
Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

Appendix: Shortest-Path Constrained Reinforcement Learning for Sparse
Reward Tasks

A. More ablation study

0 5 10
steps (Millions)

50

100

re
tu

rn

GoalSmall

0 2.5 5 7.5 10
steps (Millions)

10

20

30

re
tu

rn

ObjectMany

K=1
K=3
K=10
K=30

0 2.5 5 7.5 10
steps (Millions)

0

20

40

re
tu

rn

GoalLarge

Figure 9. Average episode reward of SPRL with varying k =1, 3, 10, 30 as a function of environment steps for DeepMind Lab tasks.

Other hyper-parameters are kept same as the best hyper-parameter. The best performance is obtained with k = 10.

0 0.2 0.4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

re
tu

rn

FourRooms-7x7

0 1 2
steps (Millions)

0.00
0.25
0.50
0.75
1.00

re
tu

rn

FourRooms-11x11

0 0.5 1
steps (Millions)

0.00
0.25
0.50
0.75
1.00

re
tu

rn
KeyDoor-7x7

K=3
K=5
K=7

0 2 4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

re
tu

rn

KeyDoor-11x11

Figure 10. Average episode reward of SPRL with varying k =3, 5, 7 as a function of environment steps for MiniGrid tasks. Other

hyper-parameters are kept same as the best hyper-parameter. The best performance is obtained with k = 5.

A.1. Effect of k

As proven in Lemma 2 and shown in Section 6.6, the larger k, the k-shortest constraint promises a larger reduction in policy

space, which results in faster learning. However, with our practical implementation of SPRL with a learned (imperfect)

reachability network, overly large k has a drawback. Intuitively speaking, it is harder for policy to satisfy the k-shortest

constraint, and the supervision signal given by our cost function becomes sparser (i.e., almost always penalized). Figure 9

and 10 shows the performance of SPRL on DeepMind Lab and MiniGrid domains with varying k. In both domains, we can

see that there exists a “sweet spot” that balances between the reduction in policy space and sparsity of the supervision (e.g.,

k = 10 for DeepMind Lab and k = 5 for MiniGrid). In practice, we performed grid-search over the hyper-parameter k.

Training multiple reachability networks with different k’s may achieve the advantages of both low and high k. But practically,

training multiple reachability networks requires high computational cost and more extensive hyperparameter search, which

can be intractable. Thus, we instead tried the curriculum learning of k; i.e., starting from low k and gradually increasing it

up to the target k. However, we found that curriculum learning makes the training of the reachability network unstable when

k changes which results in lower performance.

A.2. Effect of tolerance ∆t

Adding the tolerance ∆t to our k-SP constraint makes it “softer” by allowing ∆t-steps of redundancy in transition

(See Eq. (18)). Intuitively, a small tolerance may improve the stability of RNet by incorporating a possible noise in RNet

prediction, but a very large tolerance will make it less effective in removing sub-optimality in transition. Figure 11 and

12 show the performance of SPRL on DeepMind Lab and MiniGrid domains with varying tolerance ∆t. Similar to k, we

can see that there exists a “sweet spot” that balances between the reduction in policy space and stabilization of noisy RNet

output (e.g., ∆t = 25) in MiniGrid. Note that the best tolerance values for DeepMind Lab and MiniGrid are vastly different.

This is mainly because we used multiple tolerance sampling (See Appendix E) for DeepMind Lab but not for MiniGrid.

Since the multiple tolerance sampling also improves the stability of RNet, larger tolerance has less benefit compared to its

disadvantage.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

0 5 10
steps (Millions)

50

100

re
tu

rn
GoalSmall

0 2.5 5 7.5 10
steps (Millions)

10

20

30

re
tu

rn

ObjectMany

Δt=1
Δt=2
Δt=3
Δt=5

0 2.5 5 7.5 10
steps (Millions)

0

20

40

re
tu

rn

GoalLarge

Figure 11. Average episode reward of SPRL with varying ∆t =1, 2, 3, 5 as a function of environment steps for DeepMind Lab tasks.

Other hyper-parameters are kept same as the best hyper-parameter. The best performance is obtained with ∆t = 1.

0 0.2 0.4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

re
tu

rn

FourRooms-7x7

0 1 2
steps (Millions)

0.00
0.25
0.50
0.75
1.00

re
tu

rn

FourRooms-11x11

0 0.25 0.5 0.75 1
steps (Millions)

0.00
0.25
0.50
0.75
1.00

re
tu

rn

KeyDoor-7x7

Δt=10
Δt=15
Δt=25
Δt=50

0 2 4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

re
tu

rn

KeyDoor-11x11

Figure 12. Average episode reward of SPRL with varying ∆t =10, 15, 25, 50 as a function of environment steps for MiniGrid tasks.

Other hyper-parameters are kept same as the best hyper-parameter. The best performance is obtained with ∆t = 25.

0 10 20
steps (Millions)

50

100

150

re
tu

rn

GoalSmall

0 5 10 15 20
steps (Millions)

10

20

30

re
tu

rn

ObjectMany

0 5 10 15 20
steps (Millions)

20

40

60
re

tu
rn

GoalLarge

#stack=0
#stack=1
#stack=5
#stack=10

Figure 13. Average episode reward of SPRL with varying observation stacking dimension of 0, 1, 5, 10 as a function of environment

steps for DeepMind Lab tasks. Other hyper-parameters are kept same as the best hyper-parameter. The best performance is obtained

without stacking (i.e., #stack=0).

0 0.2 0.4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

re
tu

rn

FourRooms-7x7

0 1 2
steps (Millions)

0.00
0.25
0.50
0.75
1.00

re
tu

rn

FourRooms-11x11

0 0.5 1
steps (Millions)

0.00
0.25
0.50
0.75
1.00

re
tu

rn

KeyDoor-7x7

0 2 4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

re
tu

rn

KeyDoor-11x11
#stack=0
#stack=1
#stack=5

Figure 14. Average episode reward of SPRL with varying observation stacking dimension of 0, 1, 5 as a function of environment steps

for MiniGrid tasks. Other hyper-parameters are kept same as the best hyper-parameter. The best performance is obtained without stacking

(i.e., #stack=0)

A.3. Stacking observation

The CMDP with k-SP constraint becomes the (k+1)-th order MDP as shown in Eq. (13). Thus, in theory, the policy should

take current state st augmented by stacking the k previous states as input: [st−k, st−k+1 . . . , st], where [·] is a stacking of

the pixel observation along the channel (i.e., color) dimension. However, stacking the observation may not lead to the best

empirical results in practice. Figure 13 and 14 show the performance of SPRL on DeepMind Lab and MiniGrid domains

with varying stacking dimensions. For stack=m, we stacked the observation from t−m to t: [st−m, st−m+1, . . . , st]. We

experimented up to m = k: up to m = 10 for DeepMind Lab and m = 5 for MiniGrid. The result shows that stacking the

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

observation does not necessarily improve the performance for MDP order greater than 1, which is often observed when

the function approximation is used (e.g., Savinov et al. (2018b)). Thus, we did not augment the observation in all the

experiments.

0 2 4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

Re
tu

rn

NSubsteps=2

0 2 4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

Re
tu

rn

NSubsteps=3

0 2 4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

Re
tu

rn

NSubsteps=4

0 2 4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

Re
tu

rn

NSubsteps=6
SPRL
PPO
ECO
ICM

Figure 15. Average episode reward of SPRL with varying sparsity controlled by substep N = 2, 3, 4, 6 for Fetch tasks. Other hyper-

parameters are kept same as the best hyper-parameter. As sparsity grows, the difference between SPRL and the baselines increase

accordingly.

A.4. Effect of Sparsity of the reward

We evaluated SPRL on FetchReach-v1 with a smaller “substep” (i.e., the number of action repetitions) Nsubstep to make

the reward sparser, while keeping the episode length × substep the same to ensure the task is solvable within the episode

length. The default Nsubstep is 20, and we used Nsubstep = 2, 3, 4, 6. Figure 15 summarizes the experiment result on varying

sparsity of the reward. We can see that as the reward becomes sparser, the performance gap between SPRL and the baselines

becomes larger, which is consistent with our theory.

0 2 4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

Re
tu

rn

FetchPush_Noise=0.03

0 2 4
steps (Millions)

0.0

0.1

0.2

Re
tu

rn

FetchSlide_Noise=0.03

0 0.2 0.4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

Re
tu

rn

FetchReach_Noise=0.03
SPRL
PPO
ECO
ICM

0 2 4
steps (Millions)

0.0
0.1
0.2
0.3
0.4

Re
tu

rn

FetchPickAndPlace_Noise=0.03

0 2 4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

Re
tu

rn

FetchPush_Noise=0.1

0 2 4
steps (Millions)

0.0

0.1

0.2

Re
tu

rn

FetchSlide_Noise=0.1

0 0.2 0.4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

Re
tu

rn

FetchReach_Noise=0.1
SPRL
PPO
ECO
ICM

0 2 4
steps (Millions)

0.0
0.1
0.2
0.3
0.4

Re
tu

rn
FetchPickAndPlace_Noise=0.1

0 2 4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

Re
tu

rn

FetchPush_Noise=0.3

0 2 4
steps (Millions)

0.0

0.1

0.2

Re
tu

rn

FetchSlide_Noise=0.3

0 0.2 0.4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

Re
tu

rn

FetchReach_Noise=0.3
SPRL
PPO
ECO
ICM

0 2 4
steps (Millions)

0.0
0.1
0.2
0.3
0.4

Re
tu

rn

FetchPickAndPlace_Noise=0.3

Figure 16. Average episode reward of SPRL with varying stochasticity using action noise of N (0, σ2) where σ = 0.03, 0.1, 0.3 for

Fetch tasks. Other hyper-parameters are kept same as the best hyper-parameter. We observe that the performance is preserved the most for

SPRL when stochasticity changes.

A.5. Effect of stochasticity of the environment

Figure 16 summarizes the experiment result on varying stochasticity with a sparser version of Fetch tasks. We used an

additive action noise followingN (0, σ2) with σ = 0.03, 0.1, 0.3 to vary the stochasticity of the environment. Also, we used

substep Nsubstep = 3, 8, 10, 10 for Reach, Push, Slide, Pick respectively to make the reward sparser. This change was made

to clearly observe the performance difference when stochasticity changes. The performance of SPRL does not degrade

much as the stochasticity increases compared to the other baselines indicating that SPRL robustly performs well in stochastic

environments.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

B. Analysis on the reachability network (RNet)

0 0.2 0.4
steps (Millions)

60

80

100

Ac
cu

ra
cy

(%
)

FourRooms-7x7

0 1 2
steps (Millions)

60

80

100

Ac
cu

ra
cy

(%
)

FourRooms-11x11

0 0.5 1
steps (Millions)

60

80

100

Ac
cu

ra
cy

(%
)

KeyDoor-7x7

0 2 4
steps (Millions)

60

80

100

Ac
cu

ra
cy

(%
)

KeyDoor-11x11

(a) (b) (c) (d)

Figure 17. The accuracy of the learned reachability network on (a) FourRooms-7×7 (b) FourRooms-11×11, (c) KeyDoors-7×7 and (d)

KeyDoors-11×11 in MiniGrid in terms of environment steps.

0 5 10 15 20
steps (Millions)

60

80

100

Ac
cu

ra
cy

(%
)

GoalSmall

0 5 10 15 20
steps (Millions)

60

80

100

Ac
cu

ra
cy

(%
)

ObjectMany

0 5 10 15 20
steps (Millions)

60

80

100

Ac
cu

ra
cy

(%
)

GoalLarge

(a) (b) (c)

Figure 18. The accuracy of the learned reachability network on (a) GoalSmall (b) ObjectMany, and (c) GoalLarge in DeepMind Lab in

terms of environment steps.

0 20 40
Steps (Millions)

60

80

100

Ac
cu

ra
cy

 (%
)

Montezuma

0 20 40
Steps (Millions)

60

80

100

Ac
cu

ra
cy

 (%
)

Freeway

0 20 40
Steps (Millions)

60

80

100

Ac
cu

ra
cy

 (%
)

MsPacman

(a) (b) (c)

0 20 40
Steps (Millions)

60

80

100

Ac
cu

ra
cy

 (%
)

Gravitar

0 20 40
Steps (Millions)

60

80

100

Ac
cu

ra
cy

 (%
)

SeaQuest

0 20 40
Steps (Millions)

60

80

100

Ac
cu

ra
cy

 (%
)

Hero

(d) (e) (f)

Figure 19. The accuracy of the learned reachability network on (a) Montezuma’s Revenge (b) Freeway, (c) Ms.Pacman, (d) Gravitar, (e)

Seaquest, and (f) HERO in Atari in terms of environment steps.

B.1. Accuracy of the reachability network

We measured the accuracy of the reachability network on MiniGrid, DeepMind Lab, Atari, and Fetch in Figure 17, Fig-

ure 18, Figure 19, and Figure 20. The accuracy was measured on the validation set, where we constructed the validation

set by sampling 15,000 positive and negative samples respectively from the replay buffer of size 60,000 for MiniGrid,

DeepMind Lab, and 7,500 positive and negative samples respectively from the replay buffer of size 30,000 for Atari, Fetch.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

0 2 4
steps (Millions)

0.6

0.8

1.0

Ac
cu

ra
cy

(%
)

FetchPush

0 0.2 0.4
steps (Millions)

0.6

0.8

1.0

Ac
cu

ra
cy

(%
)

FetchReach

0 2.5 5 7.5 10
steps (Millions)

0.6

0.8

1.0

Ac
cu

ra
cy

(%
)

FetchSlide

0 2.5 5 7.5 10
steps (Millions)

0.6

0.8

1.0

Ac
cu

ra
cy

(%
)

FetchPickAndPlace

(a) (b) (c) (d)

Figure 20. The accuracy of the learned reachability network on (a) FetchPush-v1 (b) FetchReach-v1, (c) FetchSlide-v1 and (d)

FetchPickAndPlace-v1 in Fetch in terms of environment steps.

Specifically, for an anchor st, we sample the positive sample st′ from t′ ∈ [t+ 1, t+ k +∆t], and the negative sample st′′

from t′′ ∈ [t+ k +∆t+∆−, t+ k +∆t+ 2∆−].

The RNet reaches an accuracy higher than 80% in only 0.4M steps in both MiniGrid and DeepMind Lab. We note that this

is quite high considering the unavoidable noise in the negative samples; since the negative samples are sampled based on

the temporal distance, not based on the actual reachability, they have a non-zero probability of being reachable, in which

case they are in fact the positive samples. For most of the games of Atari, the accuracy of RNet was above 90% except for

Montezuma’s Revenge where the distribution shift in the state space occurs within a task. We note that RNet maintains a

high accuracy above 80% throughout the whole training process due to the additional stabilizing techniques such as weight

decay. See Appendix F.3 for more details. Figure 20 summarizes the performance of RNet in Fetch tasks. Overall, RNet

achieves more than 95% accuracy in less than 1M steps on all four tasks. Considering that predicting the shortest-path

distance is much harder in the continuous action domain than the discrete action domains, this result indicates that RNet can

be efficiently trained from the time contrastive learning objective even in challenging continuous action domains.

B.2. Ablation study: comparison between the learned RNet and the GT-RNet

In this section, we study the effect of RNet’s accuracy on the SPRL’s performance. To this end, we implement and compare

the ground-truth reachability network by computing the ground-truth distance between a pair of states in MiniGrid.

0 0.2 0.4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

Re
tu

rn

FourRooms-7x7

0 1 2
steps (Millions)

0.00
0.25
0.50
0.75
1.00

Re
tu

rn

FourRooms-11x11

0 0.5 1
steps (Millions)

0.00
0.25
0.50
0.75
1.00

Re
tu

rn

KeyDoor-7x7

0 2 4
steps (Millions)

0.00
0.25
0.50
0.75
1.00

Re
tu

rn

KeyDoor-11x11

SPRL
GT-SPRL

(a) (b) (c) (d)

Figure 21. The accuracy of the learned reachability network on (a) FourRooms-7×7 (b) FourRooms-11×11, (c) KeyDoors-7×7 and (d)

KeyDoors-11×11 in MiniGrid in terms of environment steps.

Ground-truth reachability network Ground-truth reachability network was implemented by computing the distance

between the two-state inputs, and comparing it with k. For the state inputs s and s′, we roll out all possible k-step trajectories

starting from the state s using the ground-truth single-step forward model. If s′ is ever visited during the roll-out, the output

of the k-reachability network is 1 and otherwise, the output is 0.

Result. We compared the performance of our SPRL with the learned RNet and the ground-truth RNet (GT-SPRL)

in Figure 21 with the best hyperparameters. Overall, the performance of SPRL and GT-SPRL are similar. This is partly

because the learned RNet achieves quite high accuracy in the early stage of learning (see Figure 17). Interestingly, we can

observe that our SPRL with learned RNet performs better than SPRL with GT-RNet on FourRooms-7×7 and KeyDoors-7×7.

This is possible since a small noise in RNet output can have a similar effect to the increased tolerance ∆t on RNet, which

makes the resulting cost denser, which may be helpful depending on the tasks and hyperparameters.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

C. Qualitative analysis on k-SP cost

(a) (b)

Figure 22. The visualization of k-SP and non-k-SP trajectories in Room 6 of Montezuma’s Revenge. We visualized the agent’s trajectories

where it receives (a) low k-SP cost (i.e., lowest 25%) and (b) high k-SP cost (i.e., highest 25%) for 60 steps. The intensity of the red color

shows the count of the visited coordinate of the agent. In high k-SP cost trajectory, agent tends to move back and forth between the ladder

and the right corner of room 6 while in low k-SP cost trajectory, agent moves forward without redundancy in the transition.

We visually inspected the agent’s trajectory with high and low k-SP cost to see whether SPRL can correctly differentiate the

shortest-path trajectory. Figure 22 (a) is the visualization of the agent’s trajectory with low k-SP cost (i.e., shortest-path)

trajectory and Figure 22 (b) shows the trajectory with high k-SP cost (i.e., non-shortest path). We can observe that when the

agent’s trajectory has many redundancies (e.g., moving back-and-forth or staying still in the same place), a high k-SP cost is

given to the agent, while the agent is less penalized when it takes the shortest path.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

D. Experiment details of MiniGrid domain

D.1. Environment

MiniGrid is a 2D grid-world environment with diverse predefined tasks (Chevalier-Boisvert et al., 2018). It has several

challenging features such as pictorial observation, random initialization of the agent and the goal, complex action space,

and transition dynamics involving the agent’s orientation of movement and changing object status via interaction (e.g.,

key-door).

State Space. An observation st is represented as H × W × C tensor, where H and W are the height and width of

the map respectively, and C is the features of the objects in the grid. The (h,w)-th element of observation tensor is

(type, color, status) of the object and for the coordinate of the agent, the (h,w)-th element is (type, 0, direction). The

map size (i.e., H ×W) varies depending on the task; e.g., for FourRooms-7×7 task, the map size is 7× 7.

Action Space and transition dynamics The episode terminates in 100 steps, and the episode may terminate earlier if the

agent reaches the goal before 100 steps. The action space consists of seven discrete actions with the following transitions.

• Turn-Counter-Clockwise: change the direction counter-clockwise by 90 degree.

• Turn-Clockwise: change the direction clockwise by 90 degree.

• Move-Forward: move toward direction by 1 step unless blocked by other objects.

• Pick-up-key: pickup the key if the key is in front of the agent.

• Drop-the-key: drop the key in front of the agent.

• Open/Close-doors: open/close the door if the door is in front of the agent.

• Optional-action: not used

Reward function. The reward is given only if the agent reaches the goal location, and the reward magnitude is 1 −
0.9(length of episode/maximum step for an episode). Thus, the agent can maximize the reward by reaching the goal

location in the shortest time.

D.2. Tasks

In FourRooms-7×7 and FourRooms-11×11, the map structure has four large rooms, and the agent needs to reach the goal. In

KeyDoors-7×7 and KeyDoors-11×11, the agent needs to pick up the key, go to the door, and open the door before reaching

the goal location.

D.3. Architecture and hyper-parameters

We used a simple CNN architecture similar to (Mnih et al., 2015) for the policy network. The network con-

sists of Conv1(16x2x2-1/SAME)-CReLU-Conv2(8x2x2-1/SAME)-CReLU-Conv3(8x2x2-1/SAME)-CReLU-

FC(512)-FC(action-dimension), where SAME padding ensures the input and output have the same size (i.e.,

width and height) and CReLU (Shang et al., 2016) is a non-linear activation function applied after each layer. We used

Adam (Kingma & Ba, 2014) optimizer to optimize the policy network.

For hyper-parameter search, we swept over a set of hyper-parameters specified in Table 1, and chose the best one in terms of

the mean AUC over all the tasks, which is also summarized in Table 1.

E. Experiment details of DeepMind Lab domain

E.1. Environment

DeepMind Lab is a 3D-game environment with a first-person view. Along with random initialization of the agent and the

goal, complex action space including directional change, random change of texture, color, and maze structure are features

that make tasks in DeepMind Lab hard to be learned.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

PPO

Hyperparameters Sweep range Final value

Learning rate 0.001, 0.002, 0.003 0.003

Entropy 0.003, 0.005, 0.01, 0.02, 0.05 0.01

ICM

Hyperparameters Sweep range Final value

Learning rate 0.001, 0.002, 0.003 0.003

Entropy - 0.01

Forward/Inverse model loss weight ratio 0.2, 0.5, 0.8, 1.0 0.8

Curiosity module loss weight 0.03, 0.1, 0.3, 1.0 0.3

ICM bonus weight 0.1, 0.3, 1.0, 3.0 0.1

GT-Grid

Hyperparameters Sweep range Final value

Learning rate 0.001, 0.002, 0.003 0.003

Entropy - 0.01

GT-Grid bonus weight 0.003, 0.01, 0.03, 0.1, 0.3 0.01

ECO

Hyperparameters Sweep range Final value

Learning rate - 0.003

Entropy - 0.01

k 3, 5, 7 3

ECO bonus weight 0.001, 0.002, 0.005, 0.01 0.001

SPRL

Hyperparameters Sweep range Final value

Learning rate 0.003, 0.01 0.01

Entropy - 0.01

k 2, 5 2

Tolerance (∆t) - 1

Negative bias (∆−) 10, 20 20

Positive bias (∆+) - 5

Cost scale (λ) 0.001, 0.002, 0.005 0.002

N∆t 30, 60 60

Table 1. The range of hyperparameters sweeped over and the final hyperparameters used in MiniGrid domain.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

Algorithm 1 Sampling the triplet data from an episode for RNet training

Require: Hyperparameters: k ∈ N, Positive bias ∆+ ∈ N, Negative bias ∆− ∈ N

1: Initialize tanc ← 0.

2: Initialize Sanc = ∅, S+ = ∅, S− = ∅.
3: while tanc < T do

4: Sanc = Sanc ∪ {stanc
}.

5: t+ = Uniform(tanc + 1, tanc + k).
6: t− = Uniform(tanc + k +∆−, T).
7: S+ = S+ ∪ {st+}.
8: S− = S− ∪ {st−}.
9: tanc = Uniform(t+ + 1, t+ +∆+).

10: end while

11: Return Sanc, S+, S−

State Space. A state st has the dimension of 84× 84× 3. The state is given as a first-person view of the map structure.

We resized the RGB image into 84× 84× 3 RGB image and normalized it by dividing the pixel value by 255.

Action Space and transition dynamics The episode terminates after the fixed number of steps regardless of the goal being

achieved. The original action space consists of seven discrete actions: Move-Forward, Move-Backward, Strafe

Left, Strafe Right, Look Left, Look Right, Look Left, and Move-Forward, Look Right and

Move-Forward. In our experiment, we used eight discrete actions with the additional action Fire as in Higgins et al.

(2017); Vezhnevets et al. (2017); Savinov et al. (2018b); Espeholt et al. (2018); Khetarpal & Precup (2018).

E.2. Tasks

We tested our agent and compared methods on three standard tasks in DeepMind Lab: GoalSmall, GoalLarge, and

ObjectMany which correspond to explore goal locations small, explore goal locations large, and

explore object rewards many, respectively. GoalSmall and GoalLarge have a single goal in the maze, but the size

of the maze is larger in GoalLarge than GoalSmall. The agent and goal locations are randomly set at the beginning of the

episode and the episode length is fixed to 1,350 steps for GoalSmall and 1,800 steps for GoalLarge. When the agent reaches

the goal, it positively rewards the agent and the agent is re-spawned in a random location without terminating the episode,

such that the agent can reach the goal multiple times within a single episode. Thus, the agent’s goal is to reach the goal

location as many times as possible within the episode length. ObjectMany has multiple objects in the maze, where reaching

the object positively rewards the agent and the object disappears. The episode length is fixed to 1,800 steps. The agent’s

goal is to gather as many objects as possible within the episode length.

E.3. Reachability network Training

Similar to Savinov et al. (2018b), we used the following contrastive loss for training the reachability network:

LRnet = − log (Rnetk−1(sanc, s+))− log (1− Rnetk−1(sanc, s−)) , (21)

where sanc, s+, s− are the anchor, positive, and negative samples, respectively. The anchor, positive and negative samples

are sampled from the same episode, and their time steps are sampled according to Algorithm 1. The RNet is trained in an

off-policy manner from the replay buffer with the size of 60K environment steps collecting agent’s online experience. We

found that adaptive scheduling of RNet is helpful for faster convergence of RNet. Out of 20M total environment steps, for

the first 1M, 1M, and 18M environment steps, we updated RNet every 6K, 12K, and 36K environment steps, respectively.

For all three environments of DeepMind Lab, RNet accuracy was ∼ 0.9 after 1M steps.

Multiple tolerance. In order to improve the stability of Reachability prediction, we used the statistics over multiple

samples rather than using a single-sample estimate as suggested in Eq. (18). As a choice of sampling method, we simply

used multiples of tolerance. In other words, given st−(k+∆t) and st as inputs for reachability network, we instead used

st−(k+n∆t) and st where 1 ≤ n ≤ N∆t, n ∈ N and N∆t is the number of tolerance samples. We used 90-percentile of

N∆t outputs of reachability network, Rnetk−1(st−(k+n∆t), st), as in (Savinov et al., 2018b) to get the representative of the

samples.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

Hyperparameters for SPRL Sweep range Final value

Learning rate - 0.0003

Entropy - 0.004

k 3, 10, 30 10

Tolerance (∆t) 1, 3, 5 1

Negative bias (∆−) 5, 10, 20 20

Positive bias (∆+) - 5

Cost scale (λ) 0.02, 0.06, 0.2 0.06

Optimizer - Adam

N∆t - 200

Table 2. The range of hyperparameters sweeped over and the final hyperparameters used for our SPRL method in DeepMind Lab domain.

E.4. Architecture and hyper-parameters

Following (Savinov et al., 2018b), we used the same CNN architecture used in (Mnih et al., 2015).

For SPRL, we used a smaller reachability network (RNet) architecture compared to ECO to reduce the training time. The

RNet is based on the siamese architecture with two branches. Following (Savinov et al., 2018b), ECO used Resnet-18 (He

et al., 2016) architecture with 2-2-2-2 residual blocks and 512-dimensional output fully connected layer to implement each

branch. For SPRL, we used Resnet-12 with 2-2-1 residual blocks and 512-dimensional output fully connected layer to

implement each branch. The RNet takes two-states as inputs, and each state is fed into each branch. The outputs of the two

branches are concatenated and forwarded to three4 512-dimensional fully-connected layers to produce one-dimensional

sigmoid output, which predicts the reachability between two state inputs. We also resized the observation to the same

dimension as policy (i.e., 84× 84× 3, which is smaller than the original 120× 160× 3 used in (Savinov et al., 2018b)).

For all the baselines (i.e., PPO, ECO, ICM, and GT-Grid), we used the best hyperparameter used in (Savinov et al., 2018b).

For SPRL, we searched over a set of hyperparameters specified in Table 2, and chose the best one in terms of the mean

AUC over all the tasks, which is also summarized in Table 2.

F. Experiment details of Atari domain

F.1. Environment

Atari is an important and prominent benchmark in deep reinforcement learning with a high-dimensional visual input. One of

the main benefits of using Atari as a testbed is that it covers not only navigational tasks but various tasks such as avoiding

and destroying enemies by firing a bullet or changing the map structure using bombs as explained in (Bellemare et al.,

2013). Because of the diversity of the task Atari is covering, solving Atari shows that the algorithm has a certain degree of

generality. There exists a variety of preprocessing details for Atari. We mostly followed the implementation of OpenAI

Baselines (Dhariwal et al., 2017). For detailed information, see Table 3.

State Space. A state st is represented as 84× 84× 4. We stacked 4 consecutive frames achieved by taking the same action

4 times in a row and resized RGB image into 84× 84× 1 gray image and normalized by dividing the pixel value by 255.

Action Space and transition dynamics The episode terminates when the agent loses all of the lives given. The action

space consists of eighteen discrete actions as in (Bellemare et al., 2013).

F.2. Various Tasks of Atari: Navigational and Non-navigational

We tested our agent and compared methods on navigational and non-navigational tasks in Atari: Montezuma’s Revenge,

Freeway, Ms.Pacman, Gravitar, Seaquest, HERO. Montezuma’s Revenge is a famous game as a hard exploration game in

Atari. An agent should pick up the items such as a key to open the door or a knife to destroy the enemy. In Freeway, an

agent should cross the road while avoiding the car. Ms.Pacman is a game where an agent should eat the items and avoid the

4Savinov et al. (2018b) used four 512-dimensional fully-connected layers.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

Parameter Value

Image Width 84

Image Height 84

Grayscaling Yes

Number of Actions 18

Action Repetitions 4

Frame Stacking 4

End of episode when life lost No

Reward Clipping [-1,1]

Discount(γ) 0.99

Max Episode Length 10000

Number of parallel workers 12

Table 3. Preprocessing details for Atari

enemy. Three games mentioned until now have a navigational feature meaning that the agent can move toward a certain

coordinate to get the score. However, the three games to be mentioned have a non-navigational feature meaning that the

agent should not only get to a certain coordinate but also use specific action to get the score. In Gravitar and Seaquest, an

agent should shoot a bullet. In HERO, an agent can install a bomb to break the wall and move forward. By adding Gravitar,

Seaquest, and HERO to our testbed, we evaluated how SPRL performs in non-navigational tasks.

F.3. Reachability network Training

We followed the details of reachability network training for DeepMind Lab except for 1) replay buffer size and 2) reachability

network training frequency. We changed the size of the replay buffer for the reachability network from 60K environment

steps to 30K environment steps. To avoid overfitting of the reachability network, we enlarged the reachability network

training frequency from 6K environment steps to 150K environment steps after the initial 1M environment steps.

Stabilizing Reachability Network. In some of the games of Atari, within a task exists a distributional shift in the state

space that hinders stable reachability network training. Therefore we had to use some techniques to mitigate the instability

problem of the reachability network: Weight decay and Label smoothing. We used weight decay with the factor of 0.03 and

label smoothing of 0.1. Also instead of using current and future states as inputs, we used current and pixel-level subtraction

of current and future states which stabilized the learning.

F.4. Architecture and hyper-parameters

For the policy architecture, we used the same CNN architecture used in Mnih et al. (2015). For the reachability network, we

used the same architecture used for DeepMind Lab except for the input layer. For the input layer, we used (st, st − st−k)
instead of (st, st−k). This change helped the reachability network to avoid suffering from overfitting when the distribution

shift in the state space occurs.

For hyper-parameter search, we swept over a set of hyper-parameters specified in Table 4 and chose the best one in terms of

the mean AUC over all the tasks, which is also summarized in Table 4.

G. Experiment details of Fetch domain

G.1. Environment

Fetch is a continuous control environment with a two-fingered gripper. By controlling the gripper, specific interaction

between the gripper and the object needs to be accomplished for a given task. The agent and the goal locations are randomly

initialized at each episode and these features make the environment difficult to solve.

State Space. At each time step t, the state input st is a vector (16-dimensional for FetchReach-v1 and 31-dimensional for

FetchPush-v1, FetchSlide-v1, and FetchPickAndPlace-v1) consisting of the location and the velocity of the gripper. When

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

PPO

Hyperparameters Sweep range Final value

Learning rate 0.0001, 0.0002, 0.0003, 0.0005 0.0005

Entropy 0.001, 0.003, 0.005, 0.01, 0.03 0.01

ICM

Hyperparameters Sweep range Final value

Learning rate 0.0005 0.0005

Entropy - 0.01

Forward/Inverse model loss weight ratio 1.0 1.0

Curiosity module loss weight 1.0 1.0

ICM bonus weight 0.0001, 0.0003, 0.001, 0.003, 0.01 0.01

ECO

Hyperparameters Sweep range Final value

Learning rate 0.0001, 0.0003, 0.0005 0.0005

Entropy - 0.01

ECO bonus weight 0.001, 0.003, 0.01, 0.03, 0.1 0.001

SPRL

Hyperparameters Sweep range Final value

Learning rate 0.0003, 0.0005 0.0005

Entropy - 0.01

SPRL cost scale (λ) 0.01, 0.03, 0.05, 0.1 0.05

Reachability network (for ECO and SPRL)

k 5, 8, 12, 15 12

Tolerance (∆t) - 1

Negative bias (∆−) 80, 100, 120 80

Positive bias (∆+) - 5

N∆t 30, 50, 100, 200, 400 200

Table 4. The range of hyperparameters sweeped over and the final hyperparameters used in Atari domain.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

the object exists in the task, the location, rotation, linear and angular velocities of the object are also included in the state st.

Action Space The action space is continuous. Actions are total 4 dimensional: 3 dimensions for gripper movement and 1

dimension for the opening of the gripper.

Modification in the environment We made two modifications in the episode termination and the reward function to

make it a sparse-reward task. The agent receives +1 reward if the agent reaches the goal and 0 rewards otherwise. Also, the

episode terminates when the agent reaches the goal such that the agent can receive a non-zero reward at most once in an

episode.

G.2. Tasks

Four tasks are available in the Fetch domain: FetchPush-v1, FetchReach-v1, FetchSlide-v1, FetchPickAndPlace-v1

• FetchPush-v1 : The goal is to push a box to a target location. The gripper can only push in this task since fingers are

not controllable.

• FetchReach-v1 : The goal is to move the gripper to a target location. This is the easiest task in Fetch since moving the

gripper is a fundamental skill required in all four tasks.

• FetchSlide-v1 : The goal is to hit the object, let the object slide, and stop at the desired location by friction.

• FetchPickAndPlace-v1 : The goal is to grasp a box and move the box to the target location.

G.3. Reward Normalization

We used reward normalization analogous to Burda et al. (2018a), i.e., “dividing the rewards by a running estimate of the

standard deviation of the sum of discounted rewards”. Reward normalization has been particularly effective in the Fetch

environment on every algorithm. We leave the analysis of this phenomenon as future work.

G.4. Architecture and hyper-parameters

We used a simple MLP architecture for policy network. The network consists of FC(256)-ReLU-FC(256)-ReLU-

FC(256)-ReLU-FC(256)-ReLU-FC(action-dimension). The reachability network was also a simple MLP net-

work. The network consists of FC(512)-BatchNorm-ReLU-FC(512)-BatchNorm-ReLU-FC(512)-BatchNorm-

ReLU-FC(512)-BatchNorm-ReLU-FC(1)-Sigmoid. We used Adam (Kingma & Ba, 2014) optimizer to optimize

both networks.

For hyper-parameter search, we swept over a set of hyper-parameters specified in Table 5 and chose the best one in terms of

the mean AUC over all the tasks, which is also summarized in Table 5.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

PPO

Hyperparameters Sweep range Final value

Learning rate - 0.0005

Entropy 0.001, 0.003, 0.01 0.01

Action Noise - 0.003

ICM

Hyperparameters Sweep range Final value

Learning rate - 0.0005

Entropy - 0.001

Action Noise - 0.003

Forward/Inverse model loss weight ratio - 1.0

Curiosity module loss weight - 1.0

ICM bonus weight 0.0001, 0.0002, 0.0003, 0.0005, 0.001, 0.003, 0.01 0.001

ECO

Hyperparameters Sweep range Final value

Learning rate - 0.0005

Entropy - 0.001

Action Noise - 0.003

ECO bonus weight 0.0001, 0.0002, 0.0003, 0.0005, 0.001, 0.003, 0.01 0.0001

Bias 0.5, 1.0 1.0

SPRL

Hyperparameters Sweep range Final value

Learning rate - 0.0005

Entropy - 0.001

SPRL cost scale (λ) 0.0001, 0.0002, 0.0003, 0.0005, 0.001, 0.003, 0.01 0.05

Bias 0.5, 1.0 1.0

Reachability network (for ECO and SPRL)

k - 10

Tolerance (∆t) - 1

Negative bias (∆−) 1, 2, 3, 5, 8, 12 12

Positive bias (∆+) - 5

N∆t - 20

Table 5. The range of hyperparameters swept over and the final hyperparameters used in Fetch domain.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

H. Option framework-based formulation

H.1. Preliminary: option framework

Options framework (Sutton, 1998) defines options as a generalization of actions to include a temporally extended series of

action. Formally, options consist of three components: a policy π : S ×A → [0, 1], a termination condition β : S+ → [0, 1],
and an initiation set I ⊆ S. An option 〈I, π, β〉 is available in state s if and only if s ∈ I. If the option is taken, then

actions are selected according to π until the option terminates stochastically according to β. Then, the option-reward and

option-transition models are defined as

ros = E
{
rt+1 + γrt+2 + · · ·+ γk−1rt+k | E(o, s, t)

}
(22)

P o
ss′ =

∞∑

k=1

p (s′, k) γk (23)

where t + k is the random time at which option o terminates, E(o, s, t) is the event that option o is initiated in state s at

time t, and p(s′, k) is the probability that the option terminates in s′ after k steps. Using the option models, we can re-write

Bellman equation as follows:

V π(s) = E
[
rt+1 + · · ·+ γk−1rt+k + γkV π(st+k)

]
, (24)

=
∑

o∈O

Pr[E(o, s)]

[

ros +
∑

s′

P o
ss′V

π(s′)

]

. (25)

where t+ k is the random time at which option o terminates and E(o, s) is the event that option o is initiated in state s.

H.2. Option-based view-point of shortest-path constraint

In this section, we present an option framework-based viewpoint of our shortest-path (SP) constraint. We will first show that

a (sparse-reward) MDP can be represented as a weighted directed graph where nodes are rewarding states, and edges are

options. Then, we show that a policy satisfying SP constraint also maximizes the option-transition probability P o
ss′ .

For a given MDPM = (S,A,R,P, ρ, S̄), let SR = {s|R(s) 6= 0} ⊂ S be the set of all rewarding states, where R(s) is

the reward function upon arrival to state s. In sparse-reward tasks, it is assumed that |SR| << |S|. Then, we can form a

weighted directed graph Gπ = (V, E) of policy π and given MDP. The vertex set is defined as V = SR ∪ ρ0 ∪ S̄ where

SR is rewarding states, ρ0 is the initial states, and S̄ is the terminal states. Similar to the path set in Definition 2, let Ts→s′

denotes a set of paths transitioning from one vertex s ∈ V to another vertex s′ ∈ V:

Ts→s′ = {τ |s0 = s, sℓ(τ) = s′, {st}0<t<ℓ(τ) ∩ V = ∅}. (26)

Then, the edge from a vertex s ∈ V to another vertex s′ ∈ V is defined by an (implicit) option tuple: o(s, s′) = (I, π, β)(s,s′),
where I = {s}, β(s) = I(s = s′), and

π(s,s′)(τ) =

{
1
Z
π(τ) for τ ∈ Ts→s′

0 otherwise
, (27)

where Z is the partition function to ensure
∫
π(s,s′)(τ)dτ = 1. Following Eq. (22), the option-reward is given as

rπs,s′ = E
π(s,s′)

[

rt+1 + γrt+2 + · · ·+ γk−1rt+k | E(o(s,s
′), s, t)

]

, (28)

= E
π(s,s′)

[

γk−1rt+k | E(o(s,s
′), s, t)

]

, (29)

where t+ k is the random time at which option o(s, s′) terminates, and E(o, s, t) is the event that option o(s, s′) is initiated

in state s at time t. Note that in the last equality, rt+1 = · · · = rt+k−1 = 0 holds since {st+1, . . . , st+k−1} ∩ V = ∅ from

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

the definition of option policy π(s,s′). Following Eq. (23), the option transition is given as

Pπ
s,s′ =

∞∑

k=1

p(s′, k)γk (30)

= E
π
[
γk|s0 = s, sk = s′, {rt}t<k = 0

]
(31)

= γDπ
nr(s,s

′). (32)

where p(s′, k) is the probability that the option terminates in s′ after k steps, and Dπ
nr(s, s

′) is the π-distance in Definition 3.

Then, we can re-write the shortest-path constraint in terms of Pπ
s,s′ as follows:

ΠSP = {π|∀(s, s′ ∈ T π
ŝ,ŝ′,nr s.t. (ŝ, ŝ′) ∈ Φπ), Dπ

nr(s, s
′) = min

π
Dπ

nr(s, s
′)} (33)

= {π|∀(s, s′ ∈ T π
ŝ,ŝ′,nr s.t. (ŝ, ŝ′) ∈ Φπ), Pπ

s,s′ = max
π

Pπ
s,s′} (34)

Thus, we can see that the policy satisfying SP constraint also maximizes the option-transition probability. We will use this

result in Appendix I.

I. Shortest-Path Constraint: A Single-goal Case

In this section, we provide more discussion on a special case of the shortest-path constraint (Section 3.1), when the

(stochastic) MDP defines a single-goal task: i.e., there exists a unique initial state sinit ∈ S and a unique goal state sg ∈ S
such that sg is a terminal state, and R(s) > 0 if and only if s = sg .

We first note that the non-rewarding path set is identical to the path set in such a setting, because the condition rt = 0(t <
ℓ(τ)) from Definition 2 is always satisfied as R(s) > 0⇔ s = sg and sℓ(τ) = sg:

T π
s,s′,nr = T

π
s,s′ = {τ | s0 = s, sℓ(τ) = s′, pπ(τ) > 0, {st}t<ℓ(τ) 6= s′} (35)

Again, T π
s,s′ is a set of all path starting from s (i.e., and ending at s′ (i.e., sℓ(τ) = s′) where the agent visits s′ only at the end

(i.e., {st}t<ℓ(τ) 6= s′), that can be rolled out by policy with a non-zero probability (i.e., pπ(τ) > 0).

We now claim that an optimal policy satisfies the shortest-path constraint. The idea is that, since sg is the only rewarding

and terminal state, maximizing R(τ) = γTR(sg) where sT = sg corresponds to minimizing the number of time steps T to

reach sg . In this setting, a shortest-path policy is indeed optimal.

Lemma 4. For a single-goal MDP, any optimal policy satisfies the shortest-path constraint.

Proof. Let sinit be the initial state and sg be the goal state. We will prove that any optimal policy is a shortest-path policy

from the initial state to the goal state. We use the fact that sg is the only rewarding state, i.e., R(s) > 0 entails s = sg .

π∗ = argmax
π

E
τ∼π
s∼ρ

[
∑

t γ
trt

∣
∣
∣
∣
s0 = s

]

(36)

= argmax
π

E
τ∼π

[
∑

t γ
trt

∣
∣
∣
∣
s0 = sinit

]

(37)

= argmax
π

E
τ∼π

[
γTR(sg) | s0 = sinit, sℓ(τ) = sg

]
(38)

= argmax
π

E
τ∼π

[
γT | s0 = sinit, sℓ(τ) = sg

]
(39)

= argmin
π

logγ
(
E
τ∼π

[
γT | s0 = sinit, sℓ(τ) = sg

])
(40)

= argmin
π

Dπ
nr(sinit, sg), (41)

where Eq. (39) holds since R(sg) > 0 from our assumption that R(s) + V ∗(s) > 0.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

J. Proof of Theorem 1

We make the following assumptions on the Markov Decision Process (MDP)M: namely mild stochasticity (Definitions 8

and 9).

Definition 8 (Mild stochasticity (1)). In MDPM, there exists an optimal policy π∗ and the corresponding shortest-path

policy πsp ∈ ΠSP such that for all s, s′ ∈ Φπ , it holds pπ∗(s̄ = s′|s0 = s) = pπsp(s̄ = s′|s0 = s).

Definition 9 (Mild stochasticity (2)). In MDPM, the optimal policy π∗ does not visit the same state more than once: For

all s ∈ S such that ρπ∗(s) > 0, it holds ρπ∗(s) = 1, where ρπ(s) , Es0∼ρ0(S),a∼π(A|s),s′∼(S|s,a)

[
∑T

t=1 I (st = s)
]

is the

state-visitation count.

In other words, we assume that the optimal policy does not have a cycle. One common property of MDP that meets this

condition is that the reward disappearing after being acquired by the agent. We note that this assumption holds for many

practical environments. In fact, in many cases as well as Atari, DeepMind Lab, etc.

Theorem 1. For any MDP with the mild stochasticity condition, an optimal policy π∗ satisfies the shortest-path constraint:

π∗ ∈ ΠSP.

Proof. For simplicity, we prove this based on the option-based view point (see Appendix H). By plugging Eq. (29)

and Eq. (31) into Eq. (25), we can re-write the Bellman equation of the value function V π(s) as follows:

V π(s) =
∑

o∈O

Pr[E(o, s)]

[

ros +
∑

s′

P o
ss′V

π(s′)

]

(42)

=
∑

s′∈SIR

pπ(s̄ = s′|s0 = s)
[

R(s′)Eτ∼π(γℓ(τ)|s0 = s, s̄ = s′) + γPπ
s,s′V

π(s′)
]

(43)

=
∑

s′∈SIR

pπ(s̄ = s′|s0 = s)
[
R(s′)Pπ

s,s′ + γPπ
s,s′V

π(s′)
]
, (44)

=
∑

s′∈SIR

pπ(s̄ = s′|s0 = s)Pπ
s,s′ [R(s′) + γV π(s′)] , (45)

where s̄ is the first rewarding state that agent encounters. Intuitively, pπ(s̄ = s′|s0 = s) means the probability that the s′ is

the first rewarding state that policy π encounters when it starts from s. From Eq. (34), our goal is to show:

π∗ ∈ ΠSP = {π | ∀(s, s′) ∈ T π
Φ,nr, P

π
s,s′ = P ∗

s,s′}, (46)

where P ∗
s,s′ = maxπ P

π
s,s′ .

We will prove Eq. (46) by contradiction. Suppose π∗ is an optimal policy such that π∗ 6∈ ΠSP. Then,

∃(ŝ, ŝ′ ∈ T π∗

Φ,nr) s.t. Pπ∗

ŝ,ŝ′ 6= P ∗
ŝ,ŝ′ . (47)

Recall the definition: P ∗
s,s′ = maxπ P

π
s,s′ . Then, for any π, the following statement is true.

Pπ
s,s′ 6= P ∗

s,s′ ↔ Pπ
s,s′ < P ∗

s,s′ . (48)

Thus, we have

Pπ∗

ŝ,ŝ′ < P ∗
ŝ,ŝ′ (49)

Let πsp ∈ ΠSP be a shortest path policy that preserves stochastic dynamics from Definition 8. Then, we have

Pπ∗

ŝ,ŝ′ < P ∗
ŝ,ŝ′ = P

πsp

ŝ,ŝ′ . (50)

Then, let’s compose a new policy π̂:

π̂(a|s) =

{

πsp(a|s) if ∃ τ ∈ T
πsp

ŝ,ŝ′,nr s.t. s ∈ τ

π∗(a|s) otherwise
. (51)

Now consider a path τŝ→ŝ′ that agent visits ŝ at time t = i and transitions to ŝ′ at time t = j > i while not visiting any

rewarding state from t = i to t = j with non-zero probability (i.e., pπsp
(τ) > 0). We can define a set of such paths as

follows:

T̂ŝ→ŝ′ = {τ | ∃(i < j), si = ŝ, sj = ŝ′, {st}i<t<j ∩ S
IR = ∅, pπsp

(τ) > 0}. (52)

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

To reiterate the definitions from Definition 6: SIR = {s | R(s) > 0 or ρ(s) > 0} is the union of all initial and rewarding

states, and Φπ = {(s, s′) | s, s′ ∈ SIR, ρ(s) > 0, T π
s,s′,nr 6= ∅} is the subset of SIR such that agent may roll out.

From Definition 9 and Eq. (51), the likelihood of a path τ under policy π̂ is given as follows:

pπ̂(τ) =

{

pπ∗(τ ∈ T̂ŝ→ŝ′)pπsp
(τ |τ ∈ T̂ŝ→ŝ′) for τ ∈ T̂ŝ→ŝ′

pπ∗(τ) otherwise
, (53)

where pπ̂(τ) is the likelihood of trajectory τ under policy π̂, pπ̂(τ ∈ T̂ŝ→ŝ′) =
∫

τ∈T̂ŝ→ŝ′
pπ̂(τ)dτ ensures the likelihood

π̂(τ) to be a valid probability density function (i.e.,
∫
pπ̂(τ)dτ = 1). From the path τŝ→ŝ′ and i, j, we will choose two

states sir, s
′
ir ∼ τŝ→ŝ′ , where

sir = max
t

(st|st ∈ S
IR, t ≤ i), s′ir = min

t
(st|st ∈ S

IR, j ≤ t). (54)

Note that such sir and s′ir always exist in τŝ→ŝ′ since the initial state and the terminal state satisfy the condition to be sir and

s′ir.

Then, we can show that the path between sir and s′ir is not a shortest-path. Recall the definition of Dπ
nr(s, s

′) (Definition 3):

Dπ∗

nr (sir, s
′
ir) := logγ

(

Eτ∼π∗: τ∈T π∗

sir,s
′

ir
,nr

[

γℓ(τ)
])

(55)

= logγ

Eτ∼π∗

[

γℓ(τ) | τ ∈ T π∗

sir,s
′

ir
,nr

]

︸ ︷︷ ︸

♣

(56)

where we will use ♣ := γℓ(τ) | τ ∈ T π∗

sir,s
′

ir
,nr for a shorthand notation. Then, we have

γDπ∗

nr (sir,s
′

ir) := Eτ∼π∗ [♣] (57)

= pπ∗(τ ∈ T̂ŝ→ŝ′)Eτ∼π∗

[

♣ | τ ∈ T̂ŝ→ŝ′

]

+ pπ∗(τ /∈ T̂ŝ→ŝ′)Eτ∼π∗

[

♣ | τ /∈ T̂ŝ→ŝ′

]

. (58)

(From Definition 5) < pπ∗(τ ∈ T̂ŝ→ŝ′)Eτ∼πsp

[

♣ | τ ∈ T̂ŝ→ŝ′

]

+ pπ∗(τ /∈ T̂ŝ→ŝ′)Eτ∼π∗

[

♣ | τ /∈ T̂ŝ→ŝ′

]

(59)

(From Eq. (53)) = pπ̂(τ ∈ T̂ŝ→ŝ′)Eτ∼π̂

[

♣ | τ ∈ T̂ŝ→ŝ′

]

+ pπ̂(τ /∈ T̂ŝ→ŝ′)Eτ∼π̂

[

♣ | τ /∈ T̂ŝ→ŝ′

]

(60)

= Eτ∼π̂ [♣] = γDπ̂
nr(sir,s

′

ir) (61)

⇐⇒ Dπ∗

nr (sir, s
′
ir) > Dπ̂

nr(sir, s
′
ir) (62)

where Ineq. (62) is given by the fact that γ < 1. Then, Pπ∗

sir,s
′

ir
< P π̂

sir,s
′

ir
.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

From Eq. (45), we have

V π̂(sir) =
∑

s′∈SIR

pπ̂(s̄ = s′ | s0 = sir)P
π̂
sir,s′

[
R(s′) + γV π̂(s′)

]
(63)

= pπ̂(s̄ = s′ir | s0 = sir)P
π̂
sir,s

′

ir

[
R(s′ir) + γV π̂(s′ir)

]

+
∑

s′∈SIR\s′
ir

pπ̂(s̄ = s′ | s0 = sir)P
π̂
sir,s′

[
R(s′) + γV π̂(s′)

]
(64)

= pπ∗(s̄ = s′ir | s0 = sir)P
π̂
sir,s

′

ir

[

R(s′ir) + γV π∗

(s′ir)
]

+
∑

s′∈SIR\s′
ir

pπ∗(s̄ = s′ | s0 = sir)P
π∗

sir,s′

[

R(s′) + γV π∗

(s′)
]

(65)

> pπ∗(s̄ = s′ir | s0 = sir)P
π∗

sir,s
′

ir

[

R(s′ir) + γV π∗

(s′ir)
]

+
∑

s′∈SIR\s′
ir

pπ∗(s̄ = s′ | s0 = sir)P
π∗

sir,s′

[

R(s′) + γV π∗

(s′)
]

(66)

=
∑

s′∈SIR

pπ∗(s̄ = s′ | s0 = sir)P
π∗

sir,s′

[

R(s′) + γV π∗

(s′)
]

(67)

= V ∗(sir), (68)

where Eq. (65) holds from the mild-stochasticity (1) and mild-stochasticity (2) assumption, and Ineq. (66) holds because

P π̂
sir,s

′

ir
> Pπ∗

sir,s
′

ir
and R(s′) + γV π∗

(s′) > 0 from the non-negative optimal value assumption (See Section 2). Finally, this is

a contradiction since the optimal value function V ∗(s) should be the maximum.

K. Extended related works

Approximate state abstraction. The approximate state abstraction approaches investigate partitioning an MDP’s state

space into clusters of similar states while preserving the optimal solution. Researchers have proposed several state similarity

metrics for MDPs. Dean et al. (2013) proposed to use the bisimulation metrics (Givan et al., 2003; Ferns et al., 2004), which

measures the difference in transition and reward function. Bertsekas et al. (1988) used the magnitude of Bellman residual

as a metric. Abel et al. (2016; 2018); Li et al. (2006) used the different types of distance in optimal Q-value to measure

the similarity between states to bound the sub-optimality in optimal value after the abstraction. Recently, Castro (2019)

extended the bisimulation metrics to the approximate version for the deep-RL setting where the tabular representation of

state is not available.

Our shortest-path constraint can be seen as a form of state abstraction, in that, ours also aim to reduce the size of MDP (i.e.,

state and action space) while preserving the “solution quality”. However, our method does so by removing sub-optimal

policies, not by aggregating similar states (or policies).

Connection to Option framework Our shortest-path constraint constrains the policy space to a set of shortest-path

policies (See Definition 5 for definition) between initial and rewarding states. It can be seen as a set of options (Sutton,

1998) transitioning between initial and rewarding states. We refer the readers to Appendix H for the detailed description of

the option framework-based formulation of our framework.

References

Abel, D., Hershkowitz, D., and Littman, M. Near optimal behavior via approximate state abstraction. In International

Conference on Machine Learning, pp. 2915–2923, 2016.

Abel, D., Arumugam, D., Lehnert, L., and Littman, M. State abstractions for lifelong reinforcement learning. In International

Conference on Machine Learning, pp. 10–19, 2018.

Altman, E. Constrained Markov decision processes, volume 7. CRC Press, 1999.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

Beattie, C., Leibo, J. Z., Teplyashin, D., Ward, T., Wainwright, M., Küttler, H., Lefrancq, A., Green, S., Valdés, V., Sadik,

A., et al. Deepmind lab. arXiv preprint arXiv:1612.03801, 2016.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. The arcade learning environment: An evaluation platform for

general agents. Journal of Artificial Intelligence Research, 47:253–279, 2013.

Bellemare, M. G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos, R. Unifying count-based exploration

and intrinsic motivation. arXiv preprint arXiv:1606.01868, 2016.

Bellman, R. On a routing problem. Quarterly of applied mathematics, 16(1):87–90, 1958.

Bertsekas, D. P. and Tsitsiklis, J. N. An analysis of stochastic shortest path problems. Mathematics of Operations Research,

16(3):580–595, 1991.

Bertsekas, D. P. and Tsitsiklis, J. N. Neuro-dynamic programming: an overview. In Proceedings of 1995 34th IEEE

Conference on Decision and Control, volume 1, pp. 560–564. IEEE, 1995.

Bertsekas, D. P., Castanon, D. A., et al. Adaptive aggregation methods for infinite horizon dynamic programming. 1988.

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., and Efros, A. A. Large-scale study of curiosity-driven learning.

arXiv preprint arXiv:1808.04355, 2018a.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. Exploration by random network distillation. arXiv preprint

arXiv:1810.12894, 2018b.

Castro, P. S. Scalable methods for computing state similarity in deterministic markov decision processes. arXiv preprint

arXiv:1911.09291, 2019.

Chevalier-Boisvert, M., Willems, L., and Pal, S. Minimalistic gridworld environment for openai gym. https://github.

com/maximecb/gym-minigrid, 2018.

Choi, J., Guo, Y., Moczulski, M., Oh, J., Wu, N., Norouzi, M., and Lee, H. Contingency-aware exploration in reinforcement

learning. arXiv preprint arXiv:1811.01483, 2018.

Coulom, R. Efficient selectivity and backup operators in monte-carlo tree search. In International conference on computers

and games, pp. 72–83. Springer, 2006.

Dean, T. L., Givan, R., and Leach, S. Model reduction techniques for computing approximately optimal solutions for

markov decision processes. arXiv preprint arXiv:1302.1533, 2013.

Dhariwal, P., Hesse, C., Klimov, O., Nichol, A., Plappert, M., Radford, A., Schulman, J., Sidor, S., Wu, Y., and Zhokhov, P.

Openai baselines. https://github.com/openai/baselines, 2017.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O., and Clune, J. Go-explore: a new approach for hard-exploration

problems. arXiv preprint arXiv:1901.10995, 2019.

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning,

I., et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner architectures. arXiv preprint

arXiv:1802.01561, 2018.

Ferns, N., Panangaden, P., and Precup, D. Metrics for finite markov decision processes. In UAI, volume 4, pp. 162–169,

2004.

Florensa, C., Held, D., Wulfmeier, M., Zhang, M., and Abbeel, P. Reverse curriculum generation for reinforcement learning.

In Conference on robot learning, pp. 482–495. PMLR, 2017.

Ford Jr, L. R. Network flow theory. Technical report, Rand Corp Santa Monica Ca, 1956.

Givan, R., Dean, T., and Greig, M. Equivalence notions and model minimization in markov decision processes. Artificial

Intelligence, 147(1-2):163–223, 2003.

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid
https://github.com/openai/baselines

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

Guo, X., Singh, S., Lewis, R., and Lee, H. Deep learning for reward design to improve monte carlo tree search in atari

games. arXiv preprint arXiv:1604.07095, 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pp. 770–778, 2016.

Higgins, I., Pal, A., Rusu, A., Matthey, L., Burgess, C., Pritzel, A., Botvinick, M., Blundell, C., and Lerchner, A. Darla:

Improving zero-shot transfer in reinforcement learning. In Proceedings of the 34th International Conference on Machine

Learning-Volume 70, pp. 1480–1490. JMLR. org, 2017.

Huang, Z., Liu, F., and Su, H. Mapping state space using landmarks for universal goal reaching. In Advances in Neural

Information Processing Systems, pp. 1940–1950, 2019.

Kakade, S. M. et al. On the sample complexity of reinforcement learning. PhD thesis, University of London London,

England, 2003.

Khetarpal, K. and Precup, D. Attend before you act: Leveraging human visual attention for continual learning. arXiv

preprint arXiv:1807.09664, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Lai, T. L. and Robbins, H. Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1):4–22,

1985.

Laskin, M., Emmons, S., Jain, A., Kurutach, T., Abbeel, P., and Pathak, D. Sparse graphical memory for robust planning.

arXiv preprint arXiv:2003.06417, 2020.

Li, L., Walsh, T. J., and Littman, M. L. Towards a unified theory of state abstraction for mdps. In ISAIM, 2006.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,

A. K., Ostrovski, G., et al. Human-level control through deep reinforcement learning. Nature, 518(7540):529–533, 2015.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-efficient hierarchical reinforcement learning. In Advances in Neural

Information Processing Systems, pp. 3303–3313, 2018.

Ng, A. Y., Harada, D., and Russell, S. Policy invariance under reward transformations: Theory and application to reward

shaping. In ICML, volume 99, pp. 278–287, 1999.

Norvig, P. R. Artificial Intelligence: A Modern Approach. Prentice Hall, 2002.

Oh, J., Guo, Y., Singh, S., and Lee, H. Self-imitation learning. In International Conference on Machine Learning, pp.

3878–3887. PMLR, 2018.

Oudeyer, P.-Y. and Kaplan, F. What is intrinsic motivation? a typology of computational approaches. Frontiers in

neurorobotics, 1:6, 2009.

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. Curiosity-driven exploration by self-supervised prediction. In

Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 2778–2787. JMLR. org, 2017.

Plappert, M., Andrychowicz, M., Ray, A., McGrew, B., Baker, B., Powell, G., Schneider, J., Tobin, J., Chociej, M., Welinder,

P., et al. Multi-goal reinforcement learning: Challenging robotics environments and request for research. arXiv preprint

arXiv:1802.09464, 2018.

Riedmiller, M., Hafner, R., Lampe, T., Neunert, M., Degrave, J., Wiele, T., Mnih, V., Heess, N., and Springenberg, J. T.

Learning by playing solving sparse reward tasks from scratch. In International Conference on Machine Learning, pp.

4344–4353. PMLR, 2018.

Savinov, N., Dosovitskiy, A., and Koltun, V. Semi-parametric topological memory for navigation. arXiv preprint

arXiv:1803.00653, 2018a.

Savinov, N., Raichuk, A., Marinier, R., Vincent, D., Pollefeys, M., Lillicrap, T., and Gelly, S. Episodic curiosity through

reachability. ICLR, 2018b.

Shortest-Path Constrained Reinforcement Learning for Sparse Reward Tasks

Schaul, T., Horgan, D., Gregor, K., and Silver, D. Universal value function approximators. In International conference on

machine learning, pp. 1312–1320, 2015.

Schmidhuber, J. Adaptive confidence and adaptive curiosity. In Institut fur Informatik, Technische Universitat Munchen,

Arcisstr. 21, 800 Munchen 2. Citeseer, 1991.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. Proximal policy optimization algorithms. arXiv preprint

arXiv:1707.06347, 2017.

Shang, W., Sohn, K., Almeida, D., and Lee, H. Understanding and improving convolutional neural networks via concatenated

rectified linear units. In international conference on machine learning, pp. 2217–2225, 2016.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A.,

et al. Mastering the game of go without human knowledge. Nature, 550(7676):354–359, 2017.

Sutton, R. S. Between mdps and semi-mdps: Learning, planning, and representing knowledge at multiple temporal scales.

1998.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An introduction. MIT press, 2018.

Tessler, C., Mankowitz, D. J., and Mannor, S. Reward constrained policy optimization. ICLR, 2019.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., and Kavukcuoglu, K. Feudal networks for

hierarchical reinforcement learning. In Proceedings of the 34th International Conference on Machine Learning-Volume

70, pp. 3540–3549. JMLR. org, 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T.,

Georgiev, P., et al. Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350–354,

2019.

Vodopivec, T., Samothrakis, S., and Ster, B. On monte carlo tree search and reinforcement learning. Journal of Artificial

Intelligence Research, 60:881–936, 2017.

Zhang, A., Lerer, A., Sukhbaatar, S., Fergus, R., and Szlam, A. Composable planning with attributes. ICML, 2018.

Zhang, T., Guo, S., Tan, T., Hu, X., and Chen, F. Generating adjacency-constrained subgoals in hierarchical reinforcement

learning. arXiv preprint arXiv:2006.11485, 2020.

