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Abstract 
Attention mechanisms have shown promising re-
sults in sequence modeling tasks that require long-
term memory. Recent work investigated mecha-
nisms to reduce the computational cost of pre-
serving and storing memories (Rae et al., 2020). 
However, not all content in the past is equally im-
portant to remember. We propose Expire-Span, a 
method that learns to retain the most important 
information and expire the irrelevant information. 
This forgetting of memories enables Transformers 
to scale to attend over tens of thousands of pre-
vious timesteps efficiently, as not all states from 
previous timesteps are preserved. We demonstrate 
that Expire-Span can help models identify and re-
tain critical information and show it can achieve 
strong performance on reinforcement learning 
tasks specifically designed to challenge this func-
tionality. Next, we show that Expire-Span can 
scale to memories that are tens of thousands in 
size, setting a new state of the art on incredibly 
long context tasks such as character-level lan-
guage modeling and a frame-by-frame moving 
objects task. Finally, we analyze the efficiency 
of Expire-Span compared to existing approaches 
and demonstrate that it trains faster and uses less 
memory. 

1. Introduction 
Transformer architectures (Vaswani et al., 2017) have 
demonstrated strong performance across a variety of 
tasks (Devlin et al., 2019; Roller et al., 2020; Brown et al., 
2020), including those that require learning long term rela-
tionships (Zhang et al., 2018; Fan et al., 2019a; Izacard & 
Grave, 2020). Recent work has focused on scaling attention 
mechanisms efficiently to longer memory sizes, enabling 
large improvements on long context tasks (Dai et al., 2019; 
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Sukhbaatar et al., 2019a). However, a critical component 
of human memory is not just the ability to remember, but 
also forgetting irrelevant information to focus on the salient, 
relevant bits. Most studies of long-term memory in hu-
mans indicate that not everything is remembered (Murre 
& Dros, 2015; Bahrick et al., 2008) — instead, only vivid, 
remarkable memories are retained from the far past (Wixted, 
2004). 

Standard Transformer architectures lack the ability to search 
over extremely large memories, as the self-attention mech-
anism is computationally intensive and the storage cost 
of preserving the large memory grows quickly. Recent 
work (Child et al., 2019; Rae et al., 2020) has proposed 
learning how to extend to greater context through sparse 
mechanisms or through compression, to more compactly 
represent the past. However, there exists a fundamental 
problem with large memories beyond strict computational 
concerns: as the amount of information stored increases, 
deciding which information is relevant becomes more chal-
lenging. Other work (Lample et al., 2019) approaches this 
by considering how to efficiently search large memories. 
We focus on an efficient way to learn what to forget, thereby 
reducing the computational burden of the model and easing 
the challenges of the search problem. 

We propose EXPIRE-SPAN, a straightforward extension to 
attention mechanisms that learns when to expire unneeded 
memories. By expiring memories that are no longer use-
ful, EXPIRE-SPAN enables scaling to tens of thousands of 
timesteps into the past. This learnable mechanism allows 
the model to adjust the span size as needed, selecting which 
information is critical to retain and forgetting the rest. More 
concretely, we augment the self-attention with a simple pre-
dictor that outputs an expiration value for each hidden state 
that determines how long a memory should be retained and 
accessible to the model. After the EXPIRE-SPAN runs out, 
the memory will be forgotten, but in a gradually differen-
tiable way to retain end-to-end training with backpropaga-
tion. This process is done independently for each layer, al-
lowing different layers to specialize at different time-scales. 
As EXPIRE-SPAN can flexibly adjust its span based on con-
text, it is more efficient in terms of memory and training 
time compared to existing long memory approaches. 
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We demonstrate that EXPIRE-SPAN can distinguish between 
critical and irrelevant information on several illustrative 
tasks in natural language processing and reinforcement 
learning that are specifically designed to test this ability. 
We then show we can achieve state-of-the-art results on 
long-context language modeling benchmarks, and EXPIRE-
SPAN can scale to memories in the tens of thousands on 
a frame-by-frame colliding objects task — by expiring ir-
relevant information, capacity is freed to have even larger 
memory. Then, we compare the efficiency of our method 
to competitive baselines and show EXPIRE-SPAN is faster 
and has a smaller memory footprint. Finally, we analyze the 
information retained and expired by EXPIRE-SPAN models, 
to understand the importance of long context memory. 

2. Related Work 
Memory is crucial for many tasks and has been stud-
ied in recurrent networks (Elman, 1990; Hochreiter & 
Schmidhuber, 1997; Mikolov et al., 2010) for a long time. 
The development of memory augmented networks (Graves 
et al., 2014; Sukhbaatar et al., 2015b) made it possible to 
store large quantities of information and selectively access 
them using attention (Bahdanau et al., 2015). The Trans-
former (Vaswani et al., 2017) took full advantage of this 
approach. Processing long sequences with Transformers 
is an active area with applications in language understand-
ing (Brown et al., 2020), reinforcement learning (Parisotto 
et al., 2020), video processing (Wu et al., 2019), and pro-
tein folding (Rives et al., 2019; Choromanski et al., 2020). 
However, extending the memory span is computationally 
expensive due to the quadratic time and space complexity 
of self-attention. Other work focuses on benchmarking long 
memories (Tay et al., 2021), but focuses on encoder-only 
tasks, whereas we focus on decoder-only Transformers. 

Various work has focused on reducing this complexity and 
increasing memory capacity (Schlag et al., 2021). Dynamic 
attention spans, such as Adaptive-Span (Sukhbaatar et al., 
2019a) and Adaptively Sparse Transformer (Correia et al., 
2019), focus on learning which attention heads can have 
shorter spans, but can only extend to spans of a few thou-
sand. Other work sparsifies attention by computing fewer 
tokens (Fan et al., 2019b), often by using fixed attention 
masks (Child et al., 2019) or sliding windows and dilation 
(Beltagy et al., 2020). The BP Transformer (Ye et al., 2019) 
structures tokens as a tree, so some tokens have coarse at-
tention. These works focus on learning what to attend to, 
but searching larger and larger memories is very difficult. 
In contrast, we focus on learning to expire what is irrele-
vant. Compressive Transformer (Rae et al., 2020) reduces 
the number of memories by replacing every few memories 
with a single compressed one. A disadvantage of this is that 
all memories have the same compression ratio, so relevant 
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Figure 1. Expire-Span. For every memory hi, we compute an 
EXPIRE-SPAN ei that determines how long it should stay in mem-
ory. Here, memories h2, h5 are already expired at time t, so the 
query qt can only access {h1, h3, h4} in self-attention. 

memories are equally compressed. 

Another line of work investigates linear-time attention mech-
anisms. Wu et al. (2018) replace self-attention with con-
volutions that run in linear time, but the scalability to long 
context tasks remains limited. Wang et al. (2020) propose 
linear time attention by decomposing attention into multiple 
smaller attentions, that recombine to form a low-rank factor-
ization of the original attention. Katharopoulos et al. (2020) 
propose linear attention by expressing self-attention as in-
stead a linear dot-product of feature maps. Peng et al. (2021) 
propose Random Feature Attention, used to approximate 
the softmax. Those methods, however, focus on making 
attention more efficient without reducing the number of 
memories. Further, as our goal is to reduce the number of 
memories that feed to self-attention by learning to expire, 
EXPIRE-SPAN can be easily combined with these efficiency 
improvements. For a review of further recent Transformer 
variants, see Tay et al. (2020). 

3. Background 
Transformer architectures have been widely used as decoder-
only auto-regressive models for sequential tasks. A Trans-
former decoder is made of a stack of identical layers, com-
posed of a multi-head self-attention sublayer followed by 
a feedforward sublayer. The output of each timestep is the 
hidden state hl ∈ Rd at layer l, which is then projected to t 
key k, value v, and query q vectors: 

l l qt = Wq
lhl

t, kl
t = Wk

l ht
l , vt = Wv

l hl
t. (1) 

Going forward, we focus on a single layer and omit the layer 
index l for brevity. Information from previous timesteps is 
accessed through attention ati to create output ot: � � X 

> ati = Softmax qt ki , ot = Wo at,ivi. (2)
i∈Ct 

i∈Ct 
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The set Ct indicates which memories can be accessed at 
time t, which is the focus of this work. The space and time 
complexity of self-attention is linearly correlated to the size 
of this set |Ct|, making it an important metric of efficiency. 
For the rest of the paper, we will refer to |Ct| as the memory 
size. 

Including all previous timesteps in self-attention by setting 
Ct = {1, . . . , t−1} results in a quadratic complexity O(T 2) 
to compute the full attention over a sequence of length T . 
Fixed-spans (Dai et al., 2019) take a more scalable approach 
such that Ct = {t−L, . . . , t−1} so the attention is restricted 
to previous L steps. The total complexity in this case is 
O(TL), where L is the attention span. 

Adaptive-Span (Sukhbaatar et al., 2019a) further improves 
upon upon this by learning an optimal span L per atten-
tion head from data, which results in small L values for 
many heads. Compression approaches (Rae et al., 2020) 
reduce memory size by compressing multiple timesteps into 
a single memory, with complexity O(T L/c), where c is 
the compression rate. However, in all these approaches, all 
memories are treated equally without regards to their impor-
tance to the task. In this work, we focus on distinguishing 
between relevant and irrelevant memories by learning to 
expire unneeded information — by expiring, the remaining 
attention on relevant information can scale beyond existing 
long context memory approaches. 

4. Expire-Span 
We describe EXPIRE-SPAN and how to integrate it into 
Transformers to focus on relevant information and expire 
the rest, meaning memories can be permanently deleted. We 
describe how to scale EXPIRE-SPAN and practically train 
with drastically longer memory spans.1 

4.1. Method 
m(x) 

1EXPIRE-SPAN, depicted 
in Figure 1, allows models to 
selectively forget memories x −R 
that are no longer relevant. We 
describe it in the context of a Figure 2. Soft Mask 
single Transformer layer and 
omit the layer index l for brevity. Our goal is to reduce the 
size of Ct defined in Section 3 for more efficiency without 
performance degradation. For each memory hi ∈ Rd , we 
will compute a scalar EXPIRE-SPAN ei ∈ [0, L]: 

ei = Lσ(w >hi + b). (3) 

1The full implementation can be found at 
https://github.com/facebookresearch/ 
transformer-sequential. 

Here w ∈ Rd and b ∈ R represent trainable parameters, 
σ is the sigmoid function, and L is the maximum span. 
This expire-span ei determines how long hi should be kept 
and included in Ct. At time t, the remaining span of hi is 
rti = ei − (t − i). When rti becomes negative, it indicates 
the memory hi is expired and can be removed from Ct. This 
can be implemented by updating attention weights ati with 
a binary masking function mti = 1rti>0: 

X 
0 mtiati 0 ati = P , ot = ativi. (4) 

j mtj atj i 

However, with such discrete masking, the Expire-Span ei 
will not receive any gradient for training. Instead, we use a 
soft masking function from Sukhbaatar et al. (2019a) that 
smoothly transitions from 0 to 1 (see Figure 2): 

mti = max(0, min(1, 1 + rti/R)), (5) 

where R is a hyperparameter that determines the length of a 
ramp that is bounded between 0 to 1. This function has non-
zero gradient for values in [−R, 0] to train ei, but also can 
take a value of 0, which is necessary for expiring memories. 
Thus Ct = {i | mti > 0}. Since mti is a monotonically 
decreasing function of t, once a memory is expired, it can 
be permanently deleted. 

Our goal is to reduce the average memory size, which is 
directly related with the average EXPIRE-SPAN: 

X XX1 1 |Ct| = 1mti>0
T T 

t t i<t !X X1 
= R + 1rti>0

T 
i t>i !X X1 

= R + 1ei>t−i
T 

i t>i X1 
= R − 1 + beic (6)

T 
i 

Therefore, we add an auxiliary term to the loss function to 
penalize the L1-norm of EXPIRE-SPAN: X 

Ltotal = Ltask + α ei/T, (7) 
i 

where α > 0 is a hyperparameter. This term decreases 
the span of memories that contribute less to the main task, 
resulting in a small memory that focuses only on relevant 
information. Note the new parameters, w and b, and the 
computations of EXPIRE-SPANS are negligible in size com-
pared to the total number of parameters and computations. 

https://github.com/facebookresearch/transformer-sequential
https://github.com/facebookresearch/transformer-sequential
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4.2. Adding Expire-Span to Transformers 

We describe how EXPIRE-SPAN can be utilized within 
Transformer self-attention layers to decrease the memory 
size and focus on salient information. This section describes 
each modification clearly, to facilitate easier reproduction. 
We discuss practical training concerns, such as efficiency 
and regularization. Additional details can be found in the 
appendix. 

Modifications to Multi-Head Attention Self-attention 
consists of multiple heads that have different keys, values, 
and queries. However, they all share one underlying mem-
ory, so a memory cannot be removed if it is used by any 
of the heads. Thus, we compute an EXPIRE-SPAN at each 
layer that is shared amongst the heads. 

Block Parallel This modification allows memories to be 
permanently deleted in EXPIRE-SPAN. We use the caching 
mechanism (Dai et al., 2019), where a block of timesteps 
B = [t, . . . , t + K − 1] is processed in parallel for ef-
ficiency — once a block is computed, its hidden states 
[ht, . . . , ht+K−1] are cached so that future blocks can at-
tend to them. This means a memory can be deleted only 
if it is not used by any of the queries in B. Concretely, hi 

will be deleted when mti = 0 where t is the first token of B. 
However, this is not a concern for very long-term memories 
where L � K. 

Loss Computation The L1-norm loss for EXPIRE-SPAN 
must be computed for every memory hi. A straightforward 
way is to compute it for the current block B. This empiri-
cally results in poor performance — a possible explanation 
is that the time between positive and negative gradients on 
ei may become too distant. Negative gradients that increase 
ei only come from the main loss Ltask through the mask-
ing function mti, which has non-zero gradients only when 
memory hi is about to expire with 0 < mti < 1 for t ∈ B. 
For a large L � K, hi may have been computed many 
blocks before and since then the model weights would have 
changed. In contrast, the positive gradients that decrease ei 
are computed on the current block i ∈ B. To remove this 
discrepancy, we compute the auxiliary loss on ei at the same 
time as negative gradients when 0 < mti < 1 for t ∈ B. 

Regularization A potential challenge in exceptionally 
long memory is greater capacity to overfit. As EXPIRE-
SPAN can scale to memories in the tens of thousands, it 
can overfit to learning specific span sizes on the training 
set that do not generalize. As a form of regularization, we 
propose to randomly shorten the memory during training. 
For each batch, we sample l ∼ U(0, L) and set ati = 0 
for all t − i > l only during training. This way, the model 
cannot assume the memory will always contain specific 

information, as the memory is randomly shortened. 

Stable Training with Extremely Large Spans Multi-
plier L in Eq. 3 is the maximum span, so it can take very 
large values, exceeding tens of thousands. This is a potential 
problem because small changes in hi or w will be amplified 
in EXPIRE-SPAN ei, and subsequently have dramatic effects 
on the model behaviour. As a straightforward remedy, for 
very large L values, we replace Eq. 3 with � � 

ei = Lσ (w >hi + b)/R . (8) 

5. Experiments and Results 
We show that EXPIRE-SPAN focuses on salient information 
on various constructed and real-world tasks that necessitate 
expiration. First, we describe baselines and efficiency met-
rics for comparing various models. Second, we illustrate the 
importance of expiration on various constructed tasks. Then, 
we highlight the scalability of EXPIRE-SPAN when operat-
ing on extremely large memories. Additional experiments 
and details are in the appendix. 

5.1. Baselines 

We compare our method against several baselines from Sec-
tion 3 that take different approaches to access information 
in the past. We compare the performance of these meth-
ods, along with two efficiency metrics: GPU memory and 
training speed for a fixed model size and batch size. First, 
we compare to Transformer-XL (Dai et al., 2019), which 
corresponds to the fixed-span approach where simply the 
last L memories are kept. Our Transformer-XL implemen-
tation also serves as a base model for all the other baselines 
to guarantee that the only difference among them is how 
memories are handled. The other baselines are Adaptive-
Span (Sukhbaatar et al., 2019a) and Compressive Trans-
former (Rae et al., 2020), two popular approaches for long 
memory tasks. For Compressive Transformer, we imple-
mented the mean-pooling version, which was shown to have 
strong performance despite its simplicity. 

5.2. Importance of Expiration: Illustrative Tasks 

Remembering One Key Piece of Information To illus-
trate a case where proper expiration of unnecessary memo-
ries is critical, we begin with an RL gridworld task: walking 
down a corridor. In this Corridor task, depicted in Figure 3 
(left), the agent is placed at one end of a very long corridor, 
next to an object that is either red or blue. The agent must 
walk down the corridor and go to the door that corresponds 
to the color of the object that it saw at the beginning to 
receive +1 reward. The requirement on the memory is very 
low: the agent only needs to remember the object color so it 
can walk through the correct door. 
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Receive Instruction

Execute InstructionLong Distractor TextWrong Door Choice
Long Corridor

Reach Correct DoorMemorize Color

Figure 3. Corridor Task (left)- Agents must memorize the color of an object and walk through the door of the corresponding color at 
the end of a long corridor. Portal Task (middle)- An agent must trial-and-error to memorize the sequence of doors. Instruction Task 
(right)- A model must recognize instructions, memorize them, and execute when at the correct location. 
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Figure 4. We plot performance as a function of memory size for three tasks. Training scores are shown. Ideal models can achieve strong 
performance with small memories by identifying which information is important to remember. Corridor Task (left) — We train 10 
baseline models with different memory sizes, and five EXPIRE-SPAN models with different seeds. Portal Task (middle)- We train models 
with different memory sizes and random seeds. Instruction Task (right) — We train 6 baseline models with different memory sizes, and 
five EXPIRE-SPAN models with different seeds. 

EXPIRE-SPAN models can take advantage of this fact and 
keep the memory size small regardless of the corridor length, 
which can vary between 3 and 200. This is confirmed 
in the results shown in Figure 4 (left) where the EXPIRE-
SPAN models achieve high performance on this task with 
very small memories. Without the ability to forget, the 
Transformer-XL models require large memory for storing 
all navigation steps that grow with the corridor length. 

Remembering Long Sequences of Information Next, 
we analyze EXPIRE-SPAN on another reinforcement learn-
ing task, but this time testing memorization of sequences: 
Portal through Multiple Rooms. An agent in a gridworld 
must navigate through multiple rooms separated by differ-
ent doors, depicted in Figure 3 (middle). Each room has 
two exit doors with different colors — one door portals to 
the adjacent room, while the other portals back to the start. 
However, which door works in which room is random for 
each episode. Thus, the only way to visit more rooms is by 
trial-and-error, where agents need to remember the sequence 
of correct doors to successfully navigate to the end. The 
environment is partially observable and randomized at each 
episode. 

We display results in Figure 4 (middle). The Transformer-
XL models need longer memory to perform better and visit 

more rooms, because each new room requires many navi-
gation steps to reach. However, those navigation steps are 
actually irrelevant because the agent only needs to memo-
rize the colors of the correct doors. Usually, the agent needs 
to pass through the same room multiple times to solve the 
remaining rooms, but it only needs to remember the door 
color from the first pass, while all subsequent passes can be 
expired. Since EXPIRE-SPAN models can discard irrelevant 
memories and focus its memory on memorizing the exact 
sequence of door colors, they achieve strong performance 
with much smaller memory compared to the Transformer-
XL baseline. 

Remembering Long Sequences with Severe Distractors 
To illustrate a more difficult task where a model must learn 
to expire, we use a dialogue-based story generation task 
from the LIGHT (Urbanek et al., 2019) text world game en-
vironment. The model visits various locations and receives 
instructions of the form can you tell the [butler] that the 
[town official] wants to see them?. When the model is in a 
location where the butler is present, they must execute the 
instruction by generating You tell the butler “town official 
wants to see you!”. Between receiving and executing, thou-
sands of words of distractor text exist as shown Figure 3 
(right). The model must learn to expire the distractors. Note 
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Model Maximum span Accuracy (%) 

Transformer-XL 2k 26.7 
EXPIRE-SPAN 16k 29.4 
EXPIRE-SPAN 128k 52.1 

Table 1. Copy Task. We report accuracy on the test set. 

multiple instructions can be in queue for execution. 

We experiment with a dataset where the average distance 
between receiving and executing instructions is around 950 
distractor words. Models are trained as language models, but 
evaluated only on their success in executing the instruction. 
Task details and model architecture are provided in the ap-
pendix. We illustrate in Figure 4 (right) that EXPIRE-SPAN 
is much more successful at this task than Transformer-XL 
and Adaptive-Span (see the appendix), as it can focus on 
the specific instruction lines. 

5.3. Scalability of Expire-Span 

We analyze the scalability of EXPIRE-SPAN. On a copy task, 
we train models with spans up to 128k timesteps. Then, we 
show the utility of EXPIRE-SPAN on character-level lan-
guage modeling — Enwik8 and PG-19 — and a moving 
objects task that is processed frame by frame. For these 
tasks, we also analyze the efficiency of EXPIRE-SPAN com-
pared to existing methods, and demonstrate that our method 
has a smaller memory footprint and faster processing speed. 
We quantify efficiency with two metrics: (1) peak GPU 
memory usage and (2) training time per batch (comparing 
fixed batch size for similar size models). 

Extremely Long Copy To illustrate the scalability of 
EXPIRE-SPAN, we construct a copy task where the model 
sees a sequence of A very far in the past. The rest of the 
characters are B. The model must copy the correct quantity 
of A. We design the task such that a long span (up to 128k) 
can be required, as the A tokens are very far into the past. In 
Table 1, we show that only by scaling the maximum span 
to 128k it is possible to achieve improved performance. We 
compare to a Transformer-XL baseline with 2k attention 
span and a EXPIRE-SPAN model with smaller span. 

Character Level Language Modeling: Enwik8 We 
subsequently experiment on Enwik8 for character level 
language modeling (Mahoney, 2011). We compare the 
performance of EXPIRE-SPAN with Adaptive-Span and 
Transformer-XL, varying the average span size (see Fig-
ure 5). Models with EXPIRE-SPAN achieve stronger results 
— when comparing at any given memory size, EXPIRE-
SPAN outperforms both baselines. Further, the performance 
of EXPIRE-SPAN does not vary much even if the memory 
size is drastically reduced, indicating the model retains a 
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Figure 5. Performance as a Function of Memory Size on En-
wik8. Lower bpb and smaller memory size is better. 

Model Params Test 

Small models 
Trans-XL 12L (Dai et al., 2019) 41M 1.06 
Adapt-Span 12L (Sukhbaatar et al., 2019a) 39M 1.02 
Our Trans-XL 12L baseline 38M 1.06 
EXPIRE-SPAN 12L 38M 0.99 

Trans-XL 24L (Dai et al., 2019) 277M 0.99 
Sparse Trans. (Child et al., 2019) 95M 0.99 
Adapt-Span 24L (Sukhbaatar et al., 2019a) 209M 0.98 
All-Attention (Sukhbaatar et al., 2019b) 114M 0.98 
Compressive Trans. (Rae et al., 2020) 277M 0.97 
Routing Trans. (Roy et al., 2020) - 0.99 
Feedback Trans. (Fan et al., 2020b) 77M 0.96 
EXPIRE-SPAN 24L 208M 0.95 

Table 2. Enwik8 Results. We report bit-per-byte (bpb) on test 
and the number of parameters. 

small quantity of salient information for good performance. 

Next, we compare EXPIRE-SPAN to existing work in Table 2. 
A small EXPIRE-SPAN model with the maximum span L = 
16k outperforms similarly sized baselines by a large margin. 
We also trained a larger EXPIRE-SPAN model with L = 32k 
and LayerDrop (Fan et al., 2020a), which outperforms the 
Compressive Transformer and sets a new state of the art 
on this task. This indicates that models can learn to expire 
relevant information and encode long context effectively, 
even on very competitive language modeling benchmarks. 

Finally, we compare the efficiency of EXPIRE-SPAN 
with the Transformer-XL, Adaptive-Span and Compressive 
Transformer baselines. We find that EXPIRE-SPAN models 
achieve much better performance, as shown in Table 4 with 
substantially less GPU memory and faster training time per 
batch. 

Character Level Language Modeling: PG-19 We use 
the PG-19 (Rae et al., 2020) benchmark and convert it to 
character-level language modeling with a vocabulary size of 
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Figure 6. Performance on Character-level PG-19. We report bit-
per-character on test. 

Figure 7. Object Collision task tests if models can remember the 
location of specified colored collisions. 

3506. We train several baselines: Transformer-XL with max-
imum spans of 1k and 2k, and Adaptive-Span and Compres-
sive Transformers with 16k span. We train EXPIRE-SPAN 
with maximum spans of 8k and 16k. We present results in 
Figure 6, where we show that EXPIRE-SPAN is substantially 
better than Transformer-XL, and matches the performance 
of Adaptive-Span and Compressive Transformer. 

However, EXPIRE-SPAN uses its available memory very 
effectively. The 16k maximum span EXPIRE-SPAN model 
has an average memory size of 860. In comparison, the 
Adaptive-Span model has an average memory size of 2440, 
almost 3x that of the 16k EXPIRE-SPAN model. This in-
dicates that EXPIRE-SPAN enables models to identify the 
critical bits of information and expire the rest, reaching the 
same performance with a much smaller memory. 

Finally, comparing efficiency (Table 4), EXPIRE-SPAN 
trains at double the speed of Compressive Transformer. 
EXPIRE-SPAN is faster than Adaptive-Span, though uses 
slightly more memory. The memory usage of EXPIRE-SPAN 
is usually lower, around 12GB, but spikes for some sen-
tences. Lastly, while the average span size of EXPIRE-SPAN 
is lower than Adaptive-Span, the computation requires ad-
ditional tensors allocated in memory, which can potentially 
be addressed by an optimized implementation. 

Model Maximum Span Test Error (%) 

Transformer-XL 1k 73.3 
Compressive 8k 63.8 
Adaptive-Span 16k 59.8 

16k 52.2 
EXPIRE-SPAN 32k 36.7 

64k 26.7 

Table 3. Results on Object Collision. We report the error on the 
test set comparing to various baselines. 

Frame-by-Frame Processing: Object Collision An im-
portant setting where learning which long context may be 
important is in video understanding, a field with increas-
ing focus as model architectures provide the capability to 
process long sequences. Despite video data being memory 
intensive, salient events might be localized in space and 
time. We test our model on a task where two objects move 
around and collide, and the goal is to reason about the loca-
tion of specified-color collisions. Objects have a color that 
can randomly change. We divide the grid into four quad-
rants and the model is asked to recall the quadrants of the 
last collision of a specific color pair. Because the collisions 
are rare, and collisions of specific colors are even rarer, the 
model must process a large quantity of frames. 

We illustrate the task in Figure 7 and results in Table 3. 
The task requires many frames, so long context is very ben-
eficial — as the EXPIRE-SPAN maximal span increases, 
performance steadily rises. Our largest span, 64k, matches 
the size of the largest attention limit reported to date (Ki-
taev et al., 2019) and has the strongest performance. This 
model is trained with the random drop regularization method 
described in Section 4.2. Compared to Compressive Trans-
former and Adaptive-Span baselines, our EXPIRE-SPAN 
model has the strongest performance. 

Comparing efficiency, EXPIRE-SPAN trains almost 3x faster 
than both baselines (see Table 4) while having much stronger 
performance. Further, expiration is critical to this perfor-
mance — a Adaptive-Span model with L = 32k runs out of 
memory in the same setting where we trained our EXPIRE-
SPAN model with L = 64k. Through expiration, our model 
can keep the GPU memory usage reasonable and train with 
the longer spans necessary for strong performance. 

6. Analysis and Discussion 
EXPIRE-SPAN creates the phenomena of selective forget-
ting: it allows memories to be permanently deleted if the 
model learns they are not useful for the final task. In this 
section, we analyze the information retained and expired by 
EXPIRE-SPAN models to better understand how models use 
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Model Performance GPU Memory (GB) Time/Batch (ms) 

Enwik8 
Transformer-XL 
Compressive Transformer 
Adaptive-Span 
EXPIRE-SPAN 

1.06 bpb 
1.05 bpb 
1.04 bpb 
1.03 bpb 

27 
21 
20 
15 

649 
838 
483 
408 

Char-level PG-19 
Compressive Transformer 
Adaptive-Span 
EXPIRE-SPAN 

1.07 bpc 
1.07 bpc 
1.07 bpc 

17 
13 
15 

753 
427 
388 

Object Collision 
Compressive Transformer 
Adaptive-Span 
EXPIRE-SPAN 

63.8% Error 
59.8% Error 
52.2% Error 

12 
17 
12 

327 
365 
130 

Table 4. Efficiency of EXPIRE-SPAN. We report peak GPU memory usage and per-batch training time, fixing the batch size. 

Figure 8. Expiration in EXPIRE-SPAN on Enwik8. In (a), the model strongly mem- Figure 9. Accuracy Needs Memory. As the 
orizes two areas, “Egypt” and “Alexander”. In (b), if we replace “Egypt” with “some- maximum span is artificially decreased at in-

ference time from 16k to only 1k, the predic-where”, then it’s forgotten fast. In (c), we insert “Humpty Dumpty” and the model 
tion is less accurate. retains these rare words in memory. 

the ability to forget. Additional analyses are in the appendix. 

Retaining Salient Information We analyze what is re-
tained by an EXPIRE-SPAN model on Enwik8 to understand 
how models utilize the ability to forget. In Figure 8 (a), 
we show that the model retains information about named 
entities such as Egypt and Alexander the Great by giving 
them longer spans (darker color). Next, we analyze how 
expire-spans changes when we artificially edit the past text. 
In Figure 8 (b), we replace the entity Egypt with the generic 
text somewhere, and this generic word is quickly expired. In 
Figure 8 (c), we edit Egypt to Humpty Dumpty, which is a 
very rare entity, and the model retains it in memory without 
expiring. In addition to entities, EXPIRE-SPAN memorizes 
spaces, newlines, and section titles, all of which retain in-
formation about words, sentences, or sections. The model’s 
expiration choices vary by layer, indicating that EXPIRE-
SPAN models use the memory at each layer to remember 
different information. 

Importance of Long Term Memory Next, we analyze 
which predictions benefit the most from memory capacity. 
We take an EXPIRE-SPAN model trained on Enwik8 and 
decrease the maximum span size to 1024 at inference time, 
even though the model was trained with a maximum span 
of 16k. We then compare which predictions decreased in ac-
curacy. In Figure 9, we see that models have a much higher 

loss when predicting the named entity Guinea coast com-
pared to having the full 16k maximal span. Guinea coast 
was mentioned 3584 tokens earlier, which indicates that 
long attention is often necessary to predict words mentioned 
in far away context. In general, we found that rare tokens 
and structural information about documents, such as section 
headings or document titles, required longer attention span 
to accurately predict. 

Efficiency Advantages of Expire-Span Finally, we end 
with a brief discussion about why EXPIRE-SPAN is more 
efficient compared to existing architectures that focus on 
long context. First, Transformer-XL cannot adapt to the 
data at all, so it becomes slow and inefficient quite quickly 
as the span size increases. Adaptive-Span can adapt to the 
data and adjust its memory, but this memory size is fixed 
after training and does not have the dynamic adjustment of 
Expire-Span (where memory depends on local context even 
at inference time). Finally, the Compressive Transformer 
compresses past memories, but it compresses always at a 
fixed rate. The compression rate is an adjustable parameter, 
but aggressive compression potentially hurts performance. 
In contrast, EXPIRE-SPAN can expire irrelevant content, 
which both improves performance by focusing on salient 
information, and reduces the load on GPU memory and 
allows for faster processing per batch. 
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7. Conclusion 
We present EXPIRE-SPAN, an operation that can be added to 
any attention mechanism to enable models to learn what to 
forget. By expiring irrelevant information, models can scale 
attention to tens of thousands of past memories. We high-
light the strong performance of EXPIRE-SPAN in language 
modeling, reinforcement learning, object collision, and algo-
rithmic tasks, and use it to attend over tens of thousands of 
past memories. The scalability and much greater efficiency 
of our proposed EXPIRE-SPAN method has strong poten-
tial for allowing models to be applied to more challenging, 
human-like tasks that would require expiration. 
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