
Not All Memories are Created Equal:
Learning to Forget by Expiring

Sainbayar Sukhbaatar 1 Da Ju 1 Spencer Poff 1 Stephen Roller 1 Arthur Szlam 1 Jason Weston 1 Angela Fan 1 2

Abstract
Attention mechanisms have shown promising re-
sults in sequence modeling tasks that require long-
term memory. Recent work investigated mecha-
nisms to reduce the computational cost of pre-
serving and storing memories (Rae et al., 2020).
However, not all content in the past is equally im-
portant to remember. We propose Expire-Span, a
method that learns to retain the most important
information and expire the irrelevant information.
This forgetting of memories enables Transformers
to scale to attend over tens of thousands of pre-
vious timesteps efficiently, as not all states from
previous timesteps are preserved. We demonstrate
that Expire-Span can help models identify and re-
tain critical information and show it can achieve
strong performance on reinforcement learning
tasks specifically designed to challenge this func-
tionality. Next, we show that Expire-Span can
scale to memories that are tens of thousands in
size, setting a new state of the art on incredibly
long context tasks such as character-level lan-
guage modeling and a frame-by-frame moving
objects task. Finally, we analyze the efficiency
of Expire-Span compared to existing approaches
and demonstrate that it trains faster and uses less
memory.

1. Introduction
Transformer architectures (Vaswani et al., 2017) have
demonstrated strong performance across a variety of
tasks (Devlin et al., 2019; Roller et al., 2020; Brown et al.,
2020), including those that require learning long term rela-
tionships (Zhang et al., 2018; Fan et al., 2019a; Izacard &
Grave, 2020). Recent work has focused on scaling attention
mechanisms efficiently to longer memory sizes, enabling
large improvements on long context tasks (Dai et al., 2019;

1Facebook AI Research 2LORIA. Correspondence to: Sainba-
yar Sukhbaatar <sainbar@fb.com>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Sukhbaatar et al., 2019a). However, a critical component
of human memory is not just the ability to remember, but
also forgetting irrelevant information to focus on the salient,
relevant bits. Most studies of long-term memory in hu-
mans indicate that not everything is remembered (Murre
& Dros, 2015; Bahrick et al., 2008) — instead, only vivid,
remarkable memories are retained from the far past (Wixted,
2004).

Standard Transformer architectures lack the ability to search
over extremely large memories, as the self-attention mech-
anism is computationally intensive and the storage cost
of preserving the large memory grows quickly. Recent
work (Child et al., 2019; Rae et al., 2020) has proposed
learning how to extend to greater context through sparse
mechanisms or through compression, to more compactly
represent the past. However, there exists a fundamental
problem with large memories beyond strict computational
concerns: as the amount of information stored increases,
deciding which information is relevant becomes more chal-
lenging. Other work (Lample et al., 2019) approaches this
by considering how to efficiently search large memories.
We focus on an efficient way to learn what to forget, thereby
reducing the computational burden of the model and easing
the challenges of the search problem.

We propose EXPIRE-SPAN, a straightforward extension to
attention mechanisms that learns when to expire unneeded
memories. By expiring memories that are no longer use-
ful, EXPIRE-SPAN enables scaling to tens of thousands of
timesteps into the past. This learnable mechanism allows
the model to adjust the span size as needed, selecting which
information is critical to retain and forgetting the rest. More
concretely, we augment the self-attention with a simple pre-
dictor that outputs an expiration value for each hidden state
that determines how long a memory should be retained and
accessible to the model. After the EXPIRE-SPAN runs out,
the memory will be forgotten, but in a gradually differen-
tiable way to retain end-to-end training with backpropaga-
tion. This process is done independently for each layer, al-
lowing different layers to specialize at different time-scales.
As EXPIRE-SPAN can flexibly adjust its span based on con-
text, it is more efficient in terms of memory and training
time compared to existing long memory approaches.

mailto:sainbar@fb.com

Learning to Forget by Expiring

We demonstrate that EXPIRE-SPAN can distinguish between
critical and irrelevant information on several illustrative
tasks in natural language processing and reinforcement
learning that are specifically designed to test this ability.
We then show we can achieve state-of-the-art results on
long-context language modeling benchmarks, and EXPIRE-
SPAN can scale to memories in the tens of thousands on
a frame-by-frame colliding objects task — by expiring ir-
relevant information, capacity is freed to have even larger
memory. Then, we compare the efficiency of our method
to competitive baselines and show EXPIRE-SPAN is faster
and has a smaller memory footprint. Finally, we analyze the
information retained and expired by EXPIRE-SPAN models,
to understand the importance of long context memory.

2. Related Work
Memory is crucial for many tasks and has been stud-
ied in recurrent networks (Elman, 1990; Hochreiter &
Schmidhuber, 1997; Mikolov et al., 2010) for a long time.
The development of memory augmented networks (Graves
et al., 2014; Sukhbaatar et al., 2015b) made it possible to
store large quantities of information and selectively access
them using attention (Bahdanau et al., 2015). The Trans-
former (Vaswani et al., 2017) took full advantage of this
approach. Processing long sequences with Transformers
is an active area with applications in language understand-
ing (Brown et al., 2020), reinforcement learning (Parisotto
et al., 2020), video processing (Wu et al., 2019), and pro-
tein folding (Rives et al., 2019; Choromanski et al., 2020).
However, extending the memory span is computationally
expensive due to the quadratic time and space complexity
of self-attention. Other work focuses on benchmarking long
memories (Tay et al., 2021), but focuses on encoder-only
tasks, whereas we focus on decoder-only Transformers.

Various work has focused on reducing this complexity and
increasing memory capacity (Schlag et al., 2021). Dynamic
attention spans, such as Adaptive-Span (Sukhbaatar et al.,
2019a) and Adaptively Sparse Transformer (Correia et al.,
2019), focus on learning which attention heads can have
shorter spans, but can only extend to spans of a few thou-
sand. Other work sparsifies attention by computing fewer
tokens (Fan et al., 2019b), often by using fixed attention
masks (Child et al., 2019) or sliding windows and dilation
(Beltagy et al., 2020). The BP Transformer (Ye et al., 2019)
structures tokens as a tree, so some tokens have coarse at-
tention. These works focus on learning what to attend to,
but searching larger and larger memories is very difficult.
In contrast, we focus on learning to expire what is irrele-
vant. Compressive Transformer (Rae et al., 2020) reduces
the number of memories by replacing every few memories
with a single compressed one. A disadvantage of this is that
all memories have the same compression ratio, so relevant

Expire-span

e1

e2

e3

e4

e5

Attention

query

ot

output

qt

timeh1 h2 h3 h4 h5 ht

Figure 1. Expire-Span. For every memory hi, we compute an
EXPIRE-SPAN ei that determines how long it should stay in mem-
ory. Here, memories h2, h5 are already expired at time t, so the
query qt can only access {h1, h3, h4} in self-attention.

memories are equally compressed.

Another line of work investigates linear-time attention mech-
anisms. Wu et al. (2018) replace self-attention with con-
volutions that run in linear time, but the scalability to long
context tasks remains limited. Wang et al. (2020) propose
linear time attention by decomposing attention into multiple
smaller attentions, that recombine to form a low-rank factor-
ization of the original attention. Katharopoulos et al. (2020)
propose linear attention by expressing self-attention as in-
stead a linear dot-product of feature maps. Peng et al. (2021)
propose Random Feature Attention, used to approximate
the softmax. Those methods, however, focus on making
attention more efficient without reducing the number of
memories. Further, as our goal is to reduce the number of
memories that feed to self-attention by learning to expire,
EXPIRE-SPAN can be easily combined with these efficiency
improvements. For a review of further recent Transformer
variants, see Tay et al. (2020).

3. Background
Transformer architectures have been widely used as decoder-
only auto-regressive models for sequential tasks. A Trans-
former decoder is made of a stack of identical layers, com-
posed of a multi-head self-attention sublayer followed by
a feedforward sublayer. The output of each timestep is the
hidden state hl ∈ Rd at layer l, which is then projected to t
key k, value v, and query q vectors:

l l qt = Wq
lhl

t, kl
t = Wk

l ht
l , vt = Wv

l hl
t. (1)

Going forward, we focus on a single layer and omit the layer
index l for brevity. Information from previous timesteps is
accessed through attention ati to create output ot: � � X

> ati = Softmax qt ki , ot = Wo at,ivi. (2)
i∈Ct

i∈Ct

Learning to Forget by Expiring

The set Ct indicates which memories can be accessed at
time t, which is the focus of this work. The space and time
complexity of self-attention is linearly correlated to the size
of this set |Ct|, making it an important metric of efficiency.
For the rest of the paper, we will refer to |Ct| as the memory
size.

Including all previous timesteps in self-attention by setting
Ct = {1, . . . , t−1} results in a quadratic complexity O(T 2)
to compute the full attention over a sequence of length T .
Fixed-spans (Dai et al., 2019) take a more scalable approach
such that Ct = {t−L, . . . , t−1} so the attention is restricted
to previous L steps. The total complexity in this case is
O(TL), where L is the attention span.

Adaptive-Span (Sukhbaatar et al., 2019a) further improves
upon upon this by learning an optimal span L per atten-
tion head from data, which results in small L values for
many heads. Compression approaches (Rae et al., 2020)
reduce memory size by compressing multiple timesteps into
a single memory, with complexity O(T L/c), where c is
the compression rate. However, in all these approaches, all
memories are treated equally without regards to their impor-
tance to the task. In this work, we focus on distinguishing
between relevant and irrelevant memories by learning to
expire unneeded information — by expiring, the remaining
attention on relevant information can scale beyond existing
long context memory approaches.

4. Expire-Span
We describe EXPIRE-SPAN and how to integrate it into
Transformers to focus on relevant information and expire
the rest, meaning memories can be permanently deleted. We
describe how to scale EXPIRE-SPAN and practically train
with drastically longer memory spans.1

4.1. Method
m(x)

1EXPIRE-SPAN, depicted
in Figure 1, allows models to
selectively forget memories x −R
that are no longer relevant. We
describe it in the context of a Figure 2. Soft Mask
single Transformer layer and
omit the layer index l for brevity. Our goal is to reduce the
size of Ct defined in Section 3 for more efficiency without
performance degradation. For each memory hi ∈ Rd , we
will compute a scalar EXPIRE-SPAN ei ∈ [0, L]:

ei = Lσ(w >hi + b). (3)

1The full implementation can be found at
https://github.com/facebookresearch/
transformer-sequential.

Here w ∈ Rd and b ∈ R represent trainable parameters,
σ is the sigmoid function, and L is the maximum span.
This expire-span ei determines how long hi should be kept
and included in Ct. At time t, the remaining span of hi is
rti = ei − (t − i). When rti becomes negative, it indicates
the memory hi is expired and can be removed from Ct. This
can be implemented by updating attention weights ati with
a binary masking function mti = 1rti>0:

X
0 mtiati 0 ati = P , ot = ativi. (4)

j mtj atj i

However, with such discrete masking, the Expire-Span ei
will not receive any gradient for training. Instead, we use a
soft masking function from Sukhbaatar et al. (2019a) that
smoothly transitions from 0 to 1 (see Figure 2):

mti = max(0, min(1, 1 + rti/R)), (5)

where R is a hyperparameter that determines the length of a
ramp that is bounded between 0 to 1. This function has non-
zero gradient for values in [−R, 0] to train ei, but also can
take a value of 0, which is necessary for expiring memories.
Thus Ct = {i | mti > 0}. Since mti is a monotonically
decreasing function of t, once a memory is expired, it can
be permanently deleted.

Our goal is to reduce the average memory size, which is
directly related with the average EXPIRE-SPAN:

X XX1 1 |Ct| = 1mti>0
T T

t t i<t !X X1
= R + 1rti>0

T
i t>i !X X1

= R + 1ei>t−i
T

i t>i X1
= R − 1 + beic (6)

T
i

Therefore, we add an auxiliary term to the loss function to
penalize the L1-norm of EXPIRE-SPAN: X

Ltotal = Ltask + α ei/T, (7)
i

where α > 0 is a hyperparameter. This term decreases
the span of memories that contribute less to the main task,
resulting in a small memory that focuses only on relevant
information. Note the new parameters, w and b, and the
computations of EXPIRE-SPANS are negligible in size com-
pared to the total number of parameters and computations.

https://github.com/facebookresearch/transformer-sequential
https://github.com/facebookresearch/transformer-sequential

Learning to Forget by Expiring

4.2. Adding Expire-Span to Transformers

We describe how EXPIRE-SPAN can be utilized within
Transformer self-attention layers to decrease the memory
size and focus on salient information. This section describes
each modification clearly, to facilitate easier reproduction.
We discuss practical training concerns, such as efficiency
and regularization. Additional details can be found in the
appendix.

Modifications to Multi-Head Attention Self-attention
consists of multiple heads that have different keys, values,
and queries. However, they all share one underlying mem-
ory, so a memory cannot be removed if it is used by any
of the heads. Thus, we compute an EXPIRE-SPAN at each
layer that is shared amongst the heads.

Block Parallel This modification allows memories to be
permanently deleted in EXPIRE-SPAN. We use the caching
mechanism (Dai et al., 2019), where a block of timesteps
B = [t, . . . , t + K − 1] is processed in parallel for ef-
ficiency — once a block is computed, its hidden states
[ht, . . . , ht+K−1] are cached so that future blocks can at-
tend to them. This means a memory can be deleted only
if it is not used by any of the queries in B. Concretely, hi

will be deleted when mti = 0 where t is the first token of B.
However, this is not a concern for very long-term memories
where L � K.

Loss Computation The L1-norm loss for EXPIRE-SPAN
must be computed for every memory hi. A straightforward
way is to compute it for the current block B. This empiri-
cally results in poor performance — a possible explanation
is that the time between positive and negative gradients on
ei may become too distant. Negative gradients that increase
ei only come from the main loss Ltask through the mask-
ing function mti, which has non-zero gradients only when
memory hi is about to expire with 0 < mti < 1 for t ∈ B.
For a large L � K, hi may have been computed many
blocks before and since then the model weights would have
changed. In contrast, the positive gradients that decrease ei
are computed on the current block i ∈ B. To remove this
discrepancy, we compute the auxiliary loss on ei at the same
time as negative gradients when 0 < mti < 1 for t ∈ B.

Regularization A potential challenge in exceptionally
long memory is greater capacity to overfit. As EXPIRE-
SPAN can scale to memories in the tens of thousands, it
can overfit to learning specific span sizes on the training
set that do not generalize. As a form of regularization, we
propose to randomly shorten the memory during training.
For each batch, we sample l ∼ U(0, L) and set ati = 0
for all t − i > l only during training. This way, the model
cannot assume the memory will always contain specific

information, as the memory is randomly shortened.

Stable Training with Extremely Large Spans Multi-
plier L in Eq. 3 is the maximum span, so it can take very
large values, exceeding tens of thousands. This is a potential
problem because small changes in hi or w will be amplified
in EXPIRE-SPAN ei, and subsequently have dramatic effects
on the model behaviour. As a straightforward remedy, for
very large L values, we replace Eq. 3 with � �

ei = Lσ (w >hi + b)/R . (8)

5. Experiments and Results
We show that EXPIRE-SPAN focuses on salient information
on various constructed and real-world tasks that necessitate
expiration. First, we describe baselines and efficiency met-
rics for comparing various models. Second, we illustrate the
importance of expiration on various constructed tasks. Then,
we highlight the scalability of EXPIRE-SPAN when operat-
ing on extremely large memories. Additional experiments
and details are in the appendix.

5.1. Baselines

We compare our method against several baselines from Sec-
tion 3 that take different approaches to access information
in the past. We compare the performance of these meth-
ods, along with two efficiency metrics: GPU memory and
training speed for a fixed model size and batch size. First,
we compare to Transformer-XL (Dai et al., 2019), which
corresponds to the fixed-span approach where simply the
last L memories are kept. Our Transformer-XL implemen-
tation also serves as a base model for all the other baselines
to guarantee that the only difference among them is how
memories are handled. The other baselines are Adaptive-
Span (Sukhbaatar et al., 2019a) and Compressive Trans-
former (Rae et al., 2020), two popular approaches for long
memory tasks. For Compressive Transformer, we imple-
mented the mean-pooling version, which was shown to have
strong performance despite its simplicity.

5.2. Importance of Expiration: Illustrative Tasks

Remembering One Key Piece of Information To illus-
trate a case where proper expiration of unnecessary memo-
ries is critical, we begin with an RL gridworld task: walking
down a corridor. In this Corridor task, depicted in Figure 3
(left), the agent is placed at one end of a very long corridor,
next to an object that is either red or blue. The agent must
walk down the corridor and go to the door that corresponds
to the color of the object that it saw at the beginning to
receive +1 reward. The requirement on the memory is very
low: the agent only needs to remember the object color so it
can walk through the correct door.

Learning to Forget by Expiring

Receive Instruction

Execute InstructionLong Distractor TextWrong Door Choice
Long Corridor

Reach Correct DoorMemorize Color

Figure 3. Corridor Task (left)- Agents must memorize the color of an object and walk through the door of the corresponding color at
the end of a long corridor. Portal Task (middle)- An agent must trial-and-error to memorize the sequence of doors. Instruction Task
(right)- A model must recognize instructions, memorize them, and execute when at the correct location.

20 40 60 80 100

Memory size

0.5

0.6

0.7

0.8

0.9

S
u

cc
es

s
(%

)

Trans-XL

Expire-span

50 100 150 200

Memory size

0

20

40

60

80

M
ea

n
re

tu
rn

Trans-XL

Expire-span

0 500 1000 1500 2000 2500

Memory size

0.2

0.4

0.6

A
cc

u
ra

cy
(%

)

Trans-XL

Expire-span

Figure 4. We plot performance as a function of memory size for three tasks. Training scores are shown. Ideal models can achieve strong
performance with small memories by identifying which information is important to remember. Corridor Task (left) — We train 10
baseline models with different memory sizes, and five EXPIRE-SPAN models with different seeds. Portal Task (middle)- We train models
with different memory sizes and random seeds. Instruction Task (right) — We train 6 baseline models with different memory sizes, and
five EXPIRE-SPAN models with different seeds.

EXPIRE-SPAN models can take advantage of this fact and
keep the memory size small regardless of the corridor length,
which can vary between 3 and 200. This is confirmed
in the results shown in Figure 4 (left) where the EXPIRE-
SPAN models achieve high performance on this task with
very small memories. Without the ability to forget, the
Transformer-XL models require large memory for storing
all navigation steps that grow with the corridor length.

Remembering Long Sequences of Information Next,
we analyze EXPIRE-SPAN on another reinforcement learn-
ing task, but this time testing memorization of sequences:
Portal through Multiple Rooms. An agent in a gridworld
must navigate through multiple rooms separated by differ-
ent doors, depicted in Figure 3 (middle). Each room has
two exit doors with different colors — one door portals to
the adjacent room, while the other portals back to the start.
However, which door works in which room is random for
each episode. Thus, the only way to visit more rooms is by
trial-and-error, where agents need to remember the sequence
of correct doors to successfully navigate to the end. The
environment is partially observable and randomized at each
episode.

We display results in Figure 4 (middle). The Transformer-
XL models need longer memory to perform better and visit

more rooms, because each new room requires many navi-
gation steps to reach. However, those navigation steps are
actually irrelevant because the agent only needs to memo-
rize the colors of the correct doors. Usually, the agent needs
to pass through the same room multiple times to solve the
remaining rooms, but it only needs to remember the door
color from the first pass, while all subsequent passes can be
expired. Since EXPIRE-SPAN models can discard irrelevant
memories and focus its memory on memorizing the exact
sequence of door colors, they achieve strong performance
with much smaller memory compared to the Transformer-
XL baseline.

Remembering Long Sequences with Severe Distractors
To illustrate a more difficult task where a model must learn
to expire, we use a dialogue-based story generation task
from the LIGHT (Urbanek et al., 2019) text world game en-
vironment. The model visits various locations and receives
instructions of the form can you tell the [butler] that the
[town official] wants to see them?. When the model is in a
location where the butler is present, they must execute the
instruction by generating You tell the butler “town official
wants to see you!”. Between receiving and executing, thou-
sands of words of distractor text exist as shown Figure 3
(right). The model must learn to expire the distractors. Note

Learning to Forget by Expiring

Model Maximum span Accuracy (%)

Transformer-XL 2k 26.7
EXPIRE-SPAN 16k 29.4
EXPIRE-SPAN 128k 52.1

Table 1. Copy Task. We report accuracy on the test set.

multiple instructions can be in queue for execution.

We experiment with a dataset where the average distance
between receiving and executing instructions is around 950
distractor words. Models are trained as language models, but
evaluated only on their success in executing the instruction.
Task details and model architecture are provided in the ap-
pendix. We illustrate in Figure 4 (right) that EXPIRE-SPAN
is much more successful at this task than Transformer-XL
and Adaptive-Span (see the appendix), as it can focus on
the specific instruction lines.

5.3. Scalability of Expire-Span

We analyze the scalability of EXPIRE-SPAN. On a copy task,
we train models with spans up to 128k timesteps. Then, we
show the utility of EXPIRE-SPAN on character-level lan-
guage modeling — Enwik8 and PG-19 — and a moving
objects task that is processed frame by frame. For these
tasks, we also analyze the efficiency of EXPIRE-SPAN com-
pared to existing methods, and demonstrate that our method
has a smaller memory footprint and faster processing speed.
We quantify efficiency with two metrics: (1) peak GPU
memory usage and (2) training time per batch (comparing
fixed batch size for similar size models).

Extremely Long Copy To illustrate the scalability of
EXPIRE-SPAN, we construct a copy task where the model
sees a sequence of A very far in the past. The rest of the
characters are B. The model must copy the correct quantity
of A. We design the task such that a long span (up to 128k)
can be required, as the A tokens are very far into the past. In
Table 1, we show that only by scaling the maximum span
to 128k it is possible to achieve improved performance. We
compare to a Transformer-XL baseline with 2k attention
span and a EXPIRE-SPAN model with smaller span.

Character Level Language Modeling: Enwik8 We
subsequently experiment on Enwik8 for character level
language modeling (Mahoney, 2011). We compare the
performance of EXPIRE-SPAN with Adaptive-Span and
Transformer-XL, varying the average span size (see Fig-
ure 5). Models with EXPIRE-SPAN achieve stronger results
— when comparing at any given memory size, EXPIRE-
SPAN outperforms both baselines. Further, the performance
of EXPIRE-SPAN does not vary much even if the memory
size is drastically reduced, indicating the model retains a

200 400 600 800 1000 1200

Memory size

1.02

1.04

1.06

1.08

D
ev

.
(b

it
-p

er
-b

y
te

)

Trans-XL

Adapt-span

Expire-span

Figure 5. Performance as a Function of Memory Size on En-
wik8. Lower bpb and smaller memory size is better.

Model Params Test

Small models
Trans-XL 12L (Dai et al., 2019) 41M 1.06
Adapt-Span 12L (Sukhbaatar et al., 2019a) 39M 1.02
Our Trans-XL 12L baseline 38M 1.06
EXPIRE-SPAN 12L 38M 0.99

Trans-XL 24L (Dai et al., 2019) 277M 0.99
Sparse Trans. (Child et al., 2019) 95M 0.99
Adapt-Span 24L (Sukhbaatar et al., 2019a) 209M 0.98
All-Attention (Sukhbaatar et al., 2019b) 114M 0.98
Compressive Trans. (Rae et al., 2020) 277M 0.97
Routing Trans. (Roy et al., 2020) - 0.99
Feedback Trans. (Fan et al., 2020b) 77M 0.96
EXPIRE-SPAN 24L 208M 0.95

Table 2. Enwik8 Results. We report bit-per-byte (bpb) on test
and the number of parameters.

small quantity of salient information for good performance.

Next, we compare EXPIRE-SPAN to existing work in Table 2.
A small EXPIRE-SPAN model with the maximum span L =
16k outperforms similarly sized baselines by a large margin.
We also trained a larger EXPIRE-SPAN model with L = 32k
and LayerDrop (Fan et al., 2020a), which outperforms the
Compressive Transformer and sets a new state of the art
on this task. This indicates that models can learn to expire
relevant information and encode long context effectively,
even on very competitive language modeling benchmarks.

Finally, we compare the efficiency of EXPIRE-SPAN
with the Transformer-XL, Adaptive-Span and Compressive
Transformer baselines. We find that EXPIRE-SPAN models
achieve much better performance, as shown in Table 4 with
substantially less GPU memory and faster training time per
batch.

Character Level Language Modeling: PG-19 We use
the PG-19 (Rae et al., 2020) benchmark and convert it to
character-level language modeling with a vocabulary size of

Learning to Forget by Expiring

1k 2k 8k 16k 16k16k

Maximum span L

1.02

1.04

1.06

1.08

1.10

1.12

T
es

t
(b

it
-p

er
-c

h
ar

.) Trans-XL

Expire-span

Adapt-span

Compressive

Figure 6. Performance on Character-level PG-19. We report bit-
per-character on test.

Figure 7. Object Collision task tests if models can remember the
location of specified colored collisions.

3506. We train several baselines: Transformer-XL with max-
imum spans of 1k and 2k, and Adaptive-Span and Compres-
sive Transformers with 16k span. We train EXPIRE-SPAN
with maximum spans of 8k and 16k. We present results in
Figure 6, where we show that EXPIRE-SPAN is substantially
better than Transformer-XL, and matches the performance
of Adaptive-Span and Compressive Transformer.

However, EXPIRE-SPAN uses its available memory very
effectively. The 16k maximum span EXPIRE-SPAN model
has an average memory size of 860. In comparison, the
Adaptive-Span model has an average memory size of 2440,
almost 3x that of the 16k EXPIRE-SPAN model. This in-
dicates that EXPIRE-SPAN enables models to identify the
critical bits of information and expire the rest, reaching the
same performance with a much smaller memory.

Finally, comparing efficiency (Table 4), EXPIRE-SPAN
trains at double the speed of Compressive Transformer.
EXPIRE-SPAN is faster than Adaptive-Span, though uses
slightly more memory. The memory usage of EXPIRE-SPAN
is usually lower, around 12GB, but spikes for some sen-
tences. Lastly, while the average span size of EXPIRE-SPAN
is lower than Adaptive-Span, the computation requires ad-
ditional tensors allocated in memory, which can potentially
be addressed by an optimized implementation.

Model Maximum Span Test Error (%)

Transformer-XL 1k 73.3
Compressive 8k 63.8
Adaptive-Span 16k 59.8

16k 52.2
EXPIRE-SPAN 32k 36.7

64k 26.7

Table 3. Results on Object Collision. We report the error on the
test set comparing to various baselines.

Frame-by-Frame Processing: Object Collision An im-
portant setting where learning which long context may be
important is in video understanding, a field with increas-
ing focus as model architectures provide the capability to
process long sequences. Despite video data being memory
intensive, salient events might be localized in space and
time. We test our model on a task where two objects move
around and collide, and the goal is to reason about the loca-
tion of specified-color collisions. Objects have a color that
can randomly change. We divide the grid into four quad-
rants and the model is asked to recall the quadrants of the
last collision of a specific color pair. Because the collisions
are rare, and collisions of specific colors are even rarer, the
model must process a large quantity of frames.

We illustrate the task in Figure 7 and results in Table 3.
The task requires many frames, so long context is very ben-
eficial — as the EXPIRE-SPAN maximal span increases,
performance steadily rises. Our largest span, 64k, matches
the size of the largest attention limit reported to date (Ki-
taev et al., 2019) and has the strongest performance. This
model is trained with the random drop regularization method
described in Section 4.2. Compared to Compressive Trans-
former and Adaptive-Span baselines, our EXPIRE-SPAN
model has the strongest performance.

Comparing efficiency, EXPIRE-SPAN trains almost 3x faster
than both baselines (see Table 4) while having much stronger
performance. Further, expiration is critical to this perfor-
mance — a Adaptive-Span model with L = 32k runs out of
memory in the same setting where we trained our EXPIRE-
SPAN model with L = 64k. Through expiration, our model
can keep the GPU memory usage reasonable and train with
the longer spans necessary for strong performance.

6. Analysis and Discussion
EXPIRE-SPAN creates the phenomena of selective forget-
ting: it allows memories to be permanently deleted if the
model learns they are not useful for the final task. In this
section, we analyze the information retained and expired by
EXPIRE-SPAN models to better understand how models use

Learning to Forget by Expiring

Model Performance GPU Memory (GB) Time/Batch (ms)

Enwik8
Transformer-XL
Compressive Transformer
Adaptive-Span
EXPIRE-SPAN

1.06 bpb
1.05 bpb
1.04 bpb
1.03 bpb

27
21
20
15

649
838
483
408

Char-level PG-19
Compressive Transformer
Adaptive-Span
EXPIRE-SPAN

1.07 bpc
1.07 bpc
1.07 bpc

17
13
15

753
427
388

Object Collision
Compressive Transformer
Adaptive-Span
EXPIRE-SPAN

63.8% Error
59.8% Error
52.2% Error

12
17
12

327
365
130

Table 4. Efficiency of EXPIRE-SPAN. We report peak GPU memory usage and per-batch training time, fixing the batch size.

Figure 8. Expiration in EXPIRE-SPAN on Enwik8. In (a), the model strongly mem- Figure 9. Accuracy Needs Memory. As the
orizes two areas, “Egypt” and “Alexander”. In (b), if we replace “Egypt” with “some- maximum span is artificially decreased at in-

ference time from 16k to only 1k, the predic-where”, then it’s forgotten fast. In (c), we insert “Humpty Dumpty” and the model
tion is less accurate. retains these rare words in memory.

the ability to forget. Additional analyses are in the appendix.

Retaining Salient Information We analyze what is re-
tained by an EXPIRE-SPAN model on Enwik8 to understand
how models utilize the ability to forget. In Figure 8 (a),
we show that the model retains information about named
entities such as Egypt and Alexander the Great by giving
them longer spans (darker color). Next, we analyze how
expire-spans changes when we artificially edit the past text.
In Figure 8 (b), we replace the entity Egypt with the generic
text somewhere, and this generic word is quickly expired. In
Figure 8 (c), we edit Egypt to Humpty Dumpty, which is a
very rare entity, and the model retains it in memory without
expiring. In addition to entities, EXPIRE-SPAN memorizes
spaces, newlines, and section titles, all of which retain in-
formation about words, sentences, or sections. The model’s
expiration choices vary by layer, indicating that EXPIRE-
SPAN models use the memory at each layer to remember
different information.

Importance of Long Term Memory Next, we analyze
which predictions benefit the most from memory capacity.
We take an EXPIRE-SPAN model trained on Enwik8 and
decrease the maximum span size to 1024 at inference time,
even though the model was trained with a maximum span
of 16k. We then compare which predictions decreased in ac-
curacy. In Figure 9, we see that models have a much higher

loss when predicting the named entity Guinea coast com-
pared to having the full 16k maximal span. Guinea coast
was mentioned 3584 tokens earlier, which indicates that
long attention is often necessary to predict words mentioned
in far away context. In general, we found that rare tokens
and structural information about documents, such as section
headings or document titles, required longer attention span
to accurately predict.

Efficiency Advantages of Expire-Span Finally, we end
with a brief discussion about why EXPIRE-SPAN is more
efficient compared to existing architectures that focus on
long context. First, Transformer-XL cannot adapt to the
data at all, so it becomes slow and inefficient quite quickly
as the span size increases. Adaptive-Span can adapt to the
data and adjust its memory, but this memory size is fixed
after training and does not have the dynamic adjustment of
Expire-Span (where memory depends on local context even
at inference time). Finally, the Compressive Transformer
compresses past memories, but it compresses always at a
fixed rate. The compression rate is an adjustable parameter,
but aggressive compression potentially hurts performance.
In contrast, EXPIRE-SPAN can expire irrelevant content,
which both improves performance by focusing on salient
information, and reduces the load on GPU memory and
allows for faster processing per batch.

Learning to Forget by Expiring

7. Conclusion
We present EXPIRE-SPAN, an operation that can be added to
any attention mechanism to enable models to learn what to
forget. By expiring irrelevant information, models can scale
attention to tens of thousands of past memories. We high-
light the strong performance of EXPIRE-SPAN in language
modeling, reinforcement learning, object collision, and algo-
rithmic tasks, and use it to attend over tens of thousands of
past memories. The scalability and much greater efficiency
of our proposed EXPIRE-SPAN method has strong poten-
tial for allowing models to be applied to more challenging,
human-like tasks that would require expiration.

References
Baevski, A. and Auli, M. Adaptive input representations for

neural language modeling. In ICLR, 2019.

Bahdanau, D., Cho, K., and Bengio, Y. Neural machine
translation by jointly learning to align and translate. In
ICLR, 2015.

Bahrick, H. P., Hall, L. K., and Da Costa, L. A. Fifty years
of memory of college grades: Accuracy and distortions.
Emotion, 8(1):13, 2008.

Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium
models. In Advances in Neural Information Processing
Systems, pp. 688–699, 2019.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I., and Amodei, D. Language
models are few-shot learners. In NeurIPS, 2020.

Child, R., Gray, S., Radford, A., and Sutskever, I. Gen-
erating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

Choromanski, K., Likhosherstov, V., Dohan, D., Song, X.,
Davis, J., Sarlos, T., Belanger, D., Colwell, L., and
Weller, A. Masked language modeling for proteins via lin-
early scalable long-context transformers. arXiv preprint
arXiv:2006.03555, 2020.

Correia, G. M., Niculae, V., and Martins, A. F. Adap-
tively sparse transformers. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference

on Natural Language Processing (EMNLP-IJCNLP), pp.
2174–2184, 2019.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. In ACL (1), pp.
2978–2988. Association for Computational Linguistics,
2019.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In NAACL-HLT (1), 2019.

Elman, J. Finding structure in time. Cogn. Sci., 14:179–211,
1990.

Fan, A., Gardent, C., Braud, C., and Bordes, A. Using local
knowledge graph construction to scale seq2seq models
to multi-document inputs. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
on Natural Language Processing (EMNLP-IJCNLP), pp.
4177–4187, 2019a.

Fan, A., Lewis, M., and Dauphin, Y. Strategies for structur-
ing story generation. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics,
pp. 2650–2660, 2019b.

Fan, A., Grave, E., and Joulin, A. Reducing transformer
depth on demand with structured dropout. In Interna-
tional Conference on Learning Representations, 2020a.

Fan, A., Lavril, T., Grave, E., Joulin, A., and Sukhbaatar, S.
Addressing some limitations of transformers with feed-
back memory. arXiv preprint arXiv:2002.09402, 2020b.

Glorot, X. and Bengio, Y. Understanding the difficulty
of training deep feedforward neural networks. In Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, pp. 249–256, 2010.

Grave, E., Joulin, A., Ciss´ egou, H. Efficient e, M., and J´
softmax approximation for gpus. In ICML, 2017.

Graves, A., Wayne, G., and Danihelka, I. Neural turing
machines. arXiv preprint arXiv:1410.5401, 2014.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

Izacard, G. and Grave, E. Leveraging passage retrieval with
generative models for open domain question answering.
arXiv preprint arXiv:2007.01282, 2020.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International Conference on
Machine Learning, pp. 5156–5165. PMLR, 2020.

Learning to Forget by Expiring

Kitaev, N., Kaiser, L., and Levskaya, A. Reformer: The
efficient transformer. In International Conference on
Learning Representations, 2019.

Lample, G., Sablayrolles, A., Ranzato, M., Denoyer, L., and
Jégou, H. Large memory layers with product keys. In
Advances in Neural Information Processing Systems, pp.
8548–8559, 2019.

Loshchilov, I. and Hutter, F. Sgdr: Stochastic gra-
dient descent with warm restarts. arXiv preprint
arXiv:1608.03983, 2016.

Mahoney, M. Large text compression benchmark. URL:
http://www. mattmahoney. net/text/text. html, 2011.

Merity, S., Xiong, C., Bradbury, J., and Socher, R.
Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

Mikolov, T., Karafi´ Cernock`at, M., Burget, L., ˇ y, J., and
Khudanpur, S. Recurrent neural network based language
model. In Eleventh annual conference of the international
speech communication association, 2010.

Murre, J. and Dros, J. Replication and analysis of ebbing-
haus’ forgetting curve. PLoS ONE, 10, 2015.

Parisotto, E., Song, H. F., Rae, J. W., Pascanu, R., Gul¨ çehre,
Ç ., Jayakumar, S. M., Jaderberg, M., Kaufman, R. L.,
Clark, A., Noury, S., Botvinick, M., Heess, N., and Had-
sell, R. Stabilizing transformers for reinforcement learn-
ing. In ICML, 2020.

Peng, H., Pappas, N., Yogatama, D., Schwartz, R., Smith,
N. A., and Kong, L. Random feature attention. arXiv
preprint arXiv:2103.02143, 2021.

Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C.,
and Lillicrap, T. P. Compressive transformers for long-
range sequence modelling. In International Conference
on Learning Representations, 2020.

Rives, A., Goyal, S., Meier, J., Guo, D., Ott, M., Zitnick,
C. L., Ma, J., and Fergus, R. Biological structure and
function emerge from scaling unsupervised learning to
250 million protein sequences. bioRxiv, 2019.

Roller, S., Dinan, E., Goyal, N., Ju, D., Williamson, M.,
Liu, Y., Xu, J., Ott, M., Shuster, K., Smith, E. M., et al.
Recipes for building an open-domain chatbot. arXiv
preprint arXiv:2004.13637, 2020.

Roy, A., Saffar, M., Vaswani, A., and Grangier, D. Efficient
content-based sparse attention with routing transformers.
arXiv preprint arXiv:2003.05997, 2020.

Schlag, I., Irie, K., and Schmidhuber, J. Linear transformers
are secretly fast weight memory systems. arXiv preprint
arXiv:2102.11174, 2021.

Shaw, P., Uszkoreit, J., and Vaswani, A. Self-attention with
relative position representations. In NAACL-HLT (2),
2018.

Sukhbaatar, S., Szlam, A., Synnaeve, G., Chintala, S., and
Fergus, R. Mazebase: A sandbox for learning from games.
ArXiv, abs/1511.07401, 2015a.

Sukhbaatar, S., Szlam, A., Weston, J., and Fergus, R. End-
to-end memory networks. In NIPS, 2015b.

Sukhbaatar, S., Grave, E., Bojanowski, P., and Joulin, A. ´
Adaptive attention span in transformers. In Proceedings
of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pp. 331–335, 2019a.

Sukhbaatar, S., Grave, E., Lample, G., Jegou, H., and Joulin,
A. Augmenting self-attention with persistent memory.
arXiv preprint arXiv:1907.01470, 2019b.

Tay, Y., Dehghani, M., Bahri, D., and Metzler, D. Efficient
transformers: A survey. arXiv preprint arXiv:2009.06732,
2020.

Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham,
P., Rao, J., Yang, L., Ruder, S., and Metzler, D. Long
range arena: A benchmark for efficient transformers. In
International Conference on Learning Representations,
2021.

Urbanek, J., Fan, A., Karamcheti, S., Jain, S., Humeau, S.,
Dinan, E., Rocktäschel, T., Kiela, D., Szlam, A., and
Weston, J. Learning to speak and act in a fantasy text
adventure game. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural
Language Processing (EMNLP-IJCNLP), pp. 673–683,
2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Wang, S., Li, B., Khabsa, M., Fang, H., and Ma, H. Lin-
former: Self-attention with linear complexity. arXiv
preprint arXiv:2006.04768, 2020.

Wixted, J. T. The psychology and neuroscience of forgetting.
Annu. Rev. Psychol., 55:235–269, 2004.

Wu, C.-Y., Feichtenhofer, C., Fan, H., He, K., Krahenbuhl,
P., and Girshick, R. Long-term feature banks for detailed
video understanding. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pp.
284–293, 2019.

http://www

Learning to Forget by Expiring

Wu, F., Fan, A., Baevski, A., Dauphin, Y., and Auli, M. Pay
less attention with lightweight and dynamic convolutions.
In International Conference on Learning Representations,
2018.

Ye, Z., Guo, Q., Gan, Q., Qiu, X., and Zhang, Z. Bp-
transformer: Modelling long-range context via binary
partitioning. arXiv preprint arXiv:1911.04070, 2019.

Zhang, J., Luan, H., Sun, M., Zhai, F., Xu, J., Zhang, M.,
and Liu, Y. Improving the transformer translation model
with document-level context. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language
Processing, pp. 533–542, 2018.

