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A. Linear, 2-Layer, and ResNet-10 Results
In Table A1 we include results for linear networks, 2-layer
networks (1 hidden layer), and a ResNet-10 on CIFAR-10,
omitted from the main text due to space constraints. As
noted in the main text, parameter initialization generally has
less effect for linear models, and random bit changes in par-
ticular have nearly no effect on linear models, highlighting
the stability of SGD in optimizing linear models. Also of
note is the relative smaller effect of a single bit change for a
2-layer network where the hidden layer is convolutional —
still much larger than for the linear model, but significantly
smaller than for any other non-linear model. This suggests
a similar effect to what was previously observed on MNIST
(Table 6) in that degree of instability might be related to the
interplay of model, dataset, and the degree of overfitting.

Otherwise, these results follow the results in the main text,
wherein each source of nondeterminism has roughly the
same effect as each other, and a majority of this is due
to the instability of optimization, evidenced by the high
variability in models with only random bit changes at ini-
tialization. Test-time augmentation also remains effective
in reducing model variability as compared to “All Nondeter-
minism Sources”, the setting TTA is applied to.

B. Impact of Random Bit Changes Over Time
In Fig. A1 we plot the effect of a random bit change for a
linear and single hidden layer model on CIFAR-10, illus-
trating the effect of instability as described in Sec. 4. In the
first few epochs of training, we observe that the standard
deviation and range of cross-entropy for the model with
one hidden layer quickly grows, only eventually decreasing
much later in training as the model’s parameters converges
toward their final values. On the other hand, for linear mod-
els, the standard deviation consistently remains 5 or more
orders of magnitude lower throughout training.
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C. Impact of Network Width
Here we present results studying the interaction of instabil-
ity and model width, training variants of the ResNet-14 on
CIFAR-10 with width modifiers ranging from 0.125 to 8 in
powers of two. Results are given in Table A2. Across model
widths, we observe that instability still produces roughly as
much variability as all other nondeterminism sources com-
bined, as shown by the relative variability of models trained
with “Random Bit Change” as a source of nondeterminism
compared with those trained with all other sources (“All
Sources”). The only minor outlier was the width multiplier
of 0.125, for which random bit changes produced some-
what less variability, reminiscent of the experiments on
MNIST (Table 6). We also observe that variability generally
decreases as model width increases (except for “Pairwise
Corr.”), though it is difficult to say whether this is due to
a unique property of model width or simply wider models
having higher test set performance.

D. Test-Time Augmentation Details
CIFAR-10. On CIFAR-10, in addition to TTA with hor-
izontal flipping (i.e. ensembling model predictions on the
original image with its horizontally-flipped version), we also
used a form of TTA with cropping. Our usage of crop-based
TTA was based on the version of cropping used as data
augmentation during model training, in which each image
was zero-padded by four pixels along each side, after which
a random 32 × 32 crop was drawn. In the main text, we
experimented with 25- and 81-crop TTA variants, where the
81-crop variant uses all possible crops [(4 · 2 + 1)2 = 81],
and the 25-crop variant uses a stride of 2 when sampling
the possible crops [(2 · 2 + 1)2 = 25]. When adding in
horizontally-flipped versions, the number of TTA examples
doubles, for a maximum of 162 augmented versions of the
original image.

ImageNet. On ImageNet, the standard evaluation proto-
col we use for our experiments first resizes each image to
have its smaller side be length 256, after which the central
224 × 224 crop is taken. For TTA, besides the horizontal
image flipping used in CIFAR-10, we also experimented
with crops (‘Crop-TTA’ and ‘Flip-Crop-TTA’) as follows:
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Nondeterminism Source Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD Disagree (%) Corr. ∆ (%)

CIFAR-10: Linear model

Parameter Initialization 0.03± 2e-3 0.0002± 1e-5 0.5 0.997 -4e-3
All Nondeterminism Sources 0.10± 0.01 0.0007± 4e-5 5.5 0.996 0.06
Random Bit Change 0.00± 0.00 1e-7± 1e-8 0.0 1.000 0.00
Single/Flip-Crop-TTA 0.05± 3e-3 0.0001± 1e-5 0.9 0.998 -3e-3

CIFAR-10: One hidden layer (fully-connected)

Parameter Initialization 0.31± 0.02 0.0051± 0.0003 24.2 0.941 1.38
All Nondeterminism Sources 0.30± 0.02 0.0054± 0.0004 24.9 0.937 1.49
Random Bit Change 0.28± 0.02 0.0051± 0.0004 23.4 0.945 1.32
Single/Flip-Crop-TTA 0.15± 0.01 0.0017± 0.0001 7.1 0.993 0.15

CIFAR-10: One hidden layer (convolutional)

Parameter Initialization 0.26± 0.02 0.0040± 0.0003 12.5 0.974 0.64
All Nondeterminism Sources 0.22± 0.01 0.0042± 0.0003 12.7 0.973 0.68
Random Bit Change 0.14± 0.01 0.0022± 0.0002 6.4 0.993 0.18
Single/Flip-Crop-TTA 0.19± 0.01 0.0033± 0.0002 7.5 0.989 0.24

CIFAR-10: ResNet-10

Parameter Initialization 0.23± 0.01 0.0060± 0.0003 13.7 0.912 2.13
All Nondeterminism Sources 0.23± 0.01 0.0065± 0.0004 13.6 0.911 2.13
Random Bit Change 0.25± 0.02 0.0065± 0.0005 13.5 0.913 2.08
Single/Flip-Crop-TTA 0.24± 0.02 0.0047± 0.0003 9.5 0.943 1.22
Acc. Ens. 0.23± 0.01 0.0047± 0.0003 8.8 0.962 0.96
Acc. Ens./Flip-Crop-TTA 0.18± 0.01 0.0035± 0.0002 6.7 0.973 0.58

Table A1. Linear, 2-layer, and ResNet-10 experiments on CIFAR-10.

Setting Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD Disagree (%) Corr. ∆ (%)

0.125/All Sources (N=30) 0.86 ± 0.10 0.0183 ± 0.0020 40.8 0.887 2.04
0.125/Random Bit Change (N=30) 0.66 ± 0.10 0.0133 ± 0.0020 38.0 0.943 1.73
0.25/All Sources (N=30) 0.59 ± 0.06 0.0124 ± 0.0012 25.9 0.880 2.37
0.25/Random Bit Change (N=30) 0.71 ± 0.08 0.0145 ± 0.0019 25.2 0.908 2.15
0.5/All Sources (N=30) 0.33 ± 0.04 0.0077 ± 0.0010 15.8 0.890 2.21
0.5/Random Bit Change (N=30) 0.30 ± 0.04 0.0076 ± 0.0008 15.0 0.917 1.98
1.0/All Sources (N=100) 0.26 ± 0.02 0.0072 ± 0.0005 10.7 0.871 1.82
1.0/Random Bit Change (N=100) 0.21 ± 0.01 0.0068 ± 0.0004 10.6 0.874 1.82
2.0/All Sources (N=30) 0.13 ± 0.01 0.0066 ± 0.0008 7.1 0.790 1.19
2.0/Random Bit Change (N=30) 0.18 ± 0.02 0.0054 ± 0.0012 7.0 0.798 1.13
4.0/All Sources (N=30) 0.14 ± 0.02 0.0049 ± 0.0006 5.0 0.781 0.75
4.0/Random Bit Change (N=30) 0.15 ± 0.02 0.0058 ± 0.0007 4.9 0.785 0.74
8.0/All Sources (N=30) 0.13 ± 0.02 0.0038 ± 0.0005 3.8 0.807 0.53
8.0/Random Bit Change (N=30) 0.11 ± 0.01 0.0039 ± 0.0004 3.8 0.809 0.50

Table A2. Experiments varying model width for ResNet-14 on CIFAR-10. In each row, the experimental setting is abbreviated by [width
multiplier]/[sources of nondeterminism] (N=[number of models trained]).
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Figure A1. The impact of a random bit change during initialization for linear models vs 2-layer models with a single fully-connected
hidden layer, where row 1 considers the full 500 epochs of training, and row 2 zooms in on the first 10 epochs. The left column of each
row gives the range of cross-entropy values for 100 models in the middle 95th percentile of cross-entropy, plotted at each epoch. The right
column of each row presents the standard deviation of these models, roughly corresponding to half the width of the corresponding range
in the left-hand plots.
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after each image is resized to have its smaller side length
256, a central 256× 256 crop is taken, and then 9 crops of
size 224× 224 are taken in a 3× 3 grid, starting from the
top-left, and where the spacing between crops in the grid is
16 pixels.

E. Approaches That Don’t Reduce Instability
In the process of finding an approach that reduces run-to-run
variability of models (Sec. 5), we experimented with many
approaches which all failed to make a dent in improving
variability and stability. For the benefit of the field, here
we provide our experiences with these approaches which
did not succeed in improving stability, despite the intuitive
arguments for why they might help.

Learning Rate and Duration of Training. Noticing that
the effects of nondeterminism seemed to accumulate during
the course of training (Fig. 2), it seemed reasonable that
varying the learning rate or duration of training might have
an effect. However, varying the duration of training from
anywhere between 50 and 2,000 epochs on CIFAR-10 all
produced models with a similar variance in performance as
the results in the rest of this work (which used 500 epochs),
even though the absolute performance differed by up to
∼2%.

We show these results in Table A3. In general, increas-
ing the number of epochs or changing the learning rate did
not change the variability in performance (Accuracy SD;
Cross-Entropy SD) much, with only a very slight increase
in variability as the number of epochs grew to extremely
large values (i.e. 2,000 epochs). There were slightly larger
changes in pairwise representation-based metrics, where
training longer again increased run-to-run variability. How-
ever, none of these attempts actually reduced variability
while maintaining performance; they only served to poten-
tially make it larger.

As part of these experiments, we also verified the effects of
instability with only 200 epochs of training and the effec-
tiveness of accelerated ensembling techniques (“Acc. Ens.”)
with this reduced training time, given in the last three rows
of Table A3.

Choice of Optimizer. Since instability and nondetermin-
ism are both a property of optimization, it is conceivable
that use of a different optimizer might be able to lessen the
degree of instability in model training. We experimented
with SGD using various values of momentum, ranging from
0 for pure SGD to 0.999 for a momentum-driven optimizer,
but none succeeded in reduce instability. In addition, we
experimented with Adam (Kingma & Ba, 2014), picked
as a representative of the class of adaptive learning rate
algorithms, but this, too, had no effect on stability.

Aggressive Stochastic Weight Averaging. Inspired by
the success found by Madhyastha & Jain (2019), we tried
Aggressive Stochastic Weight Averaging (ASWA), a variant
of SWA (Izmailov et al., 2018). However, we could not
get the model to converge to a reasonable degree of perfor-
mance with the original formulation due to update sizes that
decreased too rapidly, and though we were able to modify it
to converge successfully, the output variance remained as
high as the other models.

Gradient Clipping. With the intuition that instabil-
ity might be caused by spurious gradients of large
magnitude, we experimented with clipping the norm
of gradients (using pytorch’s implementation of
torch.nn.utils.clip_grad.clip_grad_norm_.
Like other approaches, though, this had no effect on model
variability.

Weight Augmentation. A very experimental approach, to
reduce instability we experimented with taking an averaged
gradient around the current set of parameters at each step,
approximated by sampling a random weight offset before
doing a forward or backward pass through the model. In-
tuitively, this might encourage optimization to not be too
sensitive to the current value of weights; however, in prac-
tice this simply didn’t affect the variance or stability of the
model.

F. Accelerated Ensembling in Language
Modeling

Although the accelerated ensembling technique we em-
ployed in the main text, Snapshot Ensembles (Huang et al.,
2017), was only designed for image classification, we have
also experimented with its usage for language modeling (see
Sec. 3.3 for problem setup). We present results in Table A4,
where we additionally compare models trained for 500 and
1000 epochs. In both cases, accelerated ensembling re-
sulted in lower model variability when considering pairwise
metrics (reducing the fraction of tokens models disagreed
on and reducing the PPL improvement from ensembling).
However, the variability in PPL was more mixed, and in fact
we note that the accelerated ensembles actually had higher
average PPL than their counterparts (e.g. 75.0 for the accel-
erated ensemble vs 73.0 for the regular model), indicating
that alternative accelerated ensembling techniques may be
warranted for language modeling.

G. Subtleties in Evaluation
Choice of Seeds. While we have done our best to make
our experimental protocol straightforward and easy to inter-
pret, one subtlety related to seed selection arises when exam-
ining results. First, recall that in our example from Sec. 3.1,
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Setting Accuracy Cross-Entropy Pairwise Pairwise Ensemble
SD (%) SD Disagree (%) Corr. ∆ (%)

All Sources/.40/50 (N=20) 0.31 ± 0.04 0.0070 ± 0.0007 11.4 0.922 1.54
All Sources/.40/100 (N=20) 0.26 ± 0.04 0.0068 ± 0.0015 10.8 0.909 1.71
All Sources/.40/250 (N=20) 0.19 ± 0.03 0.0054 ± 0.0009 10.7 0.889 1.78
All Sources/.40/500 (N=100) 0.26 ± 0.02 0.0072 ± 0.0005 10.7 0.871 1.82
All Sources/.40/2000 (N=20) 0.24 ± 0.02 0.0096 ± 0.0013 11.2 0.828 2.08
Shuffle/.40/500 (N=100) 0.25 ± 0.02 0.0082 ± 0.0005 10.6 0.871 1.81
Shuffle/.20/500 (N=100) 0.23 ± 0.02 0.0071 ± 0.0005 11.0 0.858 1.95
Shuffle/.20/1000 (N=100) 0.21 ± 0.02 0.0088 ± 0.0005 11.1 0.837 2.02
Shuffle/.10/500 (N=100) 0.20 ± 0.01 0.0076 ± 0.0005 11.6 0.845 2.08
Shuffle/.10/2000 (N=100) 0.24 ± 0.02 0.0100 ± 0.0006 11.6 0.801 2.19
Param. Init/.40/500 (N=100) 0.23 ± 0.02 0.0074 ± 0.0005 10.7 0.872 1.82
Param. Init/.20/500 (N=100) 0.23 ± 0.02 0.0084 ± 0.0005 11.0 0.859 1.97
Param. Init/.20/1000 (N=100) 0.25 ± 0.02 0.0095 ± 0.0007 11.1 0.836 2.06
Param. Init/.10/500 (N=100) 0.26 ± 0.02 0.0083 ± 0.0005 11.7 0.844 2.13
Param. Init/.10/2000 (N=100) 0.22 ± 0.01 0.0093 ± 0.0008 11.6 0.800 2.18
All Sources/.40/200 (N=100) 0.23 ± 0.02 0.0076 ± 0.0004 10.6 0.895 1.75
Random Bit/.40/200 (N=100) 0.21 ± 0.01 0.0067 ± 0.0004 10.3 0.897 1.70
Acc. Ens./All Sources/.40/200 (N=100) 0.21 ± 0.01 0.0046 ± 0.0003 6.6 0.963 0.68

Table A3. Experiments varying the learning rate and number of epochs for ResNet-14 on CIFAR-10. In each row, the experimental setting
is abbreviated by [sources of nondeterminism]/[maximum learning rate]/[number of epochs] (N=[number of models trained]), with the
exception of the last row, which is a Snapshot ensemble but otherwise follows the same format.

Setting PPL SD Pairwise Disagree (%) Ensemble PPL ∆

All Nondeterminism Sources/500 0.18± 0.01 17.4 -2.07
Acc. Ens./All Sources/500 0.21± 0.02 13.7 -1.33
All Nondeterminism Sources/1000 0.17± 0.01 17.6 -2.08
Acc. Ens./All Sources/1000 0.16± 0.01 14.1 -1.34

Table A4. The effects of accelerated model ensembling on Penn Treebank; 100 runs per row. “Acc. Ens.” indicates accelerated ensembling,
and the trailing number in each setting name is the number of epochs models are trained for.
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testing the effects of random initialization corresponded to
training models for (S1, S2, S3) ∈ {(i, 1, 1)}Ri=1, where S1

was the seed for random initialization, S2 was the seed for
training data shuffling, and S3 was set to 1 to indicate the
deterministic mode for cuDNN. The subtlety arises in that
the resulting distribution of (S1, S2, S3) ∈ {(i, 1, 1)}Ri=1 is
not necessarily the same as the distribution where S2 is set
to a different arbitrary constant value, e.g. S2 = 2. Due
to this, there may be minor discrepancies when comparing
the diversity in performance between two different sources
of nondeterminism (though unlikely to change general con-
clusions unless the magnitude of the discrepancy is very
large). Combined with the natural sampling variability im-
plicit in only training a finite number of models, this can
lead to paradoxical results such as the standard deviation
for a particular metric being slightly higher for a random bit
change as compared to an entirely different random parame-
ter initialization. While we have separately validated that the
general conclusions of our results hold when varying a few
of these constant factors (i.e. running experiments where S2

is set to 2 and 3, in this example), it is difficult to resolve the
discrepancy entirely without models according to the full
cross-product of random seeds, which is prohibitive due to
the exponential amount of required computation.

Variability vs Model Performance. Another challenge
when interpreting results is that model variability covaries
with model performance, which impacts validating any ap-
proach that affects both model variability and performance.
Though this is a difficult evaluation issue to solve in gen-
eral, it is possible to show that the reductions in variability
from Accelerated Ensembling and Test-Time Augmentation
are not simply due to this: For example, “Acc. Ens./Flip-
Crop81-TTA” for ResNet-14 (Table 5) has lower variability
across all metrics than “All Nondeterminism Sources” for
ResNet-18 (Table 6), despite the ResNet-18 having higher
accuracy (92.0% vs 94.9%). Similar trends hold for ResNet-
10 with Acc. Ens. and TTA (Table A1) vs ResNet-14 (88.7%
vs 89.8%) and ResNet-6 vs ResNet-10 (77.9% vs 86.1%),
albeit only visible on certain variability metrics in the latter
case.

References
Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J. E., and

Weinberger, K. Q. Snapshot ensembles: Train 1, get m
for free. arXiv preprint arXiv:1704.00109, 2017.

Izmailov, P., Podoprikhin, D., Garipov, T., Vetrov, D.,
and Wilson, A. G. Averaging weights leads to
wider optima and better generalization. arXiv preprint
arXiv:1803.05407, 2018.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Madhyastha, P. and Jain, R. On model stability as a function
of random seed. In Conference on Computational Natural
Language Learning, pp. 929–939, 2019.


