline{\mathbf{L}_{p, q, r}^{(i, i)}}=0
\end{aligned}
$$

Thus, $\mathbf{L}_{p, q, r}^{(i, i)}$ is a purely imaginary number. In this subcase

$$
\begin{aligned}
& \mathbf{M}_{s, t, u}^{(i, i)}-\overline{\mathbf{M}_{2 p-s, 2 q-t, 2 r-u}^{(i, i)}} \\
& =\mathbf{M}_{p, q, r}^{(i, i)}-\overline{\mathbf{M}_{p, q, r}^{(i, i)}}=2 \mathbf{M}_{p, q, r}^{(i, i)}
\end{aligned}
$$

Using equation (35), we have:

$$
2 \mathbf{M}_{p, q, r}^{(i, i)}=\mathbf{L}_{p, q, r}^{(i, i)}
$$

Thus, we get:

$$
\mathbf{M}_{p, q, r}^{(i, i)}-\left[\text { conv3d_transpose }\left(\mathbf{M}^{(i, i)}\right)\right]_{p, q, r}=\mathbf{L}_{p, q, r}^{(i, i)}
$$

Thus we have established: $\mathbf{L}=\mathbf{M}-$ conv3d_transpose(M). Note that the opposite direction of the if and only if statement follows trivially from the above proof.

C. MaxMin Activation function

Given a feature map $\mathbf{X} \in \mathbb{R}^{2 m \times n \times n}$ (we assume the number of channels in \mathbf{X} is a multiple of 2), to apply the MaxMin activation function, we first divide the input into two chunks of equal size: \mathbf{A} and \mathbf{B} such that:

$$
\begin{aligned}
& \mathbf{A}=\mathbf{X}_{: m,:,:} \\
& \mathbf{B}=\mathbf{X}_{m:,:,:}
\end{aligned}
$$

Then the MaxMin activation function is given as follows:

$$
\begin{aligned}
& \operatorname{Max} \operatorname{Min}(\mathbf{X})_{: m,:,:}=\max (\mathbf{A}, \mathbf{B}) \\
& \operatorname{MaxMin}(\mathbf{X})_{m:,,::}=\min (\mathbf{A}, \mathbf{B})
\end{aligned}
$$

D. Additional Experiments

Model	Standard Accuracy		Provably Robust Accuracy	
	BCOP-20	BCOP-30	BCOP-20	BCOP-30
LipConvnet-5	74.35%	74.93%	58.01%	58.97%
LipConvnet-10	74.47%	74.63%	58.48%	58.23%
LipConvnet-15	73.86%	74.09%	57.39%	57.42%
LipConvnet-20	69.84%	70.01%	52.10%	52.59%
LipConvnet-25	68.26%	66.66%	49.92%	47.63%
LipConvnet-30	64.11%	65.77%	43.39%	45.10%
LipConvnet-35	63.05%	63.45%	41.72%	42.41%
LipConvnet-40	60.17%	59.60%	38.87%	37.75%

Table 5. Comparing between results using BCOP with 20 (BCOP-20) and 30 (BCOP-30) Bjorck iterations for provable robustness against adversarial examples (l_{2} perturbation radius of $36 / 255$ and CIFAR-10 dataset).

Model	BCOP	SOC
LipConvnet-5	40.34%	$\mathbf{4 2 . 0 1 \%}$
LipConvnet-10	40.77%	$\mathbf{4 4 . 1 3 \%}$
LipConvnet-15	39.33%	$\mathbf{4 4 . 2 4 \%}$
LipConvnet-20	34.75%	$\mathbf{4 5 . 1 8 \%}$
LipConvnet-25	31.99%	$\mathbf{4 3 . 5 0 \%}$
LipConvnet-30	25.02%	$\mathbf{4 2 . 3 9 \%}$
LipConvnet-35	23.30%	$\mathbf{4 1 . 7 5 \%}$
LipConvnet-40	21.20%	$\mathbf{3 7 . 8 8 \%}$

Table 6. Comparing between BCOP and SOC for provably robust accuracy using l_{2} perturbation radius of $72 / 255$.

