
Oblivious Sketching-based Central Path Method for Linear Programming

Roadmap In the appendix, we present the complete version of our proposed algorithm and main theorem. as well as
rigorous proof. In Section A, we list our notations and some widely used mathematical results. In Section B we discuss
coordinate-wise embedding – the sketching technique we propose in this work. We present some commonly used sketching
matrix and their corresponding results. In Section C we discuss how to deal with the matrix-vector multiplication bottleneck
through sketching rigorously. We also present our main Algorithm 6. We summarize our main Theorem D.1 in Section D.
In Section E, we move on to discuss how to deal with the projection maintenance bottleneck through the lazy update and
low-rank update. In Section F, we present the strength of our approach compared to previous state of the art results. We
discuss the benefits of being feasible and oblivious of our approach. In Section H, we compare our sketching approach to
the classical ”sketch and solve” approach and discuss the reasons why the classical approach doesn’t work in our setting.

A. Preliminaries
A.1. Notations

For notation convenience, we assume the number of variables n ≥ 10 and there is no redundant constraints. In particular,
this implies that the constraint matrix A is full rank and n ≥ d.

For a positive integer n, let [n] denote the set {1, 2, · · · , n}.
For any function f , we define Õ(f) to be f · logO(1)(f). In addition to O(·) notation, for two functions f, g, we use the
shorthand f . g (resp. &) to indicate that f ≤ Cg (resp. ≥) for some absolute constant C.

We use sinhx to denote ex−e−x
2 and coshx to denote ex+e−x

2 .

For vectors a, b ∈ Rn and accuracy parameter ε ∈ (0, 1), we use a ≈ε b to denote that (1− ε)bi ≤ ai ≤ (1 + ε)bi,∀i ∈ [n].
Similarly, for any scalar t, we use a ≈ε t to denote that (1− ε)t ≤ ai ≤ (1 + ε)t,∀i ∈ [n].

For a vector x ∈ Rn and s ∈ Rn, we use xs to denote a length n vector with the i-th coordinate (xs)i is xi · si. Similarly,
we extend other scalar operations to vector coordinate-wise.

Given vectors x, s ∈ Rn, we use X and S to denote the diagonal matrix of those two vectors. We use X
S to denote the

diagonal matrix given (XS )i,i = xi/si. Similarly, we extend other scalar operations to diagonal matrix diagonal-wise. Note

that matrix
√

X
S A
>(AX

S A
>)−1A

√
X
S is an orthogonal projection matrix.

A.2. Inequalities

Lemma A.1 ((Cohen et al., 2019b)). Let x and y are (possibly dependent) random variables such that |x| ≤ cx and |y| ≤ cy
almost surely. Then, we have

Var[xy] ≤ 2c2x ·Var[y] + 2c2y ·Var[x].

A.3. Probability tools

Lemma A.2 (Chernoff bound (Chernoff, 1952)). Let X =
∑n
i=1Xi, where Xi = 1 with probability pi and Xi = 0 with

probability 1− pi, and all Xi are independent. Let µ = E[X] =
∑n
i=1 pi. Then

1. Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3), ∀δ > 0 ;
2. Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2), ∀0 < δ < 1.

Lemma A.3 (Hoeffding bound (Hoeffding, 1963)). Let X1, · · · , Xn denote n independent bounded variables in [ai, bi].
Let X =

∑n
i=1Xi, then we have

Pr[|X −E[X]| ≥ t] ≤ 2 exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Lemma A.4 (Bernstein inequality (Bernstein, 1924)). Let X1, · · · , Xn be independent zero-mean random variables.
Suppose that |Xi| ≤M almost surely, for all i. Then, for all positive t,

Pr

[
n∑

i=1

Xi > t

]
≤ exp

(
− t2/2∑n

j=1 E[X2
j ] +Mt/3

)
.
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We state Khintchine’s inequality

Lemma A.5 (Khintchine’s inequality, (Khintchine, 1923; Haagerup, 1981)). Let σ1, · · · , σn be i.i.d. sign random variables,
and let z1, · · · , zn be real numbers. Then there are constants C > 0 so that for all t > 0

Pr
[∣∣∣

n∑

i=1

ziσi

∣∣∣ ≥ t‖z‖2
]
≤ exp(−Ct2).

We state Hason-wright inequality here

Lemma A.6 (Hason-wright inequality (Hanson & Wright, 1971; Rudelson & Vershynin, 2013)). Let x ∈ Rn denote a
random vector with independent entries xi with E[xi] = 0 and |xi| ≤ K. Let A be an n× n matrix. Then, for every t ≥ 0,

Pr[|x>Ax−E[x>Ax]| > t] ≤ 2 · exp(−cmin{t2/(K4‖A‖2F ), t/(K2‖A‖)}).

Lemma A.7 (Lemma 1 on page 1325 of Laurent and Massart (Laurent & Massart, 2000)). Let X ∼ X 2
k be a chi-squared

distributed random variable with k degrees of freedom. Each one has zero mean and σ2 variance. Then

Pr[X − kσ2 ≥ (2
√
kt+ 2t)σ2] ≤ exp(−t),

Pr[kσ2 −X ≥ 2
√
ktσ2] ≤ exp(−t).

Lemma A.8 (Tail bound for sub-exponential distribution (Foss et al., 2011)). We say X ∈ SE(σ2, α) with parameters
σ > 0, α > 0 if:

E[eλX ] ≤ exp(λ2σ2/2), ∀|λ| < 1/α.

Let X ∈ SE(σ2, α) and E[X] = µ, then:

Pr[|X − µ| ≥ t] ≤ exp(−0.5 min{t2/σ2, t/α}).

Lemma A.9 (Matrix Chernoff bound (Tropp, 2011; Lu et al., 2013)). Let X be a finite set of positive-semidefinite matrices
with dimension d× d, and suppose that

max
X∈X

λmax(X) ≤ B.

Sample {X1, · · · , Xn} uniformly at random from X without replacement. We define µmin and µmax as follows:

µmin := n · λmin( E
X∼X

[X]) and µmax := n · λmax( E
X∼X

[X]).

Then

Pr
[
λmin(

n∑

i=1

Xi) ≤ (1− δ)µmin

]
≤ d · exp(−δ2µmin/B) for δ ∈ [0, 1),

Pr
[
λmax(

n∑

i=1

Xi) ≥ (1 + δ)µmax

]
≤ d · exp (−δ2µmax/(4B)) for δ ≥ 0.

A.4. Fast matrix multiplication

In this work, we use the following fast matrix multiplication results:

• Multiplication of two matrices of size n × n requires nω+o(1) running time, where ω is the exponent of matrix
multiplication. Current value of ω is roughly 2.373 (Williams, 2012; Le Gall, 2014).

• Inverse of a matrix of size n× n also requires nω+o(1) running time.

• Multiplication of two matrices of size n× n and n× na requires n2+o(1) running time if a ∈ [0, α), where α is the
dual exponent of matrix multiplication. Current value of α is roughly 0.314 (Le Gall & Urrutia, 2018).
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Figure 2: Current matrix multiplication time: the blue and green line represents current running time ω(k) of multiplying
matrices of size n× nk and nk × n for k ∈ [0, 1]: when k = 1, multiplication of two square matrices needs roughly n2.373

running time; when k < 0.314, multiplication needs n2+o(1) running time

B. Sketching
In this section, we discuss the (α, β, δ)-coordinate wise embedding property we proposed in this work through several
commonly used sketching matrices.

We consider several standard sketching matrices:

1. Random Gaussian matrices.

2. Subsampled randomized Hadamard/Fourier transform matrices (Lu et al., 2013).

3. AMS sketch matrices (Alon et al., 1999), random {−1,+1} per entry.

4. Count-Sketch matrices (Charikar et al., 2002), each column only has one non-zero entry, and is −1,+1 half probability
each.

5. Sparse embedding matrices (Nelson & Nguyên, 2013), each column only has s non-zero entries, and each entry is
− 1√

s
,+ 1√

s
half probability each.

6. Uniform sampling matrices.

We list the definitions and results of above sketching matrices for coordinate-wise embedding in Table 3.

B.1. Definition

Definition B.1 (k-wise independence). H = {h : [m]→ [l]} is a k-wise independent hash family if ∀i1 6= i2 6= · · · 6= ik ∈
[n] and ∀j1, · · · , jk ∈ [l],

Pr
h∈H

[h(i1) = j1 ∧ · · · ∧ h(ik) = jk] =
1

lk
.
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Sketching matrix Definition Expectation Variance Inner Product Concentration
Random Gaussian Definition B.2 Lemma B.11 Lemma B.13 Lemma B.18 Lemma B.24

SRHT Definition B.3 Lemma B.11 Lemma B.12 Lemma B.19 Lemma B.23
AMS Definition B.4 Lemma B.11 Lemma B.12 Lemma B.20 Lemma B.23

Count-sketch Definition B.5 Lemma B.11 Lemma B.14 Lemma B.21 Lemma B.25
Sparse embedding Definition B.6,B.7 Lemma B.11 Lemma B.15 Lemma B.22 Lemma B.28
Uniform sampling Definition B.8 Lemma B.11 Lemma B.16 Lemma B.29

Table 3: Roadmap of the results for coordinate-wise embedding

Definition B.2 (Random Gaussian matrix). We say R ∈ Rb×n is a random Gaussian matrix if all entries are sampled from
N (0, 1/b) independently.

Definition B.3 (Subsampled randomized Hadamard/Fourier transform matrix (Lu et al., 2013)). We say R ∈ Rb×n is a
subsampled randomized Hadamard transform (SRHT) matrix5 if it is of the form R =

√
n/bSHD, where S ∈ Rb×n is a

random matrix whose rows are b uniform samples (without replacement) from the standard basis of Rn, H ∈ Rn×n is a
normalized Walsh-Hadamard matrix, and D ∈ Rn×n is a diagonal matrix whose diagonal elements are i.i.d. Rademacher
random variables.

Definition B.4 (AMS sketch matrix (Alon et al., 1999)). Let h1, h2, · · · , hb be b random hash functions picking from
a 4-wise independent hash family H = {h : [n] → {− 1√

b
,+ 1√

b
}}. Then R ∈ Rb×n is a AMS sketch matrix if we set

Ri,j = hi(j).

Definition B.5 (Count-sketch matrix (Charikar et al., 2002)). Let h : [n] → [b] be a random 2-wise independent hash
function and σ : [n]→ {−1,+1} be a random 4-wise independent hash function. Then R ∈ Rb×n is a count-sketch matrix
if we set Rh(i),i = σ(i) for all i ∈ [n] and other entries to zero.

Definition B.6 (Sparse embedding matrix I (Nelson & Nguyên, 2013)). We say R ∈ Rb×n is a sparse embedding matrix
with parameter s if each column has exactly s non-zero elements being ±1/

√
s uniformly at random, whose locations are

picked uniformly at random without replacement (and independent across columns) 6.

Definition B.7 (Sparse embedding matrix II (Nelson & Nguyên, 2013)). Let h : [n]× [s]→ [b/s] be a a ramdom 2-wise
independent hash function and σ : [n]× [s]→ {−1, 1} be a 4-wise independent. Then R ∈ Rb×n is a sparse embedding
matrix II with parameter s if we set R(j−1)b/s+h(i,j),i = σ(i, j)/

√
s for all (i, j) ∈ [n]× [s] and all other entries to zero.7

Definition B.8 (Uniform sampling matrix). We sayR ∈ Rb×n is a uniform sampling matrix if it is of the formR =
√
n/bSD,

where S ∈ Rb×n is a random matrix whose rows are b uniform samples (without replacement) from the standard basis of
Rn, and D ∈ Rn×n is a diagonal matrix whose diagonal elements are i.i.d. Rademacher random variables.

B.2. Coordinate wise embedding

We define coordinate-wise embedding as follows:

Definition B.9 ((α, β, δ)-coordinate wise embedding). We say a randomized matrix R ∈ Rb×n satisfying (α, β, δ)-
coordinate wise embedding if

1. E
R∼Π

[g>R>Rh] = g>h,

2. E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
α

b
‖g‖22‖h‖22,

3. Pr
R∼Π

[
|g>R>Rh− g>h| ≥ β√

b
‖g‖2‖h‖2

]
≤ δ.

Remark B.10. Given a randomized matrix R ∈ Rb×n satisfying (α, β, δ)-coordinate wise embedding and any orthogonal

5In this case, we require logn to be an integer.
6For our purposes the signs need only beO(log d)-wise independent, and each column can be specified by aO(log d)-wise independent

permutation, and the seeds specifying the permutations in different columns need only be O(log d)-wise independent.
7This definition has the same behavior as sparse embedding matrix I for our purpose.
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projection P ∈ Rn×n, above definition implies

1. E
R∼Π

[PR>Rh] = Ph,

2. E
R∼Π

[(PR>Rh)2
i ] ≤ (Ph)2

i +
α

b
‖h‖22,

3. Pr
R∼Π

[
|(PR>Rh)i − (Ph)i| ≥

β√
b
‖h‖2

]
≤ δ.

since ‖P‖2 ≤ 1 implies ‖Pi,:‖2 ≤ 1 for all i ∈ [n].

B.3. Expectation and variance

Lemma B.11. Let R ∈ Rb×n denote any of the random matrix in Definition B.2, B.3, B.4, B.6, B.7, B.8. Let h ∈ Rn and
g ∈ Rn denote two fixed vectors. Then the following properties hold:

E
R∼Π

[g>R>Rh] = g>h

Proof.

E
R∼Π

[g>R>Rh] = g> E
R∼Π

[R>R]h = g>Ih = g>h.

Lemma B.12. Let R ∈ Rb×n be a SRHT or AMS sketch matrix as in Definition B.3, B.4. Let h ∈ Rn and g ∈ Rn denote
two vectors. Then the following properties hold:

E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
2

b
‖g‖22 · ‖h‖22.

Proof. If Ea[a] = b, it is easy to see that

E
a

[(a− b)2] = E
a

[a2 − 2ab+ b2] = E
a

[a2 − b2]

We can rewrite it as follows:

E
R∼Π

[(g>R>Rh)2 − (g>h)2] = E
R∼Π

[(g>(R>R− I)h)2],

It can be bounded as follows:

E
R∼Π

[(g>(R>R− I)h)2]

= E
R∼Π



(

b∑

k=1

(Rg)k(Rh)k − g>h
)2



= E
R∼Π







b∑

k=1

n∑

i=1

Rk,igi ·
∑

j∈[n]\{i}
Rk,jhj




2



= E
R∼Π






b∑

k=1

n∑

i=1

Rk,igi ·
∑

j∈[n]\{i}
Rk,jhj


 ·




b∑

k′=1

n∑

i′=1

Rk′,i′gi′ ·
∑

j′∈[n]\{i′}
Rk′,j′hj′






= E
R∼Π






b∑

k=1

n∑

i=1

R2
k,ig

2
i ·

∑

j∈[n]\{i}
R2
k,jh

2
j


+




b∑

k=1

n∑

i=1

R2
k,igihi ·

∑

j∈[n]\{i}
R2
k,jgjhj
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=
1

b




n∑

i=1

g2
i

∑

j∈[n]\{i}
h2
j


+

1

b




n∑

i=1

gihi
∑

j∈[n]\{i}
gjhj




≤ 2

b
‖g‖22‖h‖22,

where the second step follows from R2
k,i = 1/b, ∀k, i ∈ [b]× [n], the forth step follows from E[Rk,iRk,jRk′,i′Rk′,j′ ] 6= 0

only if i = i′, j = j′, k = k′ or i = j′, j = i′, k = k′, the fifth step follows from Rk,i and Rk,j are independent if i 6= j
and R2

k,i = R2
k,j = 1/b, and the last step follows from Cauchy-Schwartz inequality.

Therefore,

E
R∼Π

[(g>R>Rh)2 − (g>h)2] = E
R∼Π

[(g>(R>R− I)h)2] ≤ 2

b
‖g‖22‖h‖22.

Lemma B.13. Let R ∈ Rb×n be a random Gaussian matrix as in Definition B.2. Then for any fixed vector h ∈ Rn and any
fixed vector g ∈ Rn, the following properties hold:

E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
3

b
‖g‖22 · ‖h‖22.

Proof. Note

E
R∼Π

[(g>R>Rh)2]

= E
R∼Π







b∑

k=1

n∑

i=1

Rk,igi ·
n∑

j=1

Rk,jhj




2



= E
R∼Π






b∑

k=1

n∑

i=1

Rk,igi ·
n∑

j=1

Rk,jhj


 ·




b∑

k′=1

n∑

i′=1

Rk′,i′gi′ ·
n∑

j′=1

Rk′,j′hj′






= E
R∼Π

[



b∑

k=1

∑

k′∈[b]\{k}

n∑

i=1

n∑

i′=1

R2
k,iR

2
k′,i′gihigi′hi′


+

(
b∑

k=1

n∑

i=1

R4
k,ig

2
i h

2
i

)

+




b∑

k=1

n∑

i=1

∑

j∈[n]\{i}
R2
k,iR

2
k,jg

2
i h

2
j


+




n∑

k=1

n∑

i=1

n∑

i′∈[n]\{i}
R2
k,iR

2
k,i′gihigi′hi′




+




b∑

k=1

n∑

i=1

∑

j∈[n]\{i}
R2
k,iR

2
k,jgihjgjhi



]

=
b− 1

b

n∑

i=1

n∑

i′=1

gihigi′hi′ +
3

b

n∑

i=1

g2
i h

2
i

+
1

b

n∑

i=1

∑

j∈[n]\[i]
g2
i h

2
j +

1

b

n∑

i=1

∑

i′∈[n]\[i]
gihigi′hi′ +

1

b

n∑

i=1

∑

j∈[n]\[i]
gihjgjhi

≤ (g>h)2 +
3

b
‖g‖22‖h‖22,

where the third step follows from that for independent entries of a random Gaussian matrix, E[Rk,iRk,jRk′,i′Rk′,j′ ] 6= 0
only if 1. k 6= k′, i = j, i′ = j′, or 2. k = k′, i = i′ = j = j′, or 3. k = k′, i = i′ 6= j = j′, or 4. k = k′, i = j 6= i′ = j′,
or 5. k = k′, i = j′ 6= i′ = j, the fourth step follows from E[R2

k,i] = 1/b and E[R4
k,i] = 3/b2, and the last step follows

from Cauchy-Schwartz inequality.
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Lemma B.14. Let R ∈ Rb×n be a count-sketch matrix as in Definition B.5. Then for any fixed vector h ∈ Rn and any fixed
vector g ∈ Rn, the following properties hold:

E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
3

b
‖g‖22‖h‖22.

Proof. Note

E
R∼Π

[(g>R>Rh)2]

= E
R∼Π







b∑

k=1

n∑

i=1

Rk,igi

n∑

j=1

Rk,jhj




2



= E
R∼Π






b∑

k=1

n∑

i=1

Rk,igi

n∑

j=1

Rk,jhj


 ·




b∑

k′=1

n∑

i′=1

Rk′,i′gi′
n∑

j′=1

Rk′,j′hj′






= E
R∼Π

[



b∑

k=1

∑

k′∈[b]\{k}

n∑

i=1

n∑

i′∈[n]\{i}
R2
k,iR

2
k′,i′gihigi′hi′


+

(
b∑

k=1

n∑

i=1

R4
k,ig

2
i h

2
i

)

+




b∑

k=1

n∑

i=1

∑

j∈[n]\{i}
R2
k,iR

2
k,jg

2
i h

2
j


+




n∑

k=1

n∑

i=1

n∑

i′∈[n]\{i}
R2
k,iR

2
k,i′gihigi′hi′




+




b∑

k=1

n∑

i=1

∑

j∈[n]\{i}
R2
k,iR

2
k,jgihjgjhi



]

=
b− 1

b

n∑

i=1

∑

i′∈[n]\i
gihigi′hi′ +

n∑

i=1

g2
i h

2
i

+
1

b

n∑

i=1

∑

j∈[n]\{i}
g2
i h

2
j +

1

b

n∑

i=1

∑

i′∈[n]\{i}
gihigi′hi′ +

1

b

n∑

i=1

∑

j∈[n]\{i}
gihjgjhi

≤ (g>h)2 +
3

b
‖g‖22‖h‖22,

where in the third step we are again considering what values of k, k′, i, i′, j, j′ that makes
E[Rk,iRk,jRk′,i′Rk′,j′ ] 6= 0. Since the hash function σ(·) of the count-sketch matrix is 4-wise independent, ∀k, k′, when
i 6= i′ 6= j 6= j′, or i = i′ = j 6= j′ (and the other 3 symmetric cases), we have that E[Rk,iRk,jRk′,i′Rk′,j′ ] = 0. Since the
count-sketch matrix has only one non-zero entry in every column, when k 6= k′, if i = i′ or i = j′ or j = i′ or j = j′, we
also have E[Rk,iRk,jRk′,i′Rk′,j′ ] = 0. Thus we only need to consider the cases: 1. k 6= k′, i = j 6= i′ = j′, or 2. k = k′,
i = i′ = j = j′, or 3. k = k′, i = i′ 6= j = j′, or 4. k = k′, i = j 6= i′ = j′, or 5. k = k′, i = j′ 6= i′ = j. And the fourth
step follows from E[R2

k,i] = 1/b and E[R4
k,i] = 1/b, and the last step follows from Cauchy-Schwartz inequality.

Lemma B.15. Let R ∈ Rb×n be a sparse embedding matrix as in Definition B.6, B.7. Then for any fixed vector h ∈ Rn
and any fixed vector g ∈ Rn, the following properties hold:

2. E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
2

b
‖g‖22 · ‖h‖22.

Proof. Note

E
R∼Π

[(g>R>Rh)2]

= E
R∼Π







b∑

k=1

n∑

i=1

Rk,igi

n∑

j=1

Rk,jhj




2
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= E
R∼Π






b∑

k=1

n∑

i=1

Rk,igi

n∑

j=1

Rk,jhj


 ·




b∑

k′=1

n∑

i′=1

Rk′,i′gi′
n∑

j′=1

Rk′,j′hj′






= E
R∼Π

[



b∑

k=1

n∑

i=1

R2
k,ig

2
i

∑

j∈[n]\{i}
R2
k,jh

2
j


+




b∑

k=1

n∑

i=1

R2
k,igihi

∑

j∈[n]\{i}
R2
k,jgjhj




+


∑

k

∑

i 6=i′
R2
k,iR

2
k,i′gihigi′hi′


+

(∑

k

∑

i

R4
k,ig

2
i h

2
i

)
+


∑

k 6=k′

∑

i 6=i′
R2
k,iR

2
k′,i′gihigi′hi′




+


∑

k 6=k′

∑

i

R2
k,iR

2
k′,ig

2
i h

2
i



]

=
1

b

∑

i 6=j
g2
i h

2
j +

1

b

∑

i 6=j
gihigjhj +

1

b

∑

i6=i′
gihigi′hi′ +

1

s

∑

i

g2
i h

2
i +

b− 1

b

∑

i6=i′
gihigi′hi′ +

s− 1

s

∑

i

g2
i h

2
i

≤ (g>h)2 +
2

b
‖g‖22‖h‖22,

where the third step follows from the fact that the sparse embedding matrix has independent columns and s non-zero entry
in every column, the fourth step follows from E[R2

k,i] = 1/b, E[R4
k,i] = 1/(bs), and E[R2

k,iR
2
k′,i] = s(s−1)

b(b−1) · 1
s2 ,∀k 6= k′

and the last step follows from Cauchy-Schwartz inequality.

Lemma B.16. Let R ∈ Rb×n be a uniform sampling matrix as in Definition B.8. Then for any fixed vector h ∈ Rn and any
fixed vector g ∈ Rn, the following properties hold:

2. E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
n

b
‖g‖22‖h‖22.

Proof. Note

E
R∼Π

[(g>R>Rh)2]

= E
R∼Π







b∑

k=1

n∑

i=1

Rk,igi

n∑

j=1

Rk,jhj




2



= E
R∼Π






b∑

k=1

n∑

i=1

Rk,igi

n∑

j=1

Rk,jhj


 ·




b∑

k′=1

n∑

i′=1

Rk′,i′gi′
n∑

j′=1

Rk′,j′hj′






= E
R∼Π



(∑

k

∑

i

R4
k,ig

2
i h

2
i

)
+


∑

k 6=k′

∑

i6=i′
R2
k,iR

2
k′,i′gihigi′hi′






=
n

b

∑

i

g2
i h

2
i +

(b− 1)n

(n− 1)b

∑

i 6=i′
gihigi′hi′

≤ (g>h)2 +
n

b
‖g‖22‖h‖22,

where the third step follows from the fact that the random sampling matrix has one non-zero entry in every row, the fourth
step follows from E[R2

k,iR
2
k′,i′ ] = n/((n− 1)b2) for k 6= k′, i 6= i′ and E[R4

k,i] = n/b2.

Remark B.17. Lemma B.16 indicates that uniform sampling fails in bounding variance in some sense, since the upper
bound give here involves n.
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B.4. Bounding inner product

Lemma B.18 (Gaussian). Let R ∈ Rb×n be a random Gaussian matrix (Definition B.2). Then we have:

Pr
[

max
i 6=j
|〈R∗,i, R∗,j〉| ≥

√
log(n/δ)√

b

]
≤ Θ(δ).

Proof. Note for i 6= j, R∗,i, R∗,j ∼ N (0, 1
b Ib) are two independent Gaussian vectors. Let zk = Rk,iRk,j and z =

〈R∗,i, R∗,j〉. Then we have for any |λ| ≤ b/2,

E[eλzk ] =
1√

1− λ2/b2
≤ exp(λ2/b2),

where the first step follows from zk = 1
4 (Rk,i + Rk,j)

2 + 1
4 (Rk,i − Rk,j)2 = b

2 (Q1 − Q2) where Q1, Q2 ∼ χ2
1, and

E[eλQ] = 1√
1−2λ

for any Q ∼ χ2
1.

This implies zk ∈ SE(2/b2, 2/b) is a sub-exponential random variable. Thus, we have z =
∑b
k=1 zk ∈ SE(2/b, 2/b), by

sub-exponential concentration Lemma A.8 we have

Pr[|z| ≥ t] ≤ 2 exp(−bt2/4)

for 0 < t < 1. Picking t =
√

log(n2/δ)/b, we have

Pr
[
|〈R∗,i, R∗,j〉| ≥

c
√

log(n/δ)√
b

]
≤ δ/n2.

Taking the union bound over all (i, j) ∈ [n]× [n] and i 6= j, we complete the proof.

Lemma B.19 (SRHT). Let R ∈ Rb×n be a SRHT (Definition B.3). Then we have:

Pr
[

max
i 6=j
|〈R∗,i, R∗,j〉| ≥

√
log(n/δ)√

b

]
≤ Θ(δ).

Proof. For fixed i 6= j, let X = [R∗,i, R∗,j ] ∈ Rb×2. Then X>X =
∑b
k=1Gk, where

Gk = [Rk,i, Rk,j ]
>[Rk,i, Rk,j ] =

[
1
b Rk,iRk,j

Rk,iRk,j
1
b

]
.

Note the eigenvalues of Gk are 0 and 2
b and E[X>X] = b · E[Gk] = I2 for all k ∈ [b]. Thus, applying matrix Chernoff

bound A.9 to X>X we have

Pr
[
λmax(X>X) ≤ 1− t

]
≤ 2 exp (−t2b/2) for t ∈ [0, 1), and

Pr
[
λmax(X>X) ≥ 1 + t

]
≤ 2 exp (−t2b/8) for t ≥ 0.

which implies the eigenvalues of X>X are between [1− t, 1 + t] with probability 1− 4 exp (− t2b8 ). So the eigenvalues of

X>X − I2 are between [−t, t] with probability 1− 4 exp (− t2b8 ). Picking t =
c
√

log(n/δ)√
b

, we have

Pr
[
‖X>X − I2‖ ≥

c
√

log(n/δ)√
b

]
≤ δ

n2
.

Note

X>X − I2 =

[
0 〈R∗,i, R∗,j〉

〈R∗,i, R∗,j〉 0

]
,

whose spectral norm is |〈R∗,i, R∗,j〉|. Thus, we have

Pr
[
|〈R∗,i, R∗,j〉| ≥

c
√

log(n/δ)√
b

]
≤ δ/n2.

Taking a union bound over all pairs (i, j) ∈ [n]× [n] and i 6= j, we complete the proof.
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Lemma B.20 (AMS). Let R ∈ Rb×n be a random AMS matrix (Definition B.4). Let {σi, i ∈ [n]} be independent
Rademacher random variables and R ∈ Rb×n with R∗,i = σiR∗,i, ∀i ∈ [n]. Then we have:

Pr
[

max
i 6=j
|〈R∗,i, R∗,j〉| ≥

√
log(n/δ)√

b

]
≤ Θ(δ).

Proof. Note for any fixed i 6= j, R∗,i and R∗,j are independent. By Hoeffding inequality (Lemma A.3), we have

Pr
[
|〈R∗,i, R∗,j〉| ≥ t

]
≤ 2 exp

(
− 2t2
∑b
i=1( 1

b − (− 1
b ))2

)
≤ 2e−t

2b/2

Choosing t =
√

2 log(2n2/δ)/
√
b, we have

Pr
[
|〈R∗,i, R∗,j〉| ≥

√
2 log(2n2/δ)/

√
b
]
≤ δ

n2
.

Taking a union bound over all pairs (i, j) ∈ [n]× [n] and i 6= j, we complete the proof.

Lemma B.21 (Count-Sketch). Let R ∈ Rb×n be a count-sketch matrix (Definition B.5). Let {σi, i ∈ [n]} be independent
Rademacher random variables and R ∈ Rb×n with R∗,i = σiR∗,i, ∀i ∈ [n]. Then we have:

max
i 6=j
|〈R∗,i, R∗,j〉| ≤ 1.

Proof. Directly follow the definition of count-sketch matrices.

Lemma B.22 (Sparse embedding). Let R ∈ Rb×n be a sparse embedding matrix with parameter s (Definition B.6 and B.7).
Let {σi, i ∈ [n]} be independent Rademacher random variables and R ∈ Rb×n with R∗,i = σiR∗,i, ∀i ∈ [n]. Then we
have:

Pr
[

max
i 6=j
|〈R∗,i, R∗,j〉| ≥

c
√

log(n/δ)√
s

]
≤ Θ(δ).

Proof. Note for fixed i 6= j, R∗,i and R∗,j are independent. Assume R∗,i and R∗,j has u non-zero elements at the same
positions, where 0 ≤ u ≤ s, then by Hoeffding inequality (Lemma A.3), we have

Pr[|〈R∗,i, R∗,j〉| ≥ t] ≤ 2 exp

(
− 2t2∑u

i=1( 1
s − (− 1

s ))2

)
≤ 2 exp(−t2s2/(2u)) (9)

Let t =
√

(2u/s2) log(2n2/δ), we have

Pr
[
|〈R∗,i, R∗,j〉| ≥

√
2s−1 log(2n2/δ)

]
≤ Pr

[
|〈R∗,i, R∗,j〉| ≥

√
2us−2 log(2n2/δ)

]

≤ δ/n2 (10)

since u ≤ s. By taking a union bound over all (i, j) ∈ [n]× [n] and i 6= j, we complete the proof.

B.5. Infinite norm bound

Lemma B.23 (SRHT and AMS). Let R ∈ Rb×n be a SRHT (Definition B.3) or AMS sketching matrix (Definition B.4). Let
h ∈ Rn and g ∈ Rn be two fixed vectors. Then, the following properties hold:

Pr
R∼Π

[
|(g>R>Rh)− (g>h)| > log1.5(n/δ)√

b
‖g‖2‖h‖2

]
≤ Θ(δ).
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Proof. We can rewrite (g>R>Rh)− (g>h) as follows:,

(g>R>Rh)− (g>h) =

n∑

i=1

n∑

j∈[n]\i
gihj〈R∗,i, R∗,j〉+

n∑

i=1

gihi(‖R∗,i‖22 − 1)

=
n∑

i=1

n∑

j∈[n]\i
gihj〈σiR∗,i, σjR∗,j〉.

where σi’s are independent Rademacher random variables and R∗,i = σiR∗,i, ∀i ∈ [n], and the second step follows from
‖R∗,i‖22 = 1,∀i ∈ [n].

We define matrix A ∈ Rn×n and B ∈ Rn×n as follows:

Ai,j = gihj · 〈R∗,i, R∗,j〉, ∀i ∈ [n], j ∈ [n]

Bi,j = gihj ·max
i′ 6=j′

|〈R∗,i′ , R∗,j′〉| ∀i ∈ [n], j ∈ [n]

We define A◦ ∈ Rn×n to be the matrix A ∈ Rn×n with removing diagonal entries, applying Hason-wright inequality
(Lemma A.6), we have

Pr
σ

[|σ>A◦σ| ≥ τ ] ≤ 2 · exp(−cmin{τ2/‖A◦‖2F , τ/‖A◦‖})

We can upper bound ‖A◦‖ and ‖A◦‖F .

‖A◦‖ ≤ ‖A◦‖F
≤ ‖A‖F
≤ ‖B‖F
= ‖g‖2 · ‖h‖2 ·max

i 6=j
|〈R∗,i, R∗,j〉|

≤ ‖g‖2 · ‖h‖2 ·max
i 6=j
|〈R∗,i, R∗,j〉|.

where the forth step follows from B is rank-1.

For SRHT, note R has the same distribution as R. By Lemma B.19 (for AMS, we use Lemma B.20) with probability at least
1−Θ(δ), we have :

max
i 6=j
|〈R∗,i, R∗,j〉| ≤

√
log(n/δ)√

b
.

Conditioning on the above event holds.

Choosing τ = ‖g‖2 · ‖h‖2 · log1.5(n/δ)/
√
b, we can show that

Pr

[∣∣∣(g>R>Rh)− (g>h)
∣∣∣ ≥ ‖g‖2 · ‖h‖2

log1.5(n/δ)√
b

]
≤ Θ(δ).

Thus, we complete the proof.

Lemma B.24 (Random Gaussian). Let R ∈ Rb×n be a random Gaussian matrix (Definition B.2). Let h ∈ Rn and g ∈ Rn
denote two fixed vectors. Then, the following properties hold:

Pr
R∼Π

[
|(g>R>Rh)− (g>h)| > log1.5(n/δ)√

b
‖g‖2‖h‖2

]
≤ Θ(δ).

Proof. We follow the same procedure as proving Lemma B.23.
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We can rewrite (g>R>Rh)− (g>h) as follows:,

(g>R>Rh)− (g>h) =

n∑

i=1

n∑

j∈[n]\i
gihj〈R∗,i, R∗,j〉+

n∑

i=1

gihi(‖R∗,i‖22 − 1)

=
n∑

i=1

n∑

j∈[n]\i
gihj〈σiR∗,i, σjR∗,j〉+

n∑

i=1

gihi(‖R∗,i‖22 − 1). (11)

where σi’s are independent Rademacher random variables and R has the same distribution as R.

To bound the first term
∑n
i=1

∑n
j∈[n]\i gihj〈σiR∗,i, σjR∗,j〉, we define matrix A ∈ Rn×n and B ∈ Rn×n as follows:

Ai,j = gihj · 〈R∗,i, R∗,j〉, ∀i ∈ [n], j ∈ [n]

Bi,j = gihj ·max
i′ 6=j′

|〈R∗,i′ , R∗,j′〉| ∀i ∈ [n], j ∈ [n]

We define A◦ ∈ Rn×n to be the matrix A ∈ Rn×n with removing diagonal entries, applying Hason-wright inequality
(Lemma A.6), we have

Pr
σ

[|σ>A◦σ| ≥ τ ] ≤ 2 · exp(−cmin{τ2/‖A◦‖2F , τ/‖A◦‖})

We can upper bound ‖A◦‖ and ‖A◦‖F .

‖A◦‖ ≤ ‖A◦‖F
≤ ‖A‖F
≤ ‖B‖F
= ‖g‖2 · ‖h‖2 ·max

i 6=j
|〈R∗,i, R∗,j〉|

≤ ‖g‖2 · ‖h‖2 ·max
i 6=j
|〈R∗,i, R∗,j〉|.

where the forth step follows from B is rank-1.

Using Lemma B.18 with probability at least 1−Θ(δ), we have :

max
i 6=j
|〈R∗,i, R∗,j〉| ≤

√
log(n/δ)√

b
.

Conditioning on the above event holds.

Choosing τ = ‖g‖2 · ‖h‖2 · log1.5(n/δ)/
√
b, we can show that

Pr



∣∣∣
n∑

i=1

n∑

j∈[n]\i
gihj〈σiR∗,i, σjR∗,j〉

∣∣∣ ≥ ‖g‖2 · ‖h‖2
log1.5(n/δ)√

b


 ≤ Θ(δ). (12)

To bound the second term
∑n
i=1 gihi(‖R∗,i‖22 − 1), note that b‖R∗,i‖22 ∼ χ2

b for every i ∈ [n]. Applying Lemma A.7, we
have

Pr

[∣∣∣‖R∗,i‖22 − 1
∣∣∣ ≥ c

√
log(n/δ)√

b

]
≤ δ/n.

which implies

Pr

[
n∑

i=1

gihi

∣∣∣‖R∗,i‖22 − 1
∣∣∣ ≥ ‖g‖2‖h‖2

c
√

log(n/δ)√
b

]
≤ Θ(δ). (13)

Plugging the bounds Eq. (12) and (13) back to Eq. (11), we complete the proof.
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Lemma B.25 (Count-sketch). Let R ∈ Rb×n be a count-sketch matrix (Definition B.5). Let h ∈ Rn and g ∈ Rn be two
fixed vectors. Then, the following properties hold:

Pr
R∼Π

[
|(g>R>Rh)− (g>h)| ≥ log(1/δ)‖g‖2‖h‖2

]
≤ Θ(δ).

Proof. We follow the identical procedure as proving Lemma B.23 to apply Hason-wright inequality (Lemma A.6).

Then note Lemma B.21 shows

max
i 6=j
|〈R∗,i, R∗,j〉| ≤ 1

Thus, choosing τ = c‖g‖2 · ‖h‖2 · log(1/δ), we can show that

Pr
[
|(g>R>Rh)− (g>h)| ≥ c‖g‖2 · ‖h‖2 log(1/δ)

]
≤ δ.

which completes the proof.

Lemma B.26 (Count-sketch 2). Let R ∈ Rb×n be a count-sketch matrix (Definition B.5). Then for any fixed vector h ∈ Rn
and any fixed vector g ∈ Rn, the following properties hold:

Pr
R∼Π

[
|(g>R>Rh)− (g>h)| ≥ 1√

bδ
‖g‖2‖h‖2

]
≤ Θ(δ).

Proof. It is known that a count-sketch matrix with b = ε−2δ−1 rows satisfies the (ε, δ, 2)-JL moment property (Defini-
tion G.6) (see e.g. Theorem 14 of (Woodruff, 2014)). Using Markov’s inequality, (ε, δ, 2)-JL moment property implies

Pr
R∼Π

[
|(g>R>Rh)− (g>h)| ≥ ε‖g‖2‖h‖2

]
≤ Θ(δ),

where ε = 1√
bδ

.

Remark B.27. In LP solver, we need δ = 1/ poly(n), thus Lemma B.25 is stronger than Lemma B.26.

Lemma B.28 (Sparse embedding). Let R ∈ Rb×n be a sparse-embedding matrix (Definition B.6 and B.7). Then for any
fixed vector h ∈ Rn and any fixed vector g ∈ Rn, the following properties hold:

3. Pr
R∼Π

[
|(g>R>Rh)− (g>h)| > log1.5(n/δ)√

s
‖g‖2‖h‖2

]
≤ Θ(δ).

Proof. We follow the identical procedure as proving Lemma B.23 to apply Hason-wright inequality (Lemma A.6).

Then note Lemma B.22 shows with probability at least 1− δ we have

max
i6=j
|〈R∗,i, R∗,j〉| ≤

c
√

log(n/δ)√
s

.

Conditioning on the above event holds, choosing τ = c′‖g‖2 · ‖h‖2 · log1.5(1/δ), we can show that

Pr

[
|(g>R>Rh)− (g>h)| ≥ c′ log1.5(n/δ)√

s
‖g‖2 · ‖h‖2

]
≤ Θ(δ).

Thus, we complete the proof.

Lemma B.29 (Uniform sampling). Let R ∈ Rb×n be a uniform sampling matrix (Definition B.8). Let h ∈ Rn and g ∈ Rn
denote two fixed vectors. Then, the following properties hold:

3.|(g>R>Rh)− (g>h)| ≤ (1 +
n

b
)‖g‖2‖h‖2

where I ⊂ [n] be the subset of indexes chosen by the uniform sampling matrix.
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Proof. We can rewrite (g>R>Rh)− (g>h) as follows:

(g>R>Rh)− (g>h) =
n∑

i=1

n∑

j∈[n]\i
gihj〈R∗,i, R∗,j〉+

n∑

i=1

gihi(‖R∗,i‖22 − 1)

=
n

b

∑

i∈I
gihi −

n∑

i=1

gihi.

where the second step follows from the uniform sampling matrix has only one nonzero entry in each row.

Let I ⊂ [n] be the subset chosen by the uniform sampling matrix, then ‖R∗,i‖22 = n/b for i ∈ I and ‖R∗,i‖22 = 0 for
i ∈ [n] \ I . So we have

|(g>R>Rh)− (g>h)| =
∣∣∣
∑

i∈I
gihi(

n

b
− 1)−

∑

i∈[n]\I
gihi

∣∣∣

≤ (1 +
n

b
)‖g‖2‖h‖2.

C. Sketching Central Path Method
We remark the proof of this section is similar to (Jiang et al., 2021). The major difference is they (Jiang et al., 2021) apply
sketching matrix on the left of the projection matrix, and in this work we apply the sketching matrix on the right of the
projection matrix. For the completeness, we still provide a proof.

Algorithm 6 Our main algorithm

1: procedure MAIN(A, b, c, δ) . Theorem D.1
2: ε← 1

40000 logn , εmp ← 1
40000 , bsketch ← 1000ε

√
n log2 n

εmp
.

3: λ← 40 log n, δ ← min( δ2 ,
1
λ ), a← min(α, 2/3).

4: Modify the linear program and obtain an initial x and s according to (Ye et al., 1994).
5: MAINTAINPROJECTION mp
6: mp.INITIALIZE(A, xs , εmp, a, bsketch) . Algorithm 8
7: t← 1 . Initialize t
8: while t > δ2/(32n3) do . We stopped once the precision is good
9: tnew ← (1− ε

3
√
n

)t
10: µ← xs

11: δµ ← ( t
new

t − 1)xs− ε
2 · tnew · ∇Φλ(µ/t−1)

‖∇Φλ(µ/t−1)‖2 . Φλ is defined in Lemma C.12
12: (xnew, snew)← STOCHASTICSTEP(mp, x, s, δµ, b, ε) . Algorithm 7
13: if Φλ(µnew/tnew − 1) > n3 then . When potential function is large
14: (xnew, snew)← CLASSICALSTEP(x, s, tnew) . (Vaidya, 1989)
15: mp.INITIALIZE(A, x

new

snew , εmp, a) . Restart the data structure
16: end if
17: (x, s)← (xnew, snew), t← tnew

18: end while
19: return an approximate solution of the original linear program according to (Ye et al., 1994) .
20: end procedure

To decouple the proof in both parts, we will make the following assumption in first part. It will be verified in the second part.

For simplicity, we assume the sketching matrix R ∈ Rb×n is of (α, β, δ)-coordinate wise embedding with α = 1, β =
log1.5(n/δ), which corresponds to the case of random Gaussian, SRHT, AMS matrices. For other random matrices we
discuss in the paper, the results extends directly.

Assumption C.1. Assume the following for the input of the procedure STOCHASTICSTEP (see Algorithm 7):
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Algorithm 7
1: procedure STOCHASTICSTEP(mp, x, s, δµ, b, ε) . Lemma C.2,C.3,C.8
2: w ← x

s , ṽ ← mp.UPDATE(w) . Algorithm 8

3: x← x
√

ṽ
w , s← s

√
w
ṽ . It guarantees that xs = ṽ and xs = xs

4: repeat
5: px, ps ← mp.QUERY( 1√

XS
δµ) . Algorithm 8

6: δ̃s ← S√
XS

ps . According to Eq. (16)

7: δ̃x ← X√
XS

px . According to Eq. (15)

8: until ‖s−1δ̃s‖∞ ≤ 1
100 logn and ‖x−1δ̃x‖∞ ≤ 1

100 logn

9: return (x+ δ̃x, s+ δ̃s)
10: end procedure

• xs ≈0.1 t with t > 0.

• mp.UPDATE(w) outputs ṽ such that w ≈εmp ṽ with εmp ≤ 1/40000.

• ‖δµ‖2 ≤ εt with 0 < ε < 1/(40000 log n).

• b ≥ 1000ε
√
n log2 n/εmp.

C.1. Bounding each quantity of stochastic step

First, we give an explicit formula for our step, which will be used in all subsequent calculations.

Specifically, we show our update can be viewed as an exact solution of the following linear system:

Xδ̃s + Sδ̃x = δ̃µ,

Aδ̃x = 0, (14)

A>δ̃y + δ̃s = 0,

where

δ̃µ =
√
XSR>R

1√
XS

δµ.

Lemma C.2. The procedure STOCHASTICSTEP(mp, x, s, δµ, b, ε) (see Algorithm 7) finds a solution δ̃x, δ̃s ∈ Rn, δ̃y ∈ Rd
to Eq. (14) by the formula

δ̃x =
X√
XS

(I − P )R>R
1√
XS

δµ (15)

δ̃s =
S√
XS

PR>R
1√
XS

δµ (16)

δ̃y = − (AS
−1
XA>)−1A

√
X

S
R>R

1√
XS

δµ (17)

and

P =

√
X

S
A>

(
A
X

S
A>
)−1

A

√
X

S
. (18)
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Proof. For the first equation of Eq. (14), we multiply AS
−1

on both sides,

AS
−1
Xδ̃s +Aδ̃x = AS

−1
δ̃µ.

Since the second equation gives Aδ̃x = 0, then we know that AS
−1
Xδ̃s = AS

−1
δ̃µ.

Multiplying AS
−1
X on both sides of the third equation of Eq. (14), we have

−AS−1
XA>δ̃y = AS

−1
Xδ̃s = AS

−1
δ̃µ.

Thus,

δ̃y = − (AS
−1
XA>)−1AS

−1
δ̃µ,

δ̃s = A>(AS
−1
XA>)−1AS

−1
δ̃µ,

δ̃x = S
−1
δ̃µ − S

−1
XA>(AS

−1
XA>)−1AS

−1
δ̃µ.

Recall we define P as Eq. (18) and δ̃µ as Eq. (6), then we have

δ̃s =
S√
XS
·

√
X

S
A>(A

X

S
A>)−1A

√
X

S
· 1√

XS
δ̃µ =

S√
XS

P
1√
XS

δ̃µ =
S√
XS

PR>R
1√
XS

δµ,

and

δ̃x = S
−1
δ̃µ −

X√
XS
·

√
X

S
A>(A

X

S
A>)−1

√
X

S
· 1√

XS
δ̃µ

=
X√
XS

(I − P )
1√
XS

δ̃µ =
X√
XS

(I − P )R>R
1√
XS

δµ,

and

δ̃y = − (AS
−1
XA>)−1A

√
X

S

1√
XS

δ̃µ = −(AS
−1
XA>)−1A

√
X

S
R>R

1√
XS

δµ,

which match Eq. (16), Eq. (15) and Eq. (17).

To see why the STOCHASTICSTEP outputs δ̃x, δ̃s satisfying Eq. (16) and Eq. (15), we note that

px = (I −
√
Ṽ A>

(
A
X

S
A>
)−1

A
√
Ṽ )R>R

1√
XS

δµ = (I − P )R>R
1√
XS

δµ

ps =
√
Ṽ A>

(
A
X

S
A>
)−1

A
√
Ṽ R>R

1√
XS

δµ = PR>R
1√
XS

δµ

because of Theorem E.1.

Using the explicitly formula, we are ready to bound all quantities we needed in the following two subsubsections.

C.2. Bounding δ̃s, δ̃x and δ̃µ

Lemma C.3. Under the Assumption C.1, the two vectors δ̃x and δ̃s found by STOCHASTICSTEP satisfy :
1. ‖E[s−1δ̃s]‖2 ≤ 2ε, ‖E[x−1δ̃x]‖2 ≤ 2ε, ‖E[s−1δ̃s]‖2 ≤ 2ε, ‖E[x−1δ̃x]‖2 ≤ 2ε, ‖E[µ−1δ̃µ]‖2 ≤ 4ε.
2. Var[s−1

i δ̃s,i] ≤ 2ε2/b,Var[x−1
i δ̃x,i] ≤ 2ε2/b,Var[s−1

i δ̃s,i] ≤ 2ε2/b,Var[x−1
i δ̃x,i] ≤ 2ε2/b,Var[µ−1

i δ̃µ,i] ≤ 8ε2/b.
3. ‖s−1δ̃s‖∞ ≤ ε, ‖s−1δ̃s‖∞ ≤ 2ε, ‖x−1δ̃x‖∞ ≤ ε, ‖x−1δ̃x‖∞ ≤ 2ε, ‖µ−1δ̃µ‖∞ ≤ 2ε.
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Remark C.4. For notational simplicity, the E and Var in the proof are for the case without resketching (Line 8). Since
the all the additional terms due to resketching are polynomially bounded and since we can set failure probability to an
arbitrarily small inverse polynomial (see Claim C.7), the proof does not change and the result remains the same.

Claim C.5 (Part 1, bounding the `2 norm of expectation).

‖E[s−1δ̃s]‖2 ≤ 2ε, ‖E[x−1δ̃x]‖2 ≤ 2ε, ‖E[s−1δ̃s]‖2 ≤ 2ε, ‖E[x−1δ̃x]‖2 ≤ 2ε, ‖E[µ−1δ̃µ]‖2 ≤ 4ε.

Proof. For ‖s−1δ̃s‖∞, we consider the i-th coordinate of the vector

s−1
i δ̃s,i =

1√
xisi

n∑

j=1

(PR>R)i,j
δµ,j√
xjsj

.

Then, we have

E
[
s−1
i δ̃s,i

]
=

1√
xisi

n∑

j=1

(E[PR>R])i,j
δµ,j√
xjsj

=
1√
xisi

n∑

j=1

P i,j
δµ,j√
xjsj

, (19)

where the second step follows by E[R>R] = I . Since xs ≈0.1 t and ‖δµ‖2 ≤ εt, we have ‖ δµ√
xs
‖2 ≤ 1.1εt√

t
. Since P is an

orthogonal projection matrix, we have ‖P δµ√
xs
‖2 ≤ ‖ δµ√

xs
‖2. Putting all above facts together, we can show

∥∥∥E[s−1δ̃s]
∥∥∥

2

2
=

n∑

i=1


 1√

xisi

n∑

j=1

P i,j
δµ,j√
xjsj




2

=

n∑

i=1

1

xisi




n∑

j=1

P i,j
δµ,j√
xjsj




2

≤ 1

0.9t

n∑

i=1




n∑

j=1

P i,j
δµ,j√
xjsj




2

=
1

0.9t
‖P δµ√

xs
‖22

≤ 1

0.9t
‖ δµ√

xs
‖22

≤ (1.1)2

0.9t
· (εt)2

t

≤ 1.4ε2,

where the third step follows by xs = xs ≈0.1 t. It implies that
∥∥∥E[s−1δ̃s]

∥∥∥
2
≤ 1.2ε. (20)

Notice that the proof for x is identical to the proof for s because (I − P ) is also a projection matrix. Further, since s ≈0.1 s
and x ≈0.1 x by Assumption C.1, the next two inequalities in Claim C.5 can be easily shown.

Now, we are ready to bound ‖E[µ−1δ̃µ]‖2 by

‖E[µ−1δ̃µ]‖2 = ‖E[s−1x−1(xδ̃s + sδ̃x)]‖2 ≤ ‖E[s−1δ̃s]‖2 + ‖E[x−1δ̃x]‖2 ≤ 4ε.

where the first step follows by µ = xs = xs and xδ̃s + sδ̃x = δ̃µ defined in Eq. (14), the second step follows by triangle
inequality, and last step follows by ‖E[s−1δ̃s]‖2, ‖E[x−1δ̃x]‖2 ≤ 2ε.
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Claim C.6 (Part 2, bounding the variance per coordinate).

Var[s−1
i δ̃s,i] ≤ 2ε2/b,Var[x−1

i δ̃x,i] ≤ ε2/b,Var[s−1
i δ̃s,i] ≤ 2ε2/b,Var[x−1

i δ̃x,i] ≤ 2ε2/b,Var[µ−1
i δ̃µ,i] ≤ 8ε2/b.

Proof. Consider the i-th coordinate of the vector

s−1
i δ̃s,i =

1√
xisi

(
PR>R

δµ√
xs

)
i
.

For variance of s−1
i δ̃s,i, we have

Var[s−1
i δ̃s,i] ≤ E[(s−1

i δ̃s,i)
2]−E[s−1

i δ̃s,i]
2

≤ 1

xisi

(
P

δµ√
xs

)2

i
+

1

xisi

‖ δµ√
xs
‖22

b
− 1

xisi

(
P

δµ√
xs

)2

i

≤ 1

xisi

‖ δµ√
xs
‖22

b

≤ 1.3

t2
‖δµ‖22
b

≤ 1.3ε2

b
, by xisi = xisi ≈1/10 t

where the second step follows by (1, log1.5(n/δ), δ)-coordinate wise embedding and Eq. (19), the fourth step follows by
xisi = xisi ≈0.1 t, and the last step follows by ‖δµ‖2 ≤ εt in Assumption C.1.

The proof for the next three inequalities in Claim C.6 are identical, which are omit here.

For the variance of µ−1
i δ̃µ,i,

Var[µ−1
i δ̃µ,i] = Var[x−1

i s−1
i (xiδ̃s,i + siδ̃x,i)]

≤ 2Var[x−1
i xis

−1
i δ̃s,i] + 2Var[s−1

i six
−1
i δ̃x,i]

= 2Var[s−1
i δ̃s,i] + 2Var[x−1

i δ̃x,i]

≤ 8ε2/b.

where the first step follows by µ = xs = xs and xδ̃s + sδ̃x = δ̃µ defined in Eq. (14), the second step follows by triangle
inequality, and the last step follows by Var[s−1

i δ̃s,i],Var[x−1
i δ̃x,i] ≤ 2ε2/b.

Claim C.7 (Part 3, bounding the probability of success). Let b ≥ 10 log3(2n2/δ). Without resketching, the following holds
with probability 1− δ.

‖s−1δ̃s‖∞ ≤ ε, ‖s−1δ̃s‖∞ ≤ 2ε, ‖x−1δ̃x‖∞ ≤ ε, ‖x−1δ̃x‖∞ ≤ 2ε, ‖µ−1δ̃µ‖∞ ≤ 2ε.

With resketching, it always holds.

Proof. Note by Eq. (19), we have

s−1
i δ̃s,i −E[s−1

i δ̃s,i] =
1√
xisi

((PR>R− P )
δµ√
xs

)i

Using `∞ bound in (1, log1.5(n/δ), δ)-coordinate wise embedding property, we have

Pr

[
|s−1
i δ̃s,i −E[s−1

i δ̃s,i]| ≥
1√
xisi

log1.5(n/δ)√
b

· ‖ δµ√
xs
‖2
]
≤ δ
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As long as

b ≥ 10 log3(2n2/δ)

we have with probability 1− δ/2n,

|s−1
i δ̃s,i −E[s−1

i δ̃s,i]| ≤
1

0.9
√
t
· 0.5 · εt

0.9
√
t
≤ ε.

Taking a union bound, we can show

‖s−1δ̃s‖∞ ≤ ε.

The next three inequalities can be shown in identical way. To show the last inequality, we have

|µ−1
i δ̃µ,i| = |x−1

i s−1
i (xiδ̃s,i + siδ̃x,i)| = |s−1

i δ̃s,i|+ |x−1
i δ̃x,i| ≤ 2ε,

where the first step follows by µ = xs = xs and xδ̃s + sδ̃x = δ̃µ defined in Eq. (14), the second step follows by triangle
inequality, and the last step follows by ‖s−1δ̃s‖∞, ‖x−1δ̃x‖∞ ≤ ε.

C.3. Bounding µnew − µ

Lemma C.8. Let ε ≤ εmp and b ≥ √n. Under the Assumption C.1, the vector µnew
i

def
= (xi + δ̃x,i)(si + δ̃s,i) satisfies

1. ‖E[µ−1(µnew − µ− δ̃µ)]‖2 ≤ 10εmp · ε and ‖E[µ−1(µnew − µ)]‖2 ≤ 5ε.
2. Var[µ−1

i µnew
i ] ≤ 50ε2/b for all i.

3. ‖µ−1(µnew − µ)‖∞ ≤ 3ε.

Claim C.9 (Part 1 of Lemma C.8).

‖E[µ−1(µnew − µ− δ̃µ)]‖2 ≤ 10εmp · ε, and ‖E[µ−1(µnew − µ)]‖2 ≤ 5ε.

Proof. We write

µnew = (x+ δ̃x)(s+ δ̃s) = µ+ xδ̃s + sδ̃x + δ̃xδ̃s = µ+ xδ̃s + sδ̃x︸ ︷︷ ︸
δ̃µ

+ (x− x)δ̃s + (s− s)δ̃x + δ̃xδ̃s︸ ︷︷ ︸
εµ

.

Taking the expectation on both sides, we have

E[µnew − µ− δ̃µ] = (x− x)E[δ̃s] + (s− s)E[δ̃x] + E[δ̃xδ̃s].

Hence, we have

‖µ−1 E[µnew − µ− δ̃µ]‖2
≤ ‖µ−1(x− x)s · s−1 E[δ̃s]‖2 + ‖µ−1(s− s)x · x−1 E[δ̃x]‖2 + ‖µ−1 E[δ̃xδ̃s]‖2
≤ ‖µ−1(x− x)s‖∞ · ‖s−1 E[δ̃s]‖2 + ‖µ−1(s− s)x‖∞ · ‖x−1 E[δ̃x]‖2 + ‖µ−1 E[δ̃xδ̃s]‖2
≤ εmp · ‖s−1 E[δ̃s]‖2 + εmp · ‖x−1 E[δ̃x]‖2 + ‖µ−1 E[δ̃xδ̃s]‖2
≤ 4εmp · ε+ ‖µ−1 E[δ̃xδ̃s]‖2, (21)

where the first step follows by triangle inequality, the second step follows by ‖ab‖2 ≤ ‖a‖∞ · ‖b‖2, the third step
follows by ‖µ−1(x − x)s‖∞ ≤ εmp and ‖µ−1(s − s)x‖∞ ≤ εmp (since x ≈εmp

x, s ≈εmp
s), the last step follows by

‖E[s−1δ̃s]‖2 ≤ 2ε and ‖E[x−1δ̃x]‖2 ≤ 2ε (Part 1 of Lemma C.3).

To bound the last term, note E[δ̃s] = δs and E[δ̃x] = δx, so we have

E[δ̃x,iδ̃s,i] = δx,iδs,i + E[(δ̃x,i − δx,i)(δ̃s,i − δs,i)].
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Hence,

‖µ−1 E[δ̃xδ̃s]‖2 ≤ ‖µ−1δxδs‖2 +

(
n∑

i=1

(
E
[
x−1
i (δ̃x,i − δx,i) · s−1

i (δ̃s,i − δs,i)
])2
)1/2

≤ 4ε2 +
1

2

(
n∑

i=1

(
Var[x−1

i δ̃x,i] + Var[s−1
i δ̃s,i]

)2
)1/2

≤ 4ε2 +
1

2

(
n∑

i=1

2(Var[x−1
i δ̃x,i])

2 + 2(Var[s−1
i δ̃s,i])

2

)1/2

≤ 4ε2 + 2
√
n · ε4/b2

≤ 4ε2 + 2ε2

≤ 6ε2, (22)

where the first step follows by triangle inequality, the second step follows by ‖µ−1δxδs‖2 ≤ ‖x−1δx‖2 · ‖s−1δs‖2 ≤ 4ε2

(Part 1 of Lemma C.3) and 2ab ≤ a2 + b2, the third step follows by (a + b)2 ≤ 2a2 + 2b2, the fourth step follows by
Var[x−1

i δ̃x,i] ≤ 2ε2/b and Var[s−1
i δ̃s,i] ≤ 2ε2/b (Part 2 of Lemma C.3), the last step follows by b ≥ √n.

Combining Eq. (21) and Eq. (22), we have that

‖µ−1(E[µnew − µ− δ̃µ])‖2 ≤ 4εmp · ε+ ‖µ−1 E[δ̃xδ̃s]‖2
≤ 4εmp · ε+ 6ε2

≤ 10εmp · ε.

where we used ε ≤ εmp in Assumption C.1.

From Part 1 of Lemma C.3, we know that ‖µ−1 E[δ̃µ]‖2 ≤ 4ε. Thus using triangle inequality, we know

‖µ−1(E[µnew − µ])‖2 ≤ 10εmp · ε+ 4ε ≤ 5ε.

Claim C.10 (Part 2 of Lemma C.8). Var[µ−1
i µnew

i ] ≤ 50ε2/b for all i.

Proof. Recall that

µnew = µ+ δ̃µ + (x− x)δ̃s + (s− s)δ̃x + δ̃xδ̃s.

We can upper bound the variance of µ−1
i µnew

i by,

Var[µ−1
i µnew

i ] ≤ 4Var[µ−1
i δ̃µ,i] + 4Var[µ−1

i (xi − xi)δ̃s,i] + 4Var[µ−1
i (si − si)δ̃x,i] + 4Var[µ−1

i δ̃x,iδ̃s,i]

≤ 32
ε2

b
+ 4

ε2

b
+ 4

ε2

b
+ Var[µ−1

i δ̃x,iδ̃s,i]

= 40
ε2

b
+ Var[x−1

i δ̃x,i · s−1
i δ̃s,i]

≤ 40
ε2

b
+ 2Sup[(x−1

i δ̃x,i)
2] ·Var[s−1

i δ̃s,i] + 2Sup[(y−1
i δ̃y,i)

2] ·Var[x−1
i δ̃x,i]

≤ 40
ε2

b
+ 2 · (2ε)2 · ε

2

b
+ 2 · (2ε)2 · ε

2

b

≤ 50
ε2

b
.
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where the first step follows by Cauchy-Schwartz inequality, the second step follows by Var[µ−1
i δ̃µ,i] ≤ 8ε2/b (Part 2 of

Lemma C.3) and

Var[µ−1
i (xi − xi)δ̃s,i] = Var[x−1

i (xi − xi)s−1
i δ̃s,i] ≤ 2ε2mp Var[s−1

i δ̃s,i] ≤ ε2/b.

and a similar inequality for Var[µ−1
i (si − si)δ̃x,i] ≤ ε2/b, the third step follows by µ = xs, the fourth step follows by

Var[xy] ≤ 2Sup[x2]Var[y] + 2Sup[y2]Var[x] (Lemma A.1) with Sup denoting the deterministic maximum of the
random variable, the fifth step follows by Var[s−1

i δ̃s,i] ≤ 2ε2/b and Var[x−1
i δ̃x,i] ≤ 2ε2/b (Part 2 of Lemma C.3).

Claim C.11 (Part 3 of Lemma C.8). ‖µ−1(µnew − µ)‖∞ ≤ 3ε.

Proof. We again note that

µnew = µ+ δ̃µ + (x− x)δ̃s + (s− s)δ̃x + δ̃xδ̃s.

Hence, we have

|µ−1
i (µnew

i − µi − δ̃µ,i)|
≤ |(x− x)iµ

−1
i δ̃s,i|+ |(s− s)iµ−1

i δ̃x,i|+ |µ−1
i δ̃x,iδ̃s,i|

= |(x− x)ix
−1
i | · |s−1

i δ̃s,i|+ |(s− s)is−1
i | · |x−1

i δ̃x,i|+ |x−1
i δ̃x,i| · |s−1

i δ̃s,i|
≤ εmp|s−1

i δ̃s,i|+ εmp|x−1
i δ̃x,i|+ |s−1

i δ̃s,i||x−1
i δ̃x,i|

≤ εmp · (2ε) + εmp · (2ε) + (2ε)2

≤ ε,

where the first step follows by triangle inequality, the second step follows by µi = xisi, the third step follows by x ≈εmp x

and s ≈εmp s, the fifth step follows by |s−1
i δ̃s,i| ≤ 2ε and |x−1

i δ̃x,i| ≤ 2ε (Part 3 of Lemma C.3).

Since we know that |µ−1
i δ̃µ,i| ≤ 2ε (Part 3 of Lemma C.3), we have

|µ−1
i (µnew

i − µi)| ≤ ε+ 2ε ≤ 3ε.

C.4. Stochastic central path

We state a tool from previous work ((Cohen et al., 2019b)). It gives us several basic properties of potential function Φλ.

Lemma C.12 (Basic properties of potential function, (Cohen et al., 2019b)). Let Φλ(r) =
∑n
i=1 cosh(λri) for some λ > 0.

For any vector r ∈ Rn,
1. For any vector ‖v‖∞ ≤ 1/λ, we have that

Φλ(r + v) ≤ Φλ(r) + 〈∇Φλ(r), v〉+ 2‖v‖2∇2Φλ(r).

2. ‖∇Φλ(r)‖2 ≥ λ√
n

(Φλ(r)− n).

3.
(∑n

i=1 λ
2 cosh2(λri)

)1/2 ≤ λ√n+ ‖∇Φλ(r)‖2.

The following lemma shows that the potential Φ is decreasing in expectation when Φ is large.

Lemma C.13. Let n ≥ b ≥ √n and λε ≤ 1/1000. Under the Assumption C.1, we have

E

[
Φλ

(
µnew

tnew
− 1

)]
≤ Φλ

(µ
t
− 1
)
− λε

15
√
n

(
Φλ

(µ
t
− 1
)
− 10n

)
.

Proof. Let εµ = µnew − µ− δ̃µ. From the definition, we have

µnew − tnew = µ+ δ̃µ + εµ − tnew,
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which implies

µnew

tnew
− 1 =

µ

tnew
+

1

tnew
(δ̃µ + εµ)− 1

=
µ

t

t

tnew
+

1

tnew
(δ̃µ + εµ)− 1

=
µ

t
+
µ

t
(
t

tnew
− 1) +

1

tnew
(δ̃µ + εµ)− 1

=
µ

t
− 1 +

µ

t
(
t

tnew
− 1) +

1

tnew
(δ̃µ + εµ)

︸ ︷︷ ︸
v

. (23)

Let v = µ
t ( t
tnew − 1) + 1

tnew (δ̃µ + εµ), we have

E[v] =
µ

t
(
t

tnew
− 1) +

1

tnew
(E[δ̃µ] + E[εµ])

=
µ

t
(
t

tnew
− 1) +

1

tnew
(δµ + E[εµ])

=
µ

t
(
t

tnew
− 1) +

1

tnew

((
(
tnew

t
− 1)µ− ε

2
tnew ∇Φλ(µ/t− 1)

‖∇Φλ(µ/t− 1)‖2

)
+ E[εµ]

)

= − ε

2

∇Φλ(µ/t− 1)

‖∇Φλ(µ/t− 1)‖2
+

1

tnew
E[εµ], (24)

where the third step follows by definition of δµ defined in Algorithm 6.

Next, we bound the ‖v‖∞ as follows:

‖v‖∞ ≤
∥∥∥∥
µ

t
(
t

tnew
− 1)

∥∥∥∥
∞

+

∥∥∥∥
1

tnew
(δ̃µ + εµ)

∥∥∥∥
∞

≤ ε√
n

+
‖µ−1(µnew − µ)‖∞

0.9

≤ ε√
n

+
3ε

0.9

≤ 4ε

≤ 1

λ
.

where the second step follows by definition of tnew defined in Algorithm 6 and Part 1 of Assumption C.1, the third step
follows by Part 3 of Lemma C.8, and the last step follows by ε ≤ 1

4λ .

Since ‖v‖∞ ≤ 1
λ , we can apply Part 1 of Lemma C.12 and get

E

[
Φλ

(
µnew

tnew
− 1

)]
= E[Φλ(µ/t+ v − 1)]

≤ Φλ(µ/t− 1) + 〈∇Φλ(µ/t− 1),E[v]〉+ 2E[‖v‖2∇2Φλ(µ/t−1)]

= Φλ(µ/t− 1)− ε

2
‖∇Φλ(µ/t− 1)‖2 +

t

tnew
〈∇Φλ(µ/t− 1),E[t−1εµ]〉+ 2E[‖v‖2∇2Φλ(µ/t−1)]

≤ Φλ(µ/t− 1)− ε

2
‖∇Φλ(µ/t− 1)‖2 +

t

tnew
‖∇Φλ(µ/t− 1)‖2 · ‖E[t−1εµ]‖2 + 2E[‖[v]‖2∇2Φλ(µ/t−1)]

≤ Φλ(µ/t− 1)− ε

2
‖∇Φλ(µ/t− 1)‖2 + 10εmp · ε‖∇Φλ(µ/t− 1)‖2 + 2E[‖v‖2∇2Φλ(µ/t−1)],

where the third step follows by substituting E[v] by Eq. (24), the fourth step follows by 〈a, b〉 ≤ ‖a‖2 · ‖b‖2, the fifth step
follows by ‖E[t−1εµ]‖2 ≤ 10εmp · ε (from Part 1 of Lemma C.8 and µ ≈0.1 t).
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To bound the last term E[‖v‖2∇2Φλ(µ/t−1)], we first bound E[v2
i ],

E[v2
i ] ≤ 2E

[(
µi
t

(
t

tnew
− 1)

)2
]

+ 2E

[(
1

tnew
(δ̃µ,i + δ̂µ,i)

)2
]

≤ ε2/n+ 2.5E
[
((µnew

i − µi)/µi)2
]

= ε2/n+ 2.5Var[(µnew
i − µi)/µi] + 2.5(E[(µnew

i − µi)/µi])2

≤ ε2/n+ 125ε2/b+ 2.5(E[(µnew
i − µi)/µi])2

≤ 126ε2/b+ 3(E[(µnew
i − µi)/µi])2, (25)

where the first step follows by definition of v (see Eq. (23)), the second step follows by µ ≈0.1 t and (t/tnew−1)2 ≤ ε2/(4n),
the third step follows by E[x2] = Var[x] + (E[x])2, the fourth step follows by Part 2 of Lemma C.8, and the last step
follows by n ≥ b.
Now, we are ready to bound E[‖v‖2∇2Φλ(µ/t−1)]

E[‖v‖2∇2Φλ(µ/t−1)]

= λ2
n∑

i=1

E[Φλ(µ/t− 1)iv
2
i ]

≤ λ2
n∑

i=1

Φλ(µ/t− 1)i · (126ε2/b+ 3(E[(µnew
i − µi)/µi])2)

= 126
λ2ε2

b
Φλ(µ/t− 1) + 3λ2

n∑

i=1

Φλ(µ/t− 1)i · (E[(µnew
i − µi)/µi])2

≤ 126
λ2ε2

b
Φλ(µ/t− 1) + 3λ

(
n∑

i=1

λ2Φλ(µ/t− 1)2
i

)1/2

· ‖E[µ−1(µnew − µ)]‖24

≤ 126
λ2ε2

b
Φλ(µ/t− 1) + 3λ

(
λ
√
n+ ‖∇Φλ(µ/t− 1)‖2

)
· (5ε)2,

where the first step follows by defining Φλ(x)i = cosh(λxi), the second step follows from Eq. (25), the fourth step follows
from Cauchy-Schwarz inequality, the fifth step follows from Part 3 of Lemma C.12 and the fact that ‖E[µ−1(µnew−µ)]‖24 ≤
‖E[µ−1(µnew − µ)]‖22 ≤ (5ε)2 (Lemma C.8).

Plugging back, we have

E

[
Φλ

(
µnew

tnew
− 1

)]
= E[Φλ(µ/t+ v − 1)]

≤ Φλ(µ/t− 1)− (
ε

2
− 10εmp · ε)‖∇Φλ(µ/t− 1)‖2 + 252

λ2ε2

b
Φλ(µ/t− 1)

+ 150λ2ε2
√
n+ 150λε2‖Φλ(µ/t− 1)‖2

≤ Φλ(µ/t− 1)− ε

3
‖∇Φλ(µ/t− 1)‖2 + 252

λ2ε2

b
Φλ(µ/t− 1) + 150λ2ε2

√
n

≤ Φλ(µ/t− 1)− λε

3
√
n

(Φλ(µ/t− 1)− n) + 252
λ2ε2

b
Φλ(µ/t− 1) + 150λ2ε2

√
n

≤ Φλ(µ/t− 1)− λε

3
√
n

(Φλ(µ/t− 1)/5− 2n),

where the third step follows from 1000λε ≤ 1 and 1000εmp ≤ 1, the fourth step follows from Part 2 of Lemma C.12, and
the last step follows from b ≥ 1000

√
nλε.

As a corollary, we have the following:
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Lemma C.14. During the MAIN algorithm, Assumption C.1 is always satisfied. Furthermore, the CLASSICALSTEP
happens with probability O( 1

n2 ) each step.

Proof. The second and the fourth assumptions simply follow from the choice of εmp and b.

Let Φ(k) be the potential at the k-th iteration of the MAIN. The CLASSICALSTEP ensures that Φ(k) ≤ n3 at the end of each
iteration. By the definition of Φ and the choice of λ in MAIN, we have that

∥∥∥xs
t
− 1
∥∥∥
∞
≤ ln(2n3)

λ
≤ 0.1.

This proves the first assumption xs ≈0.1 t with t > 0.

For the third assumption, we note that

‖δµ‖2 =

∥∥∥∥
(
tnew

t
− 1

)
xs− ε

2
· tnew · ∇Φλ(µ/t− 1)

‖∇Φλ(µ/t− 1)‖2

∥∥∥∥
2

≤
∣∣∣∣
tnew

t
− 1

∣∣∣∣ ‖xs‖2 +
ε

2
tnew

≤ ε

3
√
n
· 1.1√nt+ 1.01 · ε

2
t ≤ εt,

where we used xs ≈0.1 t and the formula of tnew. Hence, we proved all assumptions in Assumption C.1.

Now, we bound the probability that CLASSICALSTEP happens. In the beginning of the MAIN, (Ye et al., 1994) is used
to modify the linear program with parameter min( δ2 ,

1
λ ). Hence, the initial point x and s satisfies xs ≈1/λ 1. Therefore,

we have Φ(0) ≤ 10n. Lemma C.13 shows E[Φ(k+1)] ≤ (1 − λε
15
√
n

)E[Φ(k)] + λε
15
√
n

10n. By induction, we have that

E[Φ(k)] ≤ 10n for all k. Since the potential is positive, Markov inequality shows that for any k, Φ(k) ≥ n3 with probability
at most O( 1

n2 ).

C.5. Analysis of cost per iteration

To apply the data structure for projection maintenance (Theorem E.1), we need to first prove the input vector w does not
change too much for each step.

Lemma C.15. Let xnew = x+ δ̃x and snew = s+ δ̃s. Let w = x
s and wnew = xnew

snew . Then we have

n∑

i=1

(E[lnwnew
i ]− lnwi)

2 ≤ 64ε2,

n∑

i=1

(Var[lnwnew
i ])

2 ≤ 1000ε2.

Proof. From the definition, we know that

wnew
i

wi
=

1

s−1
i xi

xi + δ̃x,i

si + δ̃s,i
=

1 + x−1
i δ̃x,i

1 + s−1
i δ̃s,i

.

Part 1. For each i ∈ [n], we have

E[lnwnew
i ]− lnwi = E

[
ln(1 + x−1

i δ̃x,i)− ln(1 + s−1
i δ̃s,i)

]

≤ 2|E[x−1
i δ̃x,i − s−1

i δ̃s,i]| by |s−1
i δ̃s,i|, |x−1

i δ̃x,i| ≤ 0.2,Lemma C.3

≤ 2|E[x−1
i δ̃x,i]|+ 2|E[s−1

i δ̃s,i]|. by triangle inequality

Thus, summing over all the coordinates gives

n∑

i=1

(E[lnwnew
i ]− lnwi)

2 ≤
n∑

i=1

8(E[x−1
i δ̃x,i])

2 + 8(E[s−1
i δ̃s,i])

2 ≤ 64ε2.
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where the first step follows by Cauchy-Schwartz inequality, the last step follows by ‖E[s−1δ̃s]‖22, ‖E[x−1δ̃x]‖22 ≤ 4ε2 (Part
1 of Lemma C.3).

Part 2. For each i ∈ [n], we have

Var[wnew
i ] ≤E

[
(lnwnew

i − lnwi)
2
]

= E



(

ln
1 + x−1

i δ̃x,i

1 + s−1
i δ̃s,i

)2



≤ 2E[(x−1
i δ̃x,i − s−1

i δ̃s,i)
2]

≤ 2E[2(x−1
i δ̃x,i)

2 + 2(s−1
i δ̃s,i)

2]

= 4E[(x−1
i δ̃x,i)

2] + 4E[(s−1
i δ̃s,i)

2]

= 4Var[x−1
i δ̃x,i] + 4(E[x−1

i δ̃x,i])
2 + 4Var[s−1

i δ̃s,i] + 4(E[s−1
i δ̃s,i])

2

≤ 16ε2/b+ 4(E[x−1
i δ̃x,i])

2 + 4(E[s−1
i δ̃s,i])

2,

where the last step follows by Var[x−1
i δ̃x,i],Var[s−1

i δ̃s,i] ≤ 2ε2/b (Part 2 of Lemma C.3).

Thus summing over all the coordinates

n∑

i=1

(Var[wnew
i ])

2 ≤ 512nε4

b2
+ 64

n∑

i=1

(
(E[x−1

i δ̃x,i])
4 + (E[s−1

i δ̃s,i])
4
)

≤ 512nε4

b2
+ 2048ε4 ≤ 1000ε2,

where the last step follows by ‖E[s−1δ̃s]‖22, ‖E[x−1δ̃x]‖22 ≤ 4ε2 and b ≥ √nε.

Now, we analyze the cost per iteration in procedure MAIN. This is a direct application of our projection maintenance result.

Lemma C.16. For ε ≥ 1√
n

, each iteration of MAIN (Algorithm 6) takes

n1+a+o(1) + ε · (nω−1/2+o(1) + n2−a/2+o(1))

expected time per iteration in amortized where 0 ≤ a ≤ α controls the batch size in the data structure and α ∈ [0, 1] is the
dual exponent of matrix multiplication.

Proof. Lemma C.14 shows that CLASSICALSTEP happens with only O(1/n2) probability each step. Since the cost of each
step only takes Õ(n2.5), the expected cost is only Õ(n0.5).

Lemma C.15 shows that the conditions in Theorem E.1 holds with the parameter C1 = O(ε), C2 = O(ε), εmp = Θ(1).

In the procedure STOCHASTICSTEP, Theorem E.1 shows that the amortized time per iteration is mainly dominated by two
steps:

1. mp.UPDATE(w): O(ε · (nω−1/2+o(1) + n2−a/2+o(1))).

2. mp.QUERY( 1√
XS

δ̃µ): O(n1+b+o(1) + n1+a+o(1)).

D. Main result
The goal of this section is to putting everything together and prove the following main theorem:
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Theorem D.1 (Main result). Given a linear program minAx=b,x≥0 c
>x with no redundant constraints. Assume that the

polytope has diameter R in `1 norm, namely, for any x ≥ 0 with Ax = b, we have ‖x‖1 ≤ R.

Then, for any 0 < δ ≤ 1, MAIN(A, b, c, δ) outputs x ≥ 0 such that

c>x ≤ min
Ax=b,x≥0

c>x+ δ · ‖c‖∞R and ‖Ax− b‖1 ≤ δ · (R‖A‖1 + ‖b‖1)

in expected time
(
nω+o(1) + n2.5−α/2+o(1) + n2+1/6+o(1)

)
· log(n/δ)

where ω is the exponent of matrix multiplication, α is the dual exponent of matrix multiplication.

For the current value of ω ∼ 2.38 and α ∼ 0.31, the expected time is simply nω+o(1) log(nδ ).

Proof. In the beginning of the MAIN algorithm, (Ye et al., 1994) is called to modify the linear program. Then, we run the
stochastic central path method on this modified linear program.

When the algorithm stops, we obtain a vector x and s such that xs ≈0.1 t with t ≤ δ2

32n3 . Hence, the duality gap is bounded
by
∑
i xisi ≤ (δ/4n)2. (Ye et al., 1994) shows how to obtain an approximate solution of the original linear program with

the guarantee needed using the x and s we just found.

Since t is decreased by 1− ε
3
√
n

factor each iteration, it takes O(
√
n
ε · log(nδ )) iterations in total. In Lemma C.16, we proved

that each iteration takes

n1+a+o(1) + ε · (nω−1/2+o(1) + n2−a/2+o(1)).

and hence the total runtime is

O(n2.5−a/2+o(1) + nω+o(1) + ε−1n1.5+a+o(1)) · log(n/δ).

Since ε = Θ( 1
logn ), the total runtime is

O(n2.5−a/2+o(1) + nω+o(1) + n1.5+a+o(1)) · log(n/δ).

Finally, we note that the optimal choice of a is min( 2
3 , α), which gives the promised runtime.

E. Projection Maintenance
In this section, we present how to resolve the second bottleneck. The main idea is similar to (Cohen et al., 2019b). We need
to maintain the query structure Ph, where P is the projection matrix as shown in Figure 3. We use the idea of lazy update
and low-rank update as discussed in the main body. Here, we supplement the explanation of constructing a copy of W in the
main body by using a 2-person chasing game, as shown in Figure 4.

E.1. Main result

The goal of this section is to prove the following theorem:

Theorem E.1 (Projection maintenance). Given a full rank matrix A ∈ Rd×n with n ≥ d and a tolerance parameter
0 < εmp < 1/4. Given any positive number a such that a ≤ α where α is the dual exponent of matrix multiplication.
Let R1,∗, · · · , RL,∗ ∈ Rnb×n denote a list of sketching matrices, where b ∈ [0, 1]. There is a deterministic data structure
(Algorithm 8) that approximately maintains the projection matrices

√
WA>(AWA>)−1A

√
W

for positive diagonal matrices W through the following two operations:
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Algorithm 8 Projection Maintenance Data Structure

1: datastructure MAINTAINPROJECTION . Theorem E.1
2:
3: members
4: w ∈ Rn . Target vector
5: v, ṽ ∈ Rn . Approximate vector
6: A ∈ Rd×n
7: M ∈ Rn×n . Approximate projection matrix
8: Q ∈ Rn×nbL . Sketched version approximate projection matrix
9: R1,∗, R2,∗, · · ·RL,∗ ∈ Rnb×n . Sketching matrices

10: l ∈ N+, L ∈ N+

11: εmp ∈ (0, 1/4) . Tolerance
12: a ∈ (0, α] . Batch Size for Update (na)
13: end members
14:
15: procedure INITIALIZE(A,w, εmp, a) . Lemma E.4
16: w ← w, v ← w, εmp ← εmp, A← A, a← a
17: M ← A>(AV A>)−1A

18: Choosing R1,∗, R2,∗ · · · , RL,∗ ∈ Rnb×n to be sketching matrices
19: R← [R∗,1, R∗,2 · · · , R∗,L]

20: Q←M
√
V R>

21: l← 1
22: end procedure
23:
24: end datastructure

1. UPDATE(w): Output a vector ṽ such that for all i,

(1− εmp)ṽi ≤ wi ≤ (1 + εmp)ṽi.

2. QUERY(h): Output
√
Ṽ A>(AṼ A>)−1A

√
Ṽ (R>)∗,lRl,∗h for the ṽ outputted by the last call to UPDATE.

The data structure takes n2dω−2 time to initialize and each call of QUERY(h) takes time

n1+b+o(1) + n1+a+o(1).

Furthermore, if the initial vector w(0) and the (random) update sequence w(1), · · · , w(T ) ∈ Rn satisfies

n∑

i=1

(
E[lnw

(k+1)
i ]− lnw

(k)
i

)2

≤ C2
1 and

n∑

i=1

(Var[lnw
(k+1)
i ])2 ≤ C2

2

with the expectation and variance is conditional on w(k)
i for all k = 0, 1, · · · , T − 1. Then, the amortized expected time8

per call of UPDATE(w) is

(C1/εmp + C2/ε
2
mp) · (nω−1/2+o(1) + n2−a/2+o(1)).

Remark E.2. For our linear program algorithm, we have C1 = O(1/ log n), C2 = O(1/ log n) and εmp = Θ(1). See
Lemma C.15.

To verify the correctness of our updates, we have the following lemma:

8If the input is deterministic, so is the output and the runtime.
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Algorithm 9 UPDATE

1: datastructure MAINTAINPROJECTION
2:
3: procedure UPDATE(w) . Lemma E.5
4: yi ← lnwi − ln vi, ∀i ∈ [n]
5: r ← the number of indices i such that |yi| ≥ εmp/2.
6: if r < na then
7: vnew ← v
8: Mnew ←M
9: l← l + 1

10: else
11: Let π : [n]→ [n] be a sorting permutation such that |yπ(i)| ≥ |yπ(i+1)|
12: while 1.5 · r < n and |yπ(d1.5·re)| ≥ (1− 1/ log n)|yπ(r)| do
13: r ← min(d1.5 · re, n)
14: end while

15: vnew
π(i) ←

{
wπ(i) i ∈ {1, 2, · · · , r}
vπ(i) i ∈ {r + 1, · · · , n}

16:
17: . Compute Mnew = A>(AV newA>)−1A via Matrix Woodbury
18: ∆← diag(vnew − v) . ∆ ∈ Rn×n and ‖∆‖0 = r
19: Γ← diag(

√
vnew −√v)

20: Let S ← π([r]) be the first r indices in the permutation.
21: Let MS ∈ Rn×r be the r columns from S of M .
22: Let MS,S ,∆S,S ∈ Rr×r be the r rows and columns from S of M and ∆.
23: Mnew ←M −M∗,S · (∆−1

S,S +MS,S)−1 · (M∗,S)>

24: Re-generate R
25: Qnew ← Q+ (Mnew · Γ) ·R> + (Mnew −M) ·

√
V ·R>

26: l← 1
27: end if
28: v ← vnew

29: M ←Mnew

30: Q← Qnew

31: ṽi ←
{
vi if | lnwi − ln vi| < εmp/2

wi otherwise
32: return ṽ
33: end procedure
34:
35: end datastructure
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.

.

√
W A A>

−1

W A A> √
W

Figure 3: A visualization of projection matrix.

Lemma E.3 (Correctness of the algorithm). The output of UPDATE(w) in Algorithm 9 satisfies

M = A>(AV A>)−1A and

Q = M
√
V R>

The output of QUERY(h) in Algorithm 10 satisfies

ps = P̃ (R>)∗,lRl,∗h

px = (I − P̃ )(R>)∗,lRl,∗h

where P̃ =
√
Ṽ A>(AṼ A>)−1A

√
Ṽ , and Ṽ is outputted by UPDATE(w).

Proof. For UPDATE(w) procedure, note vnew only differs from w in entries correspond to the set S. Thus, by Matrix
Woodbury Identity and definition of Mnew, we have

A>(AV newA>)−1A = A>(A(V + ∆)A>)−1A

= A>
(

(AV A>)−1 − (AV A>)−1A∗,S ·
(

∆−1
S,S + (A>)S,∗(AV A

>)−1A∗,S
)−1

· (A>)S,∗(AV A
>)−1

)
A

= A>(AV A>)−1A−A>(AV A>)−1A∗,S ·
(

∆−1
S,S + (A>)S,∗(AV A

>)−1A∗,S
)−1

· (A>)S,∗(AV A
>)−1A

= M −M∗,S
(

∆−1
S,S +MS,S

)−1

MS,∗

= Mnew.

Note the output M = Mnew and V = V new, so we have the output satisfying M = A>(AV A>)−1A.

As for Q, notice by definition

Qnew = Q+ (Mnew · Γ) ·R> + (Mnew −M) ·
√
V ·R>

= M
√
V R> +Mnew(

√
V new −

√
V )R> + (Mnew −M)

√
V R>

= Mnew
√
V newR>

Again, since the output Q = Qnew, M = Mnew and V = V new, we have the output satisfying Q = M
√
V R>.

For QUERY(h) procedure, by definition we have

pm =
√
Ṽ · (M∗,S̃) · (∆̃−1

S̃,S̃
+MS̃,S̃)−1 · (QS̃,l +MS̃,∗ · Γ̃ · (R>)∗,l) ·Rl,∗ · h
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A,B

(a) round 0

A

B

(b) round 1

A

B

C

(c) round 2

A,B

(d) round 3

Figure 4: Visualization of projection maintenance: we model the task as a game of person A chasing person B, where person
A needs to report the approximate location of person B in each round while moving as little as possible. Person A brings a
drone C which can only fly in one direction. The location of Person B represents the exact projection matrix, the location
of Person A represents the projection matrix we store in the datastructure, the location reported in each round represents
the output of our algorithm. In the beginning, they start off at the same location. At round 1, person B moves but is still
close to person A. In this case, person A stays idol and reports its location. This case corresponds to the situation that the
projection changes little in all coordinates, so we use the idea of lazy updates. At round 2, person B moves far away from
A only in one direction. In this case, person A keeps its location and releases drone C to chase person B in the direction
where person B moves a lot. And we report the location of the drone C.This case corresponds to the situation that the
projection only changes a lot in few coordinates, so we use the idea of low-rank updates while keeping lazy on updating the
stored projection matrix. In round 3, person B moves far away from A in all directions. In this case, person A moves to the
location of person B and reports its location. This case corresponds to the situation that the projection changes a lot in many
coordinates, so we update the stored projection matrix.

=
√
Ṽ · (M∗,S̃) · (∆̃−1

S̃,S̃
+MS̃,S̃)−1 ·MS̃,∗ · Ṽ · (R>)∗,l ·Rl,∗ · h.

Thus,

ps =
√
Ṽ · (Q∗,l +M · Γ̃ · (R>)∗,l) ·Rl,∗ · h− pm

=
√
Ṽ ·M · Ṽ · (R>)∗,l ·Rl,∗ · h− pm

=
√
Ṽ (M −M∗,S̃(∆̃−1

S̃,S̃
+MS̃,S̃)−1MS̃,∗)Ṽ (R>)∗,lRl,∗h.

Note Ṽ only differs from V in entries correspond to the set S̃, again by Matrix Woodbury Identity and definition of M , we
have

A>(AṼ A>)−1A = A>(A(V + ∆̃)A>)−1A

= A>
(

(AV A>)−1 − (AV A>)−1A∗,S̃ ·
(

∆̃−1

S̃,S̃
+ (A>)S̃,∗(AV A

>)−1A∗,S̃

)−1

· (A>)S̃,∗(AV A
>)−1

)
A

= A>(AV A>)−1A−A>(AV A>)−1A∗,S̃ ·
(

∆̃−1

S̃,S̃
+ (A>)S̃,∗(AV A

>)−1A∗,S̃

)−1

· (A>)S̃,∗(AV A
>)−1A

= M −M∗,S̃
(

∆̃−1

S̃,S̃
+MS̃,S̃

)−1

MS̃,∗,

which implies

ps =
√
Ṽ A>(AṼ A>)−1AṼ (R>)∗,lRl,∗h = P̃ (R>)∗,lRl,∗h.
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Further,

px = (R>)∗,lRl,∗h− ps = (I − P̃ )(R>)∗,lRl,∗h,

which completes the proof.

Above lemma verifies our algorithm. Now we consider the running time of the projection maintenance, which consists of
Initialization time, update time and query time, as discussed below.

E.2. Initialization time, update time

To formalize the amortized runtime proof, we first analyze the initialization time (Lemma E.4), update time (Lemma E.5),
and query time (Lemma E.6) of our projection maintenance data-structure.

Lemma E.4 (Initialization time). The initialization time of data-structure MAINTAINPROJECTION (Algorithm 8) is
O(n2dω−2).

Proof. Given matrix A ∈ Rd×n and diagonal matrix V ∈ Rn×n, computing A>(AV A>)−1A takes O(n2dω−2).

Lemma E.5 (Update time). The update time of data-structure MAINTAINPROJECTION (Algorithm 9) is O(rgrn
2+o(1))

where r is the number of indices we updated in v.

Proof. The proof is identical to (Cohen et al., 2019b; Lee et al., 2019). We omit the details here.

E.3. Query time

Algorithm 10 QUERY

1: datastructure MAINTAINPROJECTION
2:
3: procedure QUERY(h) . Lemma E.6
4: Let S̃ be the indices i such that | lnwi − ln vi| ≥ εmp/2.
5: ∆̃← Ṽ − V
6: Γ̃←

√
Ṽ −

√
V

7: pm ←
√
Ṽ · (M∗,S̃) · (∆̃−1

S̃,S̃
+MS̃,S̃)−1 · (QS̃,l +MS̃,∗ · Γ̃ · (R>)∗,l) ·Rl,∗ · h

8: ps ←
√
Ṽ · (Q∗,l +M · Γ̃ · (R>)∗,l) ·Rl,∗ · h− pm

9: px ← (R>)∗,l ·Rl,∗ · h− ps
10: return (px, ps)
11: end procedure
12:
13: end datastructure

Lemma E.6 (Query time). The query time of data-structure MAINTAINPROJECTION (Algorithm 8) is O(n1+b+o(1) +
n1+a+o(1)).

Proof. Notice by the algorithm we have |S̃| ≤ na. Thus, Γ̃ is a sparse diagonal matrix with at most na non-zero elements.
The running time mainly comes from three parts.

Part 1. Computing pm:

• Compute Rl,∗ · h: matrix-vector multiplication between matrix of size nb × n and vector of size n× 1, this takes n1+b

time.

• Compute (R>)∗,l · (Rl,∗h): matrix-vector multiplication between matrix of size n× nb and vector of size nb × 1, this
takes n1+b time.
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• Compute Γ̃ · (R>l,∗Rl,∗h): matrix-vector multiplication between sparse diagonal matrix with at most na non-zero
elements and vector of size n× 1, this takes na time.

• Compute MS̃,∗ · (Γ̃R>l,∗Rl,∗h): matrix-vector multiplication between matrix of size at most na × n and sparse vector
with at most na non-zero elements, this takes n2a time.

• Compute QS̃,l · (Rl,∗h): matrix-vector multiplication between matrix of size at most na×nb and vector of size nb× 1,
this takes na+b time.

• Compute (∆̃−1

S̃,S̃
+MS̃,S̃)−1: inverse of matrix of size at most na × na, this takes naω time.

• Compute (∆̃−1

S̃,S̃
+MS̃,S̃)−1 · [(QS̃,l +MS̃,∗Γ̃(R>)∗,l)Rl,∗h]: matrix-vector multiplication between matrix of size at

most na × na and vector of size at most na × 1, this takes n2a time.

• Compute
√
Ṽ · (M∗,S̃): matrix-matrix multiplication between diagonal matrix of size n× n and matrix of size at most

n× na, this takes n1+a time.

• Compute [
√
Ṽ M∗,S̃ ] · [(∆̃−1

S̃,S̃
+MS̃,S̃)−1(QS̃,l+MS̃,∗Γ̃(R>)∗,l)Rl,∗h]: matrix-vector multiplication between matrix

of size at most n× na and vector of size at most na × 1, this takes n1+a time.

To conclude, we can compute pm in O(n1+b + naω + n1+a) time.

Part 2. Computing ps:

• Compute Rl,∗h and Γ̃R>l,∗Rl,∗h in same way as in calculating pm: take n1+b and O(n1+b + na) time respectively.

• Compute
√
Ṽ ·Q∗,l: matrix-matrix multiplication between diagonal matrix of size n× n and matrix of size n× nb,

takes n1+b time.

• Compute [
√
Ṽ Q∗,l] · [Rl,∗h]: matrix-vector multiplication between matrix of size n× nb and vector of size nb × 1,

takes n1+b time.

• Compute M · [Γ̃R>l,∗Rl,∗h]: matrix-vector multiplication between matrix of size n× n and sparse vector with at most
na non-zero elements, takes O(n1+a) time.

• Compute
√
Ṽ · [M Γ̃R>l,∗Rl,∗h]: matrix-vector multiplication between diagonal matrix of size n× n and vector of size

n× 1, takes n time.

To conclude, we can compute ps in O(n1+b + n1+a) time.

Part 3. Computing px:

• Compute R>l,∗Rl,∗h in same way as in calculating pm: take O(n1+b) time.

Thus, overall the running time is

O(n1+a + n1+b + naω).

Finally, we note that ω ≤ 3− α ≤ 3− a (see (Cohen et al., 2019b)) and hence a · ω ≤ a(3− a) ≤ 1 + a. Therefore, the
final running time it takes is O(b1+b+o(1) + n1+a+o(1)).
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References Sampling/Sketching How? Feasible? Oblivious?
(Cohen et al., 2019b) Sampling on the right

√
WA>(AWA>)−1A

√
WDh Yes No

(Lee et al., 2019) Sketching on the left R>R
√
WA>(AWA>)−1A

√
Wh No Yes

This work Sketching on the right
√
WA>(AWA>)−1A

√
WR>Rh Yes Yes

Table 4: Summary of different approaches to reduce dimensionality. We remark that (Brand, 2020) propose a deterministic
technique called vector maintenance without using any randomized technique and achieve the same running time as this
work. In (Jiang et al., 2021), they propose an algorithm that improves the term n2+1/6 to n2+1/18.

F. Comparison to state of the art results
In this section, we will explain the solutions of one-step central path equation (a linear system) are different in two previous
works and this paper. Let us just believe adding a sparse diagonal D and using a sketching matrix R is able to reduce the
computational cost. We won’t explain the reason why it can reduce the computational cost.

We compare our approach to the state of the art results (Cohen et al., 2019b; Lee et al., 2019). Though all methods shares
the same running time up to subpolynomial factors, they use different randomization techniques.

Note that the major question in fast central path method is how to speed up the following calculation
√
WA>(AWA>)−1A

√
W · h. (26)

F.1. Feasible vs Infeasible

Lee, Song, Zhang’19. The approach of (Lee et al., 2019) can be interpreted as sketching on the left. Let R ∈ R
√
n×n be

a sketching matrix. Let T be the number of iterations of the iterative algorithm. We pick T independent sketching matrices
at the beginning of the algorithm. In each iteration t ∈ [T ], we are computing

R> ·R
√
WA>(AWA>)−1A

√
W · h (27)

which can be viewed as an approximated solution to the linear system in the classical central path method:

Xδs + Sδx = δ̃µ,

Aδx = 0, (28)

A>δy + δs = 0,

where

δ̃µ = δµ

They choose δx, δs and δy as follows

δx =
X√
XS

(I −R>RP )
1√
XS

δµ

δs =
S√
XS

R>RP
1√
XS

δµ (29)

δy = − (A
X

S
A>)−1A

√
X

S

1√
XS

δµ

Note that plugging the above solution back to Eq. (28), we can see line 2 and 3 (primal and dual feasibility conditions) of
the linear system does not hold exactly, which results in an infeasible issue in each iteration. Specifically,

For the first line of Eq. (28), we have the LHS becomes

LHS = Xδs + Sδx.
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The RHS becomes

RHS = δ̃µ = Xδs + Sδx.

Thus, LHS = RHS.

For the second line of Eq. (28), i.e., the primal feasible condition, we have the left hand side becomes

LHS = Aδx

= A
X√
XS

(I −R>RP )
1√
XS

δµ

=
A

S
δµ −A

√
X

S
R>R

√
X

S
A>(A

X

S
A>)−1A

1

S
δµ

while the right hand side is always 0 and does not match the left hand side. Therefore, Eq. (29) does not satisfy the primal
feasible condition in each iteration.

For the third line of Eq. (28), i.e., the dual feasible condition, we have the left hand side becomes

LHS = A>δy + δs

= −A>(A
X

S
A>)−1A

√
X

S

1√
XS

δµ +
S√
XS

R>RP
1√
XS

δµ

= A>(A
X

S
A>)−1A

√
X

S

1√
XS

δµ +

√
S

X
R>R

√
X

S
A>(A

X

S
A>)−1A

√
X

S

1√
XS

δµ

while the right hand side is always 0 and does not match the left hand side. Therefore, Eq. (29) does not satisfy the dual
feasible condition in each iteration.

Cohen, Lee, Song’19. The approach of (Cohen et al., 2019b) can be interpreted as sampling on the complementarity gap
h. Let D denote a random diagonal sampling matrix, (Cohen et al., 2019b) approximates Eq. (26) by

√
WA>(AWA>)−1A

√
W︸ ︷︷ ︸

P

·D · h,

where D roughly only has
√
n non-zero entries on the diagonal. The approach can also be viewed as explicit solving the

linear system (Eq. (30)) in each iteration:

Xδs + Sδx = δ̃µ,

Aδx = 0, (30)

A>δy + δs = 0,

where

δ̃µ = Dδµ.

The above system (consists of three equations) can be solved exactly by:

δx =
X√
XS

(I − P )
1√
XS

Dδµ,

δs =
S√
XS

P
1√
XS

Dδµ, (31)

δy = (A
X

S
A>)−1A

√
X

S

1√
XS

Dδµ.

which means (Cohen et al., 2019b) is a feasible method.
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This paper. Our methods sketching on the right as follows:
√
WA>(AWA>)−1A

√
WR> ·R · h.

Our method can be interpreted as an exact solution to the new linear system we construct:

Xδs + Sδx = δ̃µ,

Aδx = 0, (32)

A>δy + δs = 0,

where

δ̃µ =
√
XSR>R

1√
XS

δµ.

The above linear system (Eq. (32)) can be solved exactly by

δx =
X√
XS

(I − P )R>R
1√
XS

δµ,

δs =
S√
XS

PR>R
1√
XS

δµ, (33)

δy = − (A
X

S
A>)−1A

√
X

S
R>R

1√
XS

δµ,

which means our method is feasible.

F.2. Oblivious vs non-oblivious

Cohen, Lee, Song’19. The explicit construction for the sampling matrix D in Eq. (31) is given by (Cohen et al., 2019b):

δ̃µ,i =




δµ,i/pi, with probability pi = k · ( δ2µ,i∑

l δ
2
µ,l

+ 1
n )

0, else.

Therefore, (Cohen et al., 2019b) is a non-oblivious approach since the sampling matrix D depends on the value of δµ.

Lee, Song, Zhang’19. The sketching matrix R in Eq. (29) does not depend on the value of δµ, meaning it is an oblivious
method.

This paper The sketching matrix R in our approach (see Eq. (33)) does not depend on the value of δµ as shown in
Algorithm 6, which makes ours an oblivious method.

To conclude, we summarize above discussion in Table 4. Compare to previous results, our method is both feasible and
oblivious. These advantages help to implement expensive calculations in the pre-processing stage and have a much simpler
analysis, which gives the potential to generalize to other optimization problems.

G. Comparison to JL, SE and AMP
In this section we compare the guarantees of coordinate-wise embedding (CE, Definition 2.1) with three different guarantees:
Johnson-Lindenstrauss embedding (JL, (Johnson & Lindenstrauss, 1984)), `2-subspace embedding (SE, (Sarlós, 2006;
Woodruff, 2014)), and approximate matrix product (AMP, (Sarlós, 2006)). We also consider the JL moment property (JLM,
(Kane & Nelson, 2012)) which is closely related to AMP. We first state the definitions of these embeddings and properties
here.
Definition G.1 (Coordinate-wise embedding (CE), restatement of Definition 2.1). Given parameters α, β ∈ R and
δ ∈ (0, 1), we say a randomized matrix R ∈ Rb×n from a distribution Π satisfies (α, β, δ)-coordinate-wise embedding
property if for any fixed vector g, h ∈ Rn, we have

1. E
R∼Π

[g>R>Rh] = g>h,
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2. E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
α

b
‖g‖22‖h‖22,

3. Pr
R∼Π

[
|g>R>Rh− g>h| ≥ β√

b
‖g‖2‖h‖2

]
≤ δ.

From now on we will refer to the three properties of CE as CE1, CE2, and CE3.

Definition G.2 (Johnson-Lindenstrauss embedding (JL) (Johnson & Lindenstrauss, 1984), restatement of Definition 3.1).
Given ε, δ ∈ (0, 1), a finite point set S ⊂ Rn with |S| = m, we say a randomized matrix R ∈ Rb×n from a distribution Π
satisfies (ε, δ,m)-Johnson-Lindenstrauss property if

Pr
R∼Π

[
(1− ε)‖g‖22 ≤ ‖Rg‖22 ≤ (1 + ε)‖g‖22, ∀g ∈ S

]
≥ 1− δ.

Definition G.3 (Subspace embedding (SE) (Sarlós, 2006), restatement of Definition 3.2). Given ε ∈ (0, 1), any matrix
A ∈ Rn×d, we say a randomized matrix R ∈ Rb×n from a distribution Π satisfies (ε, δ, d)-subspace embedding for the
column space of A if

Pr
R∼Π

[
(1− ε)‖Ax‖22 ≤ ‖RAx‖22 ≤ (1 + ε)‖Ax‖22, ∀x ∈ Rd

]
≥ 1− δ.

Definition G.4 (Approximate matrix product (AMP) (Sarlós, 2006)). Given ε, δ ∈ (0, 1), any two matrices A,B each with
n rows, we say a randomized matrix R ∈ Rb×n from a distribution Π satisfies (ε, δ)-approximate matrix product for A and
B if

Pr
R∼Π

[
‖A>R>RB −A>B‖F > ε‖A‖F ‖B‖F

]
≤ δ.

Remark G.5. More generally, we can also define a matrix C that satisfies ‖C −A>B‖F ≤ ε with high probability.

Definition G.6 (JL moment property (JLM) (Kane & Nelson, 2012)). Given ε, δ ∈ (0, 1), we say a randomized matrix
R ∈ Rb×n from a distribution Π satisfies (ε, δ)-JL moment property if

E
R∼Π

[(‖Rg‖22 − 1)2] ≤ ε2 · δ, ∀g ∈ Rn such that ‖g‖2 = 1.

Remark G.7. More generally, we can also define (ε, δ, l)-JL moment property for l ≥ 2 as

E
R∼Π

[|‖Rg‖22 − 1|l] ≤ εl · δ, ∀g ∈ Rn.

We compare the coordinate-wise embedding defined in this paper with the other four guarantees in Remark G.8 and G.9.
Then we summarize the relations of all the five guarantees in Remark G.10.

The first remark shows that CE3, JL, and SE can be viewed as the same `2-norm guarantee, but over different number of
vectors.

Remark G.8 (`2-norm guarantee over different number of vectors). Consider the following `2-norm guarantee: For any
fixed set S ⊆ Rn of certain type. Let b be a number that depends on n, ε, δ, |S|. There is a distribution Π over Rb×n such
that

Pr
R∼Π

[
(1− ε)‖g‖22 ≤ ‖Rg‖22 ≤ (1 + ε)‖g‖22, ∀g ∈ S

]
≥ 1− δ.

CE3 When S only contains one vector, i.e., S = {g} for some g ∈ Rn, this `2-norm guarantee is the same as the third
property of coordinate-wise embedding. Note that it is equivalent to let S contain O(1) vectors by losing a constant
factor in δ.

JL When S is a finite set of vectors, i.e., S = {g1, g2, · · · , gm} for g1, g2, · · · , gm ∈ Rn, this `2-norm guarantee is the
same as JL guarantee.

SE When S is a subspace of Rn and contains infinite number of vectors, i.e., S = {g = Ax|x ∈ Rd} for some matrix
A ∈ Rn×d, this `2-norm guarantee is the same as the subspace embedding guarantee.



Oblivious Sketching-based Central Path Method for Linear Programming

JL and SE parts are straightforward. The equivalence of CE3 is as follows. On the one hand, if we know that for any
vectors h, g ∈ Rn, |〈Rg,Rh〉 − 〈g, h〉| ≤ ε‖g‖2‖h‖2 is satisfied with probability at least 1− δ, then by setting g = h, we
have ‖Rh‖22 = (1± ε)‖h‖22. On the other hand, if for any h, g ∈ Rn, ‖Rv‖2 = (1± ε)‖v‖2 is satisfied for v = h, g, (h− g)
with probability at least 1− δ, without loss of generality we assume ‖h‖2 = ‖g‖2 = 1, then

〈Rg,Rh〉 =
1

2
(‖Rg‖22 + ‖Rh‖22 − ‖Rg −Rh‖22)

=
1

2

(
(1± ε)‖g‖22 + (1± ε)‖h‖22 − (1± ε)‖g − h‖22

)

= 〈g, h〉 ± ε

2
(‖g‖22 + ‖h‖22 + ‖g − h‖22)

= 〈g, h〉 ± ε,

which gives the other guarantee.

The second remark shows that CE2 is equivalent to JLM under the assumption of CE1.

Remark G.9 (CE1 and CE2 implies JLM). We show that together the first two properties of coordinate-wise embedding
with parameter α = bε2δ implies JL moment property with parameters ε and δ.

Let h = g where g is any vector in Rn that satisfies ‖g‖2 = 1, CE2 with parameter α = bε2δ implies JL moment property
with parameters ε and δ as follows:

E
R∼Π

[(g>R>Rh)2] ≤ (g>h)2 +
α

b
‖g‖22‖h‖22 =⇒ E

R∼Π
[‖Rg‖42] ≤ 1 + ε2δ ⇐⇒ E

R∼Π
[(‖Rg‖22 − 1)2] ≤ ε2δ,

where the first step follows from h = g and ‖g‖22 = 1, the second step follows from CE1 that ER∼Π[R>R] = I , and hence
ER∼Π[‖Rg‖22] = 1.

In the third remark we summarize the relations between all five guarantees.

CE3 JL SE

CE1,2 JLM AMP

(ε, δ,m ≥ 3)-JL =⇒ (ε, δ)-CE3

(β ≤ ε
√
b, δ)-CE3 =⇒ (ε, δm,m)-JL

when S ⊆ {Ax|x ∈ Rd}, (ε, δ, d)-SE =⇒ (ε, δ,m)-JL

(ε, δ, 2d)-JL =⇒ (ε, δ, d)-SE

(α ≤ bε2δ)-CE1,2 =⇒ (ε, δ)-JLM (ε, δ)-JLM =⇒ (ε, δ)-AMP

(ε, δ/m)-JLM
=⇒ (ε, δ,m)-JL

(ε/d, δ)-AMP
=⇒ (ε, δ, d)-SE

Figure 5: Summary of the relations between five guarantees. See Remark G.10.

Remark G.10 (Summary of the relations between five guarantees). We summarize the the relations between five guarantees
in Figure 5.

• JL =⇒ CE3. JL gives bound over a set which implies the CE3 bound over one vector. See Remark G.8.

• CE3 =⇒ JL. Directly follows from Union bound over the m vectors of JL. See Remark G.8.

• JL =⇒ SE. Suppose a matrix R ∈ Rb×n satisfies the JL guarantee with size b = b(ε, δ,m), where m ∈ N+ is the
number of vectors, ε ∈ (0, 1) is the error parameter, and δ ∈ (0, 1) is the probability parameter. Then using the same
construction of R but with size b = b(ε, δ, 2d), R satisfies the subspace embedding guarantee.

A proof sketch is as follows: w.l.o.g. we consider the subspace with unit vectors S = {y ∈ Rn|y = Ax, x ∈ Rd, ‖y‖2 =
1}. We choose a ε-net of S, which is a set N ⊆ S that satisfies ∀y ∈ S, ∃w ∈ N such that ‖y − w‖2 ≤ 1/2. We build
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a matrix R ∈ Rb×n that satisfies the JL guarantee for the set N . Note that the size b = b(ε, δ, 2d) since the ε-net N
has size |N | = O(2d). The ε-net ensures that any vector y ∈ Rn can be decomposed as y =

∑∞
i=0

1
2i y

(i) where all
y(i) ∈ N . Thus the guarantee ‖Ry‖2 = (1± ε)‖y‖2 is satisfied for all vectors y ∈ Rn.

For more details see page 12-13 of (Woodruff, 2014).

• SE =⇒ JL. When the set S of JL is chosen as a subset of subspace {Ax|x ∈ Rd}, SE trivially implies JL. See
Remark G.8.

• CE1,2 =⇒ JLM. See Remark G.9.

• JLM =⇒ JL. Directly follows from Markov’s inequality and Union bound over the m vectors of JL.

• JLM =⇒ AMP. See Theorem 13 of (Woodruff, 2014). The AMP guarantee of different sketching matrices are usually
proved from JLM, e.g., count-sketch matrix (Theorem 14 of (Woodruff, 2014)).

• AMP =⇒ SE. See proof of Theorem 9 of (Woodruff, 2014) (page 25).

Next we summarize the required size of the different sketching matrices to achieve CE, JL, SE, and AMP guarantees in
Table 5, 6, 7, 8. We restate the definitions of the different types of sketching matrices R ∈ Rb×n.

Random Gaussian matrix All entries of R are sampled from N (0, 1/b) independently.

SRHT matrix (Lu et al., 2013) Let R =
√
n/bSHD, where S ∈ Rb×n is a random matrix whose rows are b uniform

samples (without replacement) from the standard basis of Rn, H ∈ Rn×n is a normalized Walsh-Hadamard matrix,
and D ∈ Rn×n is a diagonal matrix whose diagonal elements are i.i.d. Rademacher random variables.

AMS sketch matrix (Alon et al., 1999) Let Ri,j = hi(j), where h1, h2, · · · , hb are b random hash functions picking from
a random hash familyH = {h : [n]→ {− 1√

b
,+ 1√

b
}}.

Count-sketch matrix (Charikar et al., 2002) Let Rh(i),i = σ(i) for all i ∈ [n] and other entries to zero, where h : [n]→
[b] and σ : [n]→ {−1,+1} are random hash functions.

Sparse embedding matrix (Nelson & Nguyên, 2013) Let R(j−1)b/s+h(i,j),i = σ(i, j)/
√
s for all (i, j) ∈ [n] × [s] and

all other entries to zero, where h : [n]× [s]→ [b/s] and σ : [n]× [s]→ {−1, 1} are random hash functions.

Sketching matrix for CE α β Lemma
Random Gaussian O(1) O(log1.5(n/δ)) B.13, B.24

SRHT O(1) O(log1.5(n/δ)) B.12, B.23
AMS O(1) O(log1.5(n/δ)) B.12, B.23

Count-sketch O(1) O(
√
b log(1/δ) or O( 1√

δ
) B.14, B.25, B.26

Sparse embedding∗ O(1) O(
√
b/s log1.5(n/δ) B.15, B.28

Uniform sampling O(n) O(n/
√
b) B.16, B.29

Table 5: Summary for different sketching matrices for coordinate embedding. Restatement of the first three columns of
Table 1. The sketching matrix R has size b × n. α, β ∈ R are the two error parameters, δ ∈ (0, 1) is the probability
parameter, and s ∈ N+ is the number of non-zero entries in each column of the sparse embedding matrices.

H. Comparison to classical “sketch and solve”
In this section, we compare our sketching approach to the classical “sketch and solve” approach.
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Sketching mat. for JL b Time for R · x Reference
Random Gaussian ε−2 log(m/δ) bn Theorem 4 of (Woodruff, 2014)

SRHT ε−2 log(m/δ) n log n+ nε−2 log(m/δ) (Ailon & Chazelle, 2006), Page 15 of (Woodruff, 2014)
AMS ε−2 log(m/δ) bn (Achlioptas, 2003), Page 14 of (Woodruff, 2014)

Count-sketch† ε−2δ−1m b+ n Theorem 14 of (Woodruff, 2014)
Sparse embedding∗ ε−2 log(m/δ) sn (Kane & Nelson, 2012), Page 14 of (Woodruff, 2014)

Table 6: Summary for different sketching matrices for JL lemma. The sketching matrix R has size b × n. m ∈ N+

is the number of vectors, ε ∈ (0, 1) is the error parameter, and δ ∈ (0, 1) is the probability parameter. ∗ In sparse
embedding matrices, each column has s = Ω(ε−1 log(m/δ)) non-zero entries. † Count-sketch matrices satisfy the (ε, δ)-JL
moment property when b = Ω(ε−2δ−1). Then using Markov inequality and union bound over all m vectors, we have
b = Ω(ε−2δ−1m) suffices for JL guarantee with m vectors.

Sketching mat. for SE b Time for R ·A Reference
Random Gaussian ε−2(d+ log(1/δ)) Tmat(b, n, d) Thm. 6 of (Woodruff, 2014)

SRHT ε−2(
√
d+
√

logn)2 log(d/δ) nd log(ε−1d(logn)) Thm. 7 of (Woodruff, 2014)
AMS ε−2(d+ log(1/δ)) Tmat(b, n, d) Follow from JL guarantee

Count-sketch‡ ε−2δ−1d2 nnz(A) Thm. 9 of (Woodruff, 2014)
Sparse embedding∗ ε−2d · poly log(d/(εδ)) ε−1 nnz(A) poly log(d/(εδ)) Thm. 10 (2) of (Woodruff, 2014)
Sparse embedding† ε−2d1+γ ε−1 nnz(A) poly(1/γ) Thm. 10 (1) of (Woodruff, 2014)

Table 7: Summary for different sketching matrices for subspace embedding. The sketching matrix R has size b× n. The
vectors are from the column subspace of matrix A with size n × d. ε ∈ (0, 1) is the error parameter, and δ ∈ (0, 1) is
the probability parameter. Tmat(a, b, c) denotes the running time of fast matrix multiplication of two matrices with size
a× b and b× c. ∗ In the first sparse embedding matrix, each column has s ≥ ε−1 poly log(d/(εδ)) non-zero entries; † In
the second sparse embedding matrix, each column has s ≥ ε−1 poly(1/γ) non-zero entries, γ > 0 is a tunable parameter
that gives different trade-offs, and δ can be as small as 1/ poly(d). ‡ For count-sketch matrices, the subspace embedding
guarantee is proved from JL moment property, instead of directly from JL guarantee.

“Sketch and solve” algorithm. First we explain the procedure of the “sketch and solve” approach. Consider the least
squares problem as an example. Given A ∈ Rn×d, and b ∈ Rn, we try to solve

min
x∈Rd

‖Ax− b‖2,

whose solution is x∗ = A†b = (A>A)−1A>b and it takes O(ndω−1 + dω) running time to compute.

To speed it up, in a over-constrained case where n is much larger than d, the “sketch and solve” approach chooses a b× n
random matrix R from a certain distribution Π on matrices, where b� n. Consider the following algorithm for least squares
regression:

1. Sample a random matrix R ∼ Π.

2. (Sketch) Compute R ·A and R · b.

3. (Solve) Output the exact solution x′ to the regression problem minx∈Rd ‖(RA)x− (Rb)‖2.

Analysis. To ensure the accuracy of above approach, they require the sketching matrix S to satisfy the subspace embedding
guarantee (Definition G.3).

Theorem H.1 (SE gives approximate regression, Theorem 21 of (Woodruff, 2014)). When R ∈ Rb×n used in the “sketch
and solve” algorithm satisfies the subspace embedding guarantee with parameters ε/2 and δ, then with probability 1− δ,
the output x′ satisfies

‖Ax′ − b‖2 ≤ (1 + ε) min
x∈Rd

‖Ax− b‖2.
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Sketching mat. for AMP b Time for A>R>RB Reference
Random Gaussian ε−2δ−1 Tmat(dA, b, dB) + Tmat(dA, n, b) Lem. 10 of (Boutsidis et al., 2016)(v1)

SRHT ε−2δ−1 n · dA · log(ε−1dA logn) + Tmat(dA, b, dB) Lem. 32 of (Clarkson & Woodruff, 2013)
AMS ε−2δ−1 Tmat(dA, b, dB) + Tmat(dA, n, b) Lem. 32 of (Clarkson & Woodruff, 2013)

Count-sketch ε−2δ−1 nnz(A) + nnz(B) + Tmat(dA, b, dB) Thm. 14 of (Woodruff, 2014)
Sparse embedding ε−2δ−1 s · nnz(A) + s · nnz(B) + Tmat(dA, b, dB) Lem. 32 of (Clarkson & Woodruff, 2013)

Table 8: Summary for different sketching matrices for approximate matrix product. The sketching matrix R has size b× n.
The matrices A has size n× dA and B has size n× dB , and w.l.o.g. assume dA ≥ dB . ε ∈ (0, 1) is the error parameter, and
δ ∈ (0, 1) is the probability parameter. Tmat(a, b, c) denotes the running time of fast matrix multiplication of two matrices
with size a× b and b× c. For sparse embedding matrix, s is the number of non-zero entries in its columns. Note that these
sketching matrices all have the same size, and this can be easily seen from the fact that they all have the same parameter α
for CE2 (Table 1) and CE1,2 =⇒ JLM =⇒ AMP.

Proof. Let x∗ = arg minx∈Rd ‖Ax− b‖2. We have

‖Ax′ − b‖2 ≤ (1 + ε/2)‖RAx′ −Rb‖2 ≤ (1 + ε/2)‖RAx∗ −Rb‖2 ≤ (1 + ε)‖Ax∗ − b‖2.

where the first and the third steps follow from the subspace embedding guarantee, and the second step follows from
x′ = arg minx∈Rd ‖RAx−Rb‖2.

Remark H.2 (Better regression time using AMP). We remark that by using approximate matrix product (AMP) guarantee,
sometimes the size of the sketching matrix can be further reduced for the “sketch and solve” algorithm.

Let R ∈ Rb×n be a sketching matrix sampled from distribution Π. We use bSE(ε, δ, d) to denote the minimum size of R to
achieve (ε, δ, d)-subspace embedding, and we use bAMP(ε, δ) to denote the minimum size of R to achieve (ε, δ)-approximate
matrix product.

The previous theorem showed that we can solve (1 + ε)-approximate linear regression with probability 1− δ using sketching
matrices with size

b ≥ bSE(ε, δ, d).

In fact, it suffices with size

b ≥ bSE(1/2, δ, d) + bAMP(
√
ε/d, δ).

For example, for count-sketch matrices, bSE(ε, δ, d) = ε−2δ−1d2 (Table 7) and bAMP(ε, δ) = ε−2δ−1 (Table 8). Let
δ = 0.01. Only using SE guarantee, we need sketch size b ≥ ε−2d2. But using SE guarantee together with AMP guarantee,
we can reduce the sketch size to b ≥ ε−1d2.

For more details see Theorem 23 of (Woodruff, 2014).

Comparison with our algorithm. Therefore, instead of sketching before solving the problem, we open up the iterations
of the classical central path method and apply sketching inside each iteration. Our ”iterate and sketch” approach in this work
differs from the classical ”sketch and solve” approach.


