
PC-MLP

A. Sample Complexity Analysis of PC-MLP
In this section, we provide detailed analysis for PC-MLP on both KNRs and Linear MDPs.

A.1. Model Learning from MLE

We consider a fixed episode n. The derived result here can be applied to all episodes via a union bound. We derive
model’s generalization error under distribution dπn in terms of total variation distance. For linear MDPs, we can directly
call Theorem 21 from (Agarwal et al., 2020b), which shows under realizability P ? ∈ P , the empirical maximizer of MLE
directly enjoys the following generalization error.

Lemma 5 (MLE for linear MDPs (Theorem 21 from (Agarwal et al., 2020b))). Fix δ ∈ (0, 1), and assume |P| < ∞
and P ? ∈ P . Consider M samples with (si, ai) ∼ dπn , and s′i ∼ P ?(·|s, a). Denote the empirical risk minimizer as
P̂n = argmaxP∈P

∑M
i=1 lnP (s′i|si, ai). We have that with probability at least 1− δ,

Es,a∼dπn
∥∥∥P̂n(·|s, a)− P ?(·|s, a)

∥∥∥2

1
≤ 2 ln (|P| /δ)

M
.

For KNRs, we do not need to rely on the exact empirical risk minimization. Instead we can use approximation optimization
approach SGD here. Note that due to the Gaussian noise in the KNR model, we have that for a model PW with W as the
parameterization:

lnPW (s′|s, a) = −‖Wφ(s, a)− s′‖22/σ2 + ln(1/C),

where C is the normalization constant for Gaussian distribution with zero mean and covariance matrix σ2I .
Hence gradient of the log-likelihood is equivalent to the gradient of the squared `2 loss. Specifically, for ap-
proximately optimizing the empirical log-likelihood, we start with W 0 = 0, and perform SGD with W i+1 =∏
W :‖W‖2≤F

(
W i − η

(
W iφ(si, ai)− s′i

)
φ(si, ai)

>) and set Ŵn = 1
M

∑M
i=1W

i.

To use SGD’s result, we first need to bound all states s′. The following lemma indicates that with high probability, the
states have bounded norm.

Lemma 6. In each episode, we generate M data points {si, ai, s′i}Mi=1 with si, ai ∼ dπn and s′i ∼ N
(
W ?φ(si, ai), σ

2I
)

with ‖W ?‖2 ≤ F . With probability at least 1− δ, we have:

‖s′i‖2 ≤ F + σ
√
ds ln (dsM/δ),∀i ∈ [1, . . . ,M].

Proof. Denote s′i = εi +W ?φ(si, ai) where εi ∼ N (0, σ2I). We must have that for a fixed i and dimension j ∈ [ds]:

P(|εi[j]| ≥ t) ≤ exp(−t2/σ2).

Take a union bound over all i, j, we have:

P(∃i, j, s.t. |εi[j]| ≥ t) ≤ dsM exp(−t2/σ2).

Set dsM exp(−t2/σ2) = δ, we get:

t = σ

√
ln

(
dsM

δ

)
.

Hence with probability 1− δ, for i, j, we have:

|εi[j]| ≤ σ
√

ln
dsM

δ
.

Hence, ‖s′i‖2 ≤ ‖W ?φ(si, ai)‖2 + ‖εi‖2 ≤ F + σ
√
ds ln

(
dsM
δ

)
.

PC-MLP

Throughout this section, we assume the above event in Lemma 6 holds and we denote F + σ
√
ds ln (dsM/δ) = B for

notation simplicity .

Now we can call Lemma 16 (dimension-free SGD result) to conclude the following lemma.

Lemma 7 (MLE on KNRs). With probability at least 1− δ, we have that:

Es,a∼dπn
[∥∥∥Ŵnφ(s, a)−W ?φ(s, a)

∥∥∥2

2

]
≤ 3(F 2 + FB) ln(1/δ)√

M
,

where B = F + σ
√
ds ln

(
2dsM
δ

)
.

Proof. Lemma 6 states that with probability 1 − δ/2, we have that ‖s′i‖2 ≤ B for all i ∈ [1, . . . ,M]. Condition on this
event, we call Lemma 16 and using the fact that ‖W ?‖2 ≤ ‖W ?‖F ≤ F , we get that with probability at least 1− δ/2,

Es,a∼dπn
[∥∥∥Ŵnφ(s, a)−W ?φ(s, a)

∥∥∥2

2

]
≤ 3(F 2 + FB) ln(2/δ)√

M

The total probability of failure is δ.

This concludes the proof.

A.2. Optimism at the Starting State

We denote bn(s, a) using Σn as follows:

bn(s, a) = min

{
c

√
φ(s, a)>Σ−1

n φ(s, .a), H

}
.

Recall that the reward bonus in the algorithm is defined with respect to Σ̂n in Eq. 2. We will link bn and b̂n later in the
analysis.

The bonus is related to the uncertainty in the model. Consider any policy π, reward bonus bn in the form of Eq. 2, and any
model P̂ ∈ P . Denote V̂ πr+bn;h as the value function at time step h under policy π in model P̂ and reward r + bn. Note
that r(s, a) + bn(s, a) ∈ [0, H + 1], we have ‖V̂ πr+bn,h‖∞ ≤ H

2 for any h.

Lemma 8 (Optimism in Linear MDPs). Assume the following condition hold for all n ∈ [1, . . . , N]:

Es,a∼dπn ‖P̂n(·|s, a)− P ?(·|s, a)‖21 ≤ εstat ∈ R+,∀n.

Set c = H
√

(λd+Nεstat), and assume bn(s, a) ≤ b̂n(s, a) ≤ 4bn(s, a) holds for all n. Then, we have that for any n:

V̂
πn+1

r+b̂n;0
(s0) ≥ max

π∈Π
V π0 (s0).

Proof. We denote π? = argmaxπ∈Π V
π
0 (s0). We consider π? specifically. Without loss of generality, we denote

V̂ π
r+b̂n;H

(s) = V πH(s) = 0 for all s ∈ S. Thus, for h = H , we have V̂ π
?

r+b̂n;H
(s) ≥ V π?H (s),∀s.

Assume that at time step h + 1, we have V̂ π
?

r+b̂n;h+1
(s) ≥ V π

?

h+1(s),∀s. Now we move on to prove this also holds at time

step h. Denote a? = π?(s). Also we define Σn =
∑n
i=1 Σπn + λI .

V̂ π
?

r+b̂n;h
(s)− V π

?

h (s) = r(s, a?) + b̂n(s, a?) + Es′∼P̂n(·|s,a?)V̂
π?

r+b̂n;h+1
(s′)−

(
r(s, a?) + Es′∼P?(·|s,a?)V

π?

h+1(s′)
)

≥ bn(s, a?) +
(
Es′∼P̂n(·|s,a?)V

π?

h+1(s′)− Es′∼P?(·|s,a?)V
π?

h+1(s′)
)

= bn(s, a?) + ((µ̂n − µ?)φ(s, a?)) · V π
?

h+1

PC-MLP

We bound ((µ̂n − µ?)φ(s, a)) · V π?h+1 below.∣∣∣((µ̂n − µ?)φ(s, a)) · V π
?

h+1

∣∣∣2 ≤ ‖φ(s, a)‖2
Σ−1
n

∥∥∥(µ̂n − µ?)> V π
?

h+1

∥∥∥2

Σn

= ‖φ(s, a)‖2
Σ−1
n

(
λ
∥∥∥(µ̂n − µ?)> V π

?

h+1

∥∥∥2

2
+ nEs,a∼dπn

(
φ(s, a)> (µ̂n − µ?)> V π

?

h+1

)2
)

≤ ‖φ(s, a)‖2
Σ−1
n

(
λ
∥∥∥(µ̂n − µ?)> V π

?

h+1

∥∥∥2

2
+ nH2Es,a∼dπn ‖P̂n(·|s, a)− P ?(·|s, a)‖21

)
≤ ‖φ(s, a)‖2

Σ−1
n

(
λH2d+ nH2Es,a∼dπn‖P̂n(·|s, a)− P ?(·|s, a)‖21

)
≤
(
λH2d+ nH2εstat

)
‖φ(s, a)‖2

Σ−1
n
≤ c2‖φ(s, a)‖2

Σ−1
n
.

Thus, we get that:

V̂ π
?

r+b̂n;h
(s)− V π

?

h+1(s) ≥ bn(s, a?)− c‖φ(s, a?)‖Σ−1
n

= 0.

Note that the above holds for any s. Thus via induction, we conclude that at h = 0, we have V̂ π
?

r+b̂n;0
(s0) ≥ V π

?

0 (s0).

Using the fact that πn+1 = argmaxπ∈Π V̂
π
r+b̂n;0

(s0), we conclude the proof.

Lemma 9 (Optimism in KNRs). Assume the following condition hold for all n ∈ [1, . . . , N]:

Es,a∼dπn
∥∥∥Ŵnφ(s, a)−W ?φ(s, a)

∥∥∥2

2
≤ εstat,∀n,

Set c = 1
σH
√
λ4F 2 +Nεstat, and assume that bn(s, a) ≤ b̂n(s, a) ≤ 4bn(s, a) holds for all n. we have that for any n:

V̂
πn+1

r+b̂n;0
(s0) ≥ max

π∈Π
V π0 (s0).

Proof. For any n, the condition in the lemma implies that:

n∑
i=1

Es,a∼dπi
∥∥∥Ŵnφ(s, a)−W ?φ(s, a)

∥∥∥2

2
= tr

((
Ŵn −W ?

) n∑
i=1

Σπi

(
Ŵn −W ?

)>)
≤ nεstat

Note that Σn =
∑n
i=1 Σπi + λI , we have that:∥∥∥(Ŵn −W ?

)
Σ1/2
n

∥∥∥2

2
≤ tr

((
Ŵn −W ?

)
Σn

(
Ŵn −W ?

)>)
≤ nεstat + λ4F 2,

where we use the norm bound that ‖Ŵn‖2F ≤ F 2, ‖W ?‖2F ≤ F 2.

Similarly, we can use induction to prove optimism. Assume V̂ π
?

r+b̂n;h+1
(s) ≥ V π

?

h+1(s) for all s. For any s, denote
a? = π?(s), we have:

V̂ π
?

r+b̂n;h
(s)− V π

?

h (s) ≥ bn(s, a?) +
(
Es′∼P̂n(·|s,a?)V

π?

h+1(s′)− Es′∼P?(·|s,a?)V
π?

h+1(s′)
)

≥ bn(s, a?)−
∥∥∥P̂n(·|s, a?)− P ?(·|s, a?)

∥∥∥
1
‖V π

?

h+1‖∞

≥ bn(s, a?)− H

σ

∥∥∥(Ŵn −W ?
)
φ(s, a?)

∥∥∥
2

≥ bn(s, a?)− H

σ

∥∥∥Ŵn −W ?
∥∥∥

Σn
‖φ(s, a?)‖Σ−1

n

≥ bn(s, a?)− H
√
nεstat + λ4F 2

σ
‖φ(s, a?)‖Σ−1

n
≥ 0,

due to the set up of c. Similar via induction, this concludes the proof.

PC-MLP

A.3. Regret Upper Bound

Below we consider bounding
∑N
n=1 (J(π?;P ?)− J(πn;P ?)) using optimism we proved in the section above.

Lemma 10 (Regret bound in linear MDPs). Assuming all conditions in Lemma 8 holds. We have:

N∑
n=1

(J(π?; r, P ?)− J(πn; r, P ?)) ≤ 6H2
N−1∑
n=1

Es,a∼dπn+1 [bn(s, a)] +H.

Proof. Since the condition in Lemma 8 holds, we have that for all n, optimism holds, i.e., J(πn+1; r + b̂n, P̂n) ≥
J(π?; r, P ?). Hence, together with the simulation lemma (Lemma 19) we have:

J(π?; r, P ?)− J(πn+1; r, P ?) ≤ J(πn+1; r + b̂n, P̂n)− J(πn+1; r, P ?)

=

H−1∑
h=0

E
s,a∼d

πn+1
h

[
b̂n(s, a) +

(
P̂n(·|s, a)− P ?(·|s, a)

)
· V̂ πn+1

r+b̂n;h+1

]
≤
H−1∑
h=0

E
s,a∼d

πn+1
h

[
4bn(s, a) +

(
P̂n(·|s, a)− P ?(·|s, a)

)
· V̂ πn+1

r+b̂n;h+1

]
.

Note that ‖V̂ π
r+b̂;h

‖∞ ≤ H2 for any π, h, n. Following similar derivation in the proof of Lemma 8, we have:∣∣∣((µ̂n − µ?)φ(s, a)) · V̂ πn+1

r+bn;h+1

∣∣∣ ≤ min
{
‖φ(s, a)‖Σ−1

n

√
(λH4d+ nH4εstat), 2H

2
}

≤ 2H min
{
H
√
λd+Nεstat · ‖φ(s, a)‖Σ−1

n
, H

}
= 2Hbn(s, a).

Note that the regret at the first policy π1 is at most H . This concludes the proof.

Lemma 11 (Regret bound in KNRs). Assuming all conditions in Lemma 9 holds. We have:

N∑
n=1

(J(π?; r, P ?)− J(πn; r, P ?)) ≤ 5H2
N−1∑
n=1

Es,a∼dπn+1 [bn(s, a)] +H.

Proof. Again, via simulation lemma and optimism, we have:

J(π?; r, P ?)− J(πn+1; r, P ?) ≤
H−1∑
h=0

E
s,a∼d

πn+1
h

[
b̂n(s, a) +

(
P̂n(·|s, a)− P ?(·|s, a)

)
· V̂ πn+1

r+bn;h+1

]
≤
H−1∑
h=0

E
s,a∼d

πn+1
h

[
4bn(s, a) +

(
P̂n(·|s, a)− P ?(·|s, a)

)
· V̂ πn+1

r+bn;h+1

]
Following the derivation in the proof of Lemma 9, we have:

∣∣∣(P̂n(·|s, a)− P ?(·|s, a)
)
· V̂ πn+1

r+bn;h+1

∣∣∣ ≤ H2
√
nεstat + λ4F 2ds

σ
‖φ(s, a)‖Σ−1

n
= Hbn(s, a).

Combine the above two inequalities, we conclude the proof.

Recall the definition of information gain, IN (λ) = maxπ1,...,πN ln det
(
I + 1

λ

∑N
n=1 Σπn

)
.

PC-MLP

Lemma 12. For any sequence of policies π1, . . . , πn, with Σn =
∑n
i=1 Σπn and bn(s, a) ≤ c

√
φ(s, a)>Σ−1

n φ(s, a), we
have that:

N−1∑
n=1

Es,a∼dπn+1 bn(s, a) ≤ c
√

2NIN (λ).

When φ ∈ Rd, we have:

N−1∑
n=1

Es,a∼dπn+1 bn(s, a) ≤ c
√

2Nd ln (1 +N/λ).

Proof. Starting from the definition of bn, we have:

N−1∑
n=1

Es,a∼dπn+1 bn(s, a) ≤ c
N−1∑
n=1

Es,a∼dπn+1

√
φ(s, a)>Σ−1

n φ(s, a) ≤ c
√
N

√√√√N−1∑
n=1

Es,a∼dπn+1φ(s, a)>Σ−1
n φ(s, a)

= c
√
N

√√√√N−1∑
n=1

tr
(
Σπn+1Σ−1

n

)
≤ c
√

2N ln (det(ΣN)/ det(λI))

Here in second inequality we use Cauchy-Schwartz inequality, in the third inequality, we use Lemma 18.

If φ ∈ Rd, we have that: √
N ln(det(ΣN)/det(λI)) ≤

√
Nd ln(1 +N/λ),

where we use ‖φ(s, a)‖2 ≤ 1.

This concludes the proof.

A.4. Concluding the Sample Complexity Calculation

Before concluding the final sample complexity, we need to link Σ̂n to Σn, as our reward bonus in the algorithm is defined
in terms of the empirical estimate Σ̂n.

Lemma 13 (Relating b̂n and bn). With probability at least 1− δ, for all n ∈ [1, . . . , N], we have:

bn(s, a) ≤ b̂n(s, a) ≤ 4bn(s, a),∀s, a.

Proof. The proof uses Lemma 20. Under Lemma 20, we have:

min

{
c

√
φ(s, a)>Σ̂−1

n φ(s, a), H

}
≤ min

{
c
√

2

√
φ(s, a)>Σ−1

n φ(s, a), H

}
≤
√

2 min

{
c

√
φ(s, a)>Σ−1

n φ(s, a), H

}
=
√

2bn(s, a).

and

bn(s, a)/
√

2 = min

{
c

√
φ(s, a)>Σ−1

n φ(s, a), H

}
/
√

2

≤ min

{
c

√
(1/2)φ(s, a)>Σ−1

n φ(s, a), H

}
≤ min

{
c

√
φ(s, a)>Σ̂−1

n φ(s, a), H

}
,

PC-MLP

Note that b̂n(s, a) = 2 min{c
√

(1/2)φ(s, a)>Σ̂−1
n φ(s, a), H}, we have that:

bn(s, a)/
√

2 ≤ b̂n(s, a)/2 ≤
√

2bn(s, a),

which concludes the proof.

In high level, from Lemma 10, Lemma 11, and Lemma 12 we know that after N iterations, we have:

max
i∈[1,...,N]

J(πi; r, P
?) ≥ J(π?; r, P ?)− 10H2c√

N

√
d ln(1 +N/λ).

Hence, to ensure we get an ε near optimal policy, we just need to setN large enough such that 10H2c√
N

√
d ln(1 +N/λ) ln ≈

ε and to do so, we need to control M in order to make c scale as a constant.

A.4.1. CONCLUDING FOR LINEAR MDPS

Theorem 14 (Sample Complexity for Linear MDPs). Set δ ∈ (0, 0.5) and ε ∈ (0, 1). There exists a set of hyper-
parameters,

N =
80H6d2

ε2
ln

(
40H6d2

ε2

)
, M = 2N ln (|P|N/δ) , c = H

√
d+ 1, K = 32N2 ln (8Nd/δ) ,

such that with probability at least 1− 2δ, PC-MLP returns a policy π̂ such that:

J(π̂; r, P ?) ≥ max
π∈Π

J(π; r, P ?)− ε,

with number of samples

O

(
H18d6

ε6
· ln
(
|P|H6d2

ε2δ
ln

(
H6d2

ε2

))
ln3

(
H6d2

ε2

))
.

Ignoring log terms, we get the sample complexity scales in the order of Õ
(
H18d6

ε6

)
.

The above theorem verifies Theorem 4

Proof. From Lemma 8, we know that:

c = H
√
d+Nεstat,

where we have set λ = 1 explicitly. Also from Lemma 5, we know that with probability at least 1− δ,

εstat =
2 ln(|P|N/δ)

M
.

We set M large enough such that Nεstat = 1. To achieve this, it is easy to verify that it is enough to set M =
2N ln(|P|N/δ). As d ≥ 1, we immediately have that c ≤ 2H

√
d in this case.

To achieve ε approximation error, we set N big enough such that:

10H2c√
N

√
d ln(1 +N/λ) ln ≤ ε.

Using c = 2H
√
d, we get:

20H3d√
N

√
ln(1 +N) ≤ ε.

PC-MLP

We can verify that the above inequality holds when we set:

N =
80H6d2

ε2
ln

(
40H6d2

ε2

)
.

Hence, the total number of samples we use for estimating models during N epsilons is bounded as:

N ×M = 2N2 ln(|P|N/δ) ≤ H12d4

ε4
· 12800 ln2

(
40H6d2

ε2

)
ln

(
80H6d2|P|

ε2δ
ln

(
40H6d2

ε2

))
.

We also need to count the total number of samples used to estimate the covariance matrix Σ̂n for all n. From Lemma 20.
The number is bounded as:

K ·N = 32N3 ln (8Nd/δ) =
H18d6

ε6
· (32× 803) ln3

(
40H6d2

ε2

)
ln

(
640H6d3

ε2δ
ln

(
40H6d2

ε2

))
.

The total number of samples are N ×M +N ×K, which after rearranging terms, we get:

NM +NK ≤ H18d6

ε6
· ln
(

640H6d2|P|
ε2δ

ln

(
40H6d2

ε2

))
ln3

(
40H6d2

ε2

)
· (60× 803).

We conclude here by noting that the total failure probability is at most 2δ.

A.4.2. CONCLUDING FOR KNRS

Theorem 15 (Sample Complexity for KNRs). Set δ ∈ (0, 0.5) and ε ∈ (0, 1). There exists a set of hyper-parameters,

N = Θ

(
H6F 2dsd

σ2ε2
ln

(
H6F 2dsd

σ2ε2

))
, M = Θ

(
N2(F 2 + FB)2 ln2

(
N

δ

))
,

c = Θ

(
H

σ

√
d+ 1

)
, K = 32N2 ln (8Nd/δ) ,

such that with probability at least 1− 2δ, PC-MLP returns a policy π̂ such that:

J(π̂; r, P ?) ≥ max
π∈Π

J(π; r, P ?)− ε,

with number of samples

O

(
H18d3d3

s

σ6ε6
·
(
F 10 + σ2F 8ds

)
ν

)
,

where ν only contains log terms,

ν = ln2

(
N

δ

)
ln

(
2dsN

δ

)
+ ln

((
8F 4 + 9σ2F 2ds ln

(
2dsN

δ

))
ln2

(
N

δ

)
N2 + 18σ2F 2ds

)
+ ln3

(
6400H6F 2dsd

σ2ε2

)
ln (Nd/δ) .

Ignoring log terms, we get sample complexity scales in the order Õ
(
H18d3d3s
σ6ε6 ·

(
F 10 + σ2F 8ds

))
.

The above theorem verifies Theorem 3

Proof. The proof is similar to the proof of Theorem 14. From Lemma 9, we know that c ≤ 4H
σ

√
λF 2ds/σ2 +Nεstat/σ2.

Also from Lemma 7, we know that

εstat =
3(F 2 + FB) ln(N/δ)√

M
,

PC-MLP

with B = F + σ
√
ds ln(2dsNM/δ), for all n. We set M such that Nεstat = 1. This gives us that:

M ≥ 9N2(F 2 + FB)2 ln2

(
N

δ

)
.

Solve for M , we can verify that it suffices to set M as:

M =

(
8F 4 + 9σ2F 2ds ln

(
2dsN

δ

))
ln2

(
N

δ

)
N2

+ 18σ2F 2ds ln

((
8F 4 + 9σ2F 2ds ln

(
2dsN

δ

))
ln2

(
N

δ

)
N2 + 18σ2F 2ds

)
This gives us c = 8H

σ

√
F 2ds.

Similarly, we will set N such that 10H2c√
N

√
d ln(1 +N/λ) ≤ ε. With c = 8H

σ

√
F 2ds, we get:

80H3
√
F 2ds

σ
√
N

√
d ln(1 +N/λ) ≤ ε

We can verify that it suffices to set N as:

N =
12800H6F 2dsd

σ2ε2
ln

(
6400H6F 2dsd

σ2ε2

)
Thus the total number of samples used for model learning is upper bounded as:

NM = O

(
N3
(
F 4 + σ2F 2ds

)
ln2

(
N

δ

)
ln

(
2dsN

δ

))
+O

(
Nσ2F 2ds · ln

((
8F 4 + 9σ2F 2ds ln

(
2dsN

δ

))
ln2

(
N

δ

)
N2 + 18σ2F 2ds

))
= O

(
ν
H18d3d3

sF
6(F 4 + σ2F 2ds)

σ6ε6

)
,

where v only contains log terms, i.e.,

ν = ln2

(
N

δ

)
ln

(
2dsN

δ

)
+ ln

((
8F 4 + 9σ2F 2ds ln

(
2dsN

δ

))
ln2

(
N

δ

)
N2 + 18σ2F 2ds

)
.

We also need to count the total number of samples used to estimate the covariance matrix Σ̂n for all n. From Lemma 20.
The number is bounded as:

K ·N = O
(
N3 ln (Nd/δ)

)
= O

(
ν1 ·

H18F 6d3
sd

3

σ6ε6

)
where ν1 only contains log terms, i.e.,

ν1 = ln3

(
6400H6F 2dsd

σ2ε2

)
ln (Nd/δ) .

Combine the two terms, we can conclude that:

KN +KM = O

(
H18d3d3

s

σ6ε6
·
(
F 10 + σ2F 8ds

)
(ν + ν1)

)
.

PC-MLP

B. Auxiliary Lemmas
Lemma 16 (Dimension-free SGD (Lemma G.1 from (Agarwal et al., 2020a))). Consider the following learning pro-
cess. Initialize W1 = 0. For i = 1, . . . , N , draw xi, yi ∼ ν, ‖yi‖2 ≤ B, ‖xi‖ ≤ 1; Set Wi+1 =∏
W:={W :‖W‖2≤F}

(
Wi − ηi (Wixi − yi)x>i

)
with ηi = (F 2)/((F + B)

√
N). Set Ŵ = 1

N

∑N
i=1Wi, we have that

with probability at least 1− δ:

Ex∼ν
[∥∥∥Ŵ · x− E [y|x]

∥∥∥2

2

]
≤ Ex∼ν

[
‖W ? · x− E [y|x]‖22

]
+
R
√

ln(1/δ)√
N

,

with any W ? such that ‖W ?‖2 ≤ F and R = 3(F 2 + FB).

Lemma 17 (Total Variation Distance between Two Gaussians). Given two Gaussian distributions P1 = N (µ1, σ
2I) and

P2 = N (µ2, σ
2I), we have ‖P1 − P2‖tv ≤ min{ 1

σ‖µ1 − µ2‖2, 1}.

The above lemma can be verified using the KL divergence between two Gaussians and the application of Pinsker’s inequal-
ity (Devroye et al., 2018).

Lemma 18. Consider the following process. For n = 1, . . . , N , Mn = Mn−1 + Σn with M0 = λI and Σn being PSD
matrix with eigenvalues upper bounded by 1. We have that:

2 log det(MN)− 2 log det(λI) ≥
N∑
n=1

tr
(
ΣiM

−1
i−1

)
.

The proof of the above lemma is standard and can be found in Lemma G.2 from (Agarwal et al., 2020a) for instance.

Lemma 19 (Simulation Lemma). Consider a MDPsM1 = {r̂, P̂} where r̂ and P̂ represent reward and transition. For
any policy π : S ×A 7→ ∆(A), we have:

J(π; r̂, P̂)− J(π; r, P ?) =

H−1∑
h=0

Es,a∼dπh
[
r′(s, a)− r(s, a) + Es′∼P̂ (·|s,a)V̂

π
h (s′)− Es′∼P?(·|s,a)V̂

π
h (s′)

]
.

Simulation lemma is widely used in proving sample complexity for RL algorithms. For proof, see Lemma 10 in (Sun et al.,
2019) for instance.

The following lemma studies the concentration related to the empirical covariance matrix Σ̂n and Σn.

Lemma 20 (Concentration with the Inverse of Covariance Matrix (Lemma G.4 from (Agarwal et al., 2020a))). Consider
a fixed N . Assume φ ∈ Rd. Given N distributions ν1, . . . , νN with νi ∈ ∆(S ×A), assume we draw K i.i.d samples from
νi and form Σ̂i =

∑K
j=1 φjφ

>
j /K for all i. Denote Σn =

∑n
i=1 E(s,a)∼νiφ(s, a)φ(s, a)> + λI and Σ̂n =

∑n
i=1 Σ̂i + λI

with λ ∈ (0, 1]. Setting K = 32N2 log (8Nd/δ) /λ2, with probability at least 1− δ, we have that for any n ∈ [1, . . . , N],

1

2
xT (Σn)

−1
x ≤ xT

(
Σ̂n

)−1

x ≤ 2xT (Σn)
−1
x,

for all x with ‖x‖2 ≤ 1.

PC-MLP

C. Additional Experiments
C.1. MPPI vs TRPO

In this section we compare two of our practical implementation of Deep PC-MLP: a) using MPPI as the planner and use
random RFF feature as φ, b) using TRPO as the planner and use the fully connected layer of a random network as φ.
We plot the learning curves of the two in Fig. 5. The settings of the experiments follow Sec. 7.1. We observe that both
implementations achieve the optimal performance while all the other baselines completely fail. In terms of stability, TRPO
outperforms MPPI since the performance of MPPI still oscillates before fully converges.

0 5000 10000 15000 20000 25000 30000
number of timesteps

−50

0

50

100

re
w

ar
ds

Mountain Car Continuous Sparse

Deep PC-MPL w/ TRPO
SLBO
MBPO
PETS-GT
Deep PC-MPL w/ MPPI

0 5000 10000 15000 20000 25000 30000
number of timesteps

−40

−20

0

20

40

60

80

100

re
w

ar
ds

Acrobot Continuous Sparse

Figure 5. Performance comparison between our two practical implementations.

C.2. Computation Efficiency of PC-MLP

In this section we investigate the wall-clock running time of Deep PC-MLP comparing with other baselines. We test on the
running time of each algorithm on the MountainCar environment. We summarize the wall-clock running time in table 3.
We see that our practical implementation can run as fast as other baselines. Taking the computation of exploration bonus
into consideration, the results show that our algorithm is indeed computationally efficient.

Time
PC-MLP 148m43s
PETS-GT 132m50s

MBPO 153m30s

Table 3. Wall-clock running time comparison

D. Experimental Details
D.1. MPPI Pseudocode

Here we present the pseudocode for MPPI in Alg. 3:

D.2. Hyperparameters of Deep PC-MLP

D.2.1. MOUNTAINCAR AND ACROBOT

We provide the hyperparameters we considered and finally adopted for MountainCar and Acrobot environments in Table 4
(using TRPO as planner) and Table 5 (using MPPI as planner).

D.2.2. HAND EGG AND DENSE REWARD ENVIRONMENTS

We provide the hyperparameters we considered and finally adopted for Hand Egg and dense reward environments in
Table 6.

PC-MLP

Algorithm 3 MPPI

Require: Learned dynamics P̂ , reward r, number of samples K, shooting horizon H , noise con-
variance Σ, temperature λ, initial state s0

1: if First time planning then
2: Initialize {a0, a1, . . . , aT−1}
3: end if
4: for k = 1, . . . ,K do
5: Sample Ek = {εk0 , εk1 , . . . , εkT−1}
6: for t = 1, . . . , T do
7: S(Ek) += −r(st−1, at−1 + εkt−1) + λaTt−1Σ−1εkt−1

8: st = P̂ (st−1, at−1 + εkt−1)
9: end for

10: β = mink S(Ek)

11: η =
∑K−1
k=0 exp

(
− 1
λ

(
S(Ek)− β

))
12: for k = 1, . . . ,K do
13: w(Ek) = 1

η exp
(
− 1
λ

(
S(Ek)− β

))
14: end for
15: for t = 1, . . . , T do
16: at +=

∑K
k=1 w(Ek)εkt

17: end for
18: end for
19: a = a0

20: for t = 1, . . . , T − 1 do
21: at−1 = at
22: end for
23: Initialize aT−1

Value Considered Final Value
Model Learning Rate {1e-3, 5e-3, 1e-4} 1e-3

Dynamics Model Hidden Layer Size {[500,500]} [500,500]
Policy Learning Rate {3e-4} 3e-4

Policy Hidden Layer Size {[32,32]} [32,32]
Number of Model Updates {100} 100
Number of Policy Updates {40} 40

Number of Iterations {30,60} 15
Multistep Loss L {2} 2

Sample Size per Iteration (K) {1000,2000,3000} 2000
Covariance Regulerazation Coefficient (λ) {1,0.1,0.01,0.001} 0.01

Replay Buffer Size {30000} 30000
Bonus Scale (C) {1,2,5} 5

Table 4. Hyperparameter for MountainCarContinuous environment using TRPO as planner.

PC-MLP

Value Considered Final Value
Learning Rate {1e-3, 5e-3, 1e-4} 5e-3

Hidden Layer Size {64} 64
Number of Iterations {30,60} 30

Sample Size per Iteration (K) {1000,2000,3000} 1000
Covariance Regulerazation Coefficient (λ) {1,0.1,0.01,0.001} 0.01

Replay Buffer Size {10000} 10000
Bonus Scale (C) {1,2} 1

Dimention of RFF Feature (|φ|) {10,15,20,30} 20
MPPI Sampling Size (K) {15,100,200,300} 200

MPPI Shooting Horizon (H) {15,30,45,60} 30
MPPI Temperature (λ) {1,0.2,0.1,0.001} 0.2

MPPI Noise Covariance (Σ) {0.2,0.3,0.5,1}I 0.3I

Table 5. Hyperparameter for MountainCarContinuous environment using MPPI as planner.

Value Considered Final Value
Model Learning Rate {1e-3, 5e-3, 1e-4} 1e-3

Dynamics Model Hidden Layer Size {[500,500]} [500,500]
Policy Learning Rate {3e-4} 3e-4

Policy Hidden Layer Size {[32,32]} [32,32]
Number of Model Updates {100} 100
Number of Policy Updates {40} 40

Number of Iterations {200,100,50} 50
Multistep Loss L {2} 2

Sample Size per Iteration (K) {1000,2000,4000} 4000
Covariance Regulerazation Coefficient (λ) {1,0.1,0.01,0.001} 0.01

Replay Buffer Size {100000} 100000
Bonus Scale (C) {0.1,1} 0.1

Table 6. Hyperparameter for HandEgg and dense reward environment.

