
Appendix for ‘What Makes for End-to-End Object Detection ?’

1. Proof for Theoretical Analysis
We focus on analyzing properties using linear classifier.
Let X = {x ∈ Rd : ‖x‖ ≤ 1} be an instance space and
Y = {+1,−1} be the label space. The label of a posi-
tive sample is +1 while that of a negative sample is −1.
We wish to train a classifier h, coming from a hypothesis
class H = {x 7→ sign(wTx) : w ∈ Rd}. Note that we
can express the bias term b by rewriting w = [ŵ, b]T and
x = [x̂, 1]T. We use the perceptron’s update rule with mini-
batch size of 1. That is, given the classifier wt ∈ Rd, the
update is only performed on incorrectly classified example
(xt, yt) ∈ X × Y as given by wt+1 = wt + ηytxt where η
is the stepsize.

Proposition 4.2 (Feasibility) Suppose that the one-to-one
assignment is run on a sequence of examples from X × Y .
Given weight vector wt = [ŵt, bt]

T at update step t, there
exists γt ∈ R and δt > 0 such that for all (x, y) ∈ X × Y
we have yw∗t

Tx ≥ δt with w∗t = [ŵt, γt]
T.

Proof. we denote x1t = argmaxx∈X wt
Tx and x2t =

argmaxx∈X\{x1
t} wt

Tx. We assume w1
t
Tx > 0, hence we

can infer that wtTx1t > wt
Tx2t > 0, otherwise the algo-

rithm converges at wt because it satisfies that wtTx1t > 0
and wtTx ≤ 0 for all x ∈ X\{x1t}. By one-to-one as-
signment, the label of x1t is y(x1t ) = +1 and the labels of
the remaining samples in X are y(x) = −1, x ∈ X\{x1t}.
Take γt = − ŵt

T(x̂1+x̂2)
2 , we have
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∗
t
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2
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2

> 0

(1)

and for all x ∈ X\{x1t} we have

y(x)w∗t
Tx = −1 ∗ (ŵtTx̂−

ŵt
T(x̂1 + x̂2)

2
)

≥ ŵt
T(x̂1 − x̂2)

2
> 0
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where the first inequality holds by wtTx ≤ wt
Tx2t since

x2t = argmaxx∈X\{x1
t} wt

Tx.

By Eqn.(1) and Eqn.(2), we can take δt =
ŵt

T(x̂1−x̂2)
2 .

Theorem 4.3 (Convergence) Let γt+1 and γt be the
constants defined in Proposition 4.2. For each update
step t, we assume there exists a stepsize ηt such that
‖xt‖2 η2t + yt(γt+1 − 2γt)ηt + bt(γt+1 − γt) > 0 where
(xt, yt) be the incorrectly classified sample at iteration t.

If the sample label is assigned by one-to-one assignment,
then, t ≤ η2max−2ηminδmin(w1

Tw∗
0−‖w0‖−ηmax)

2η2minδ
2
min

where ηmax
and ηmin are the maximum and minimum value of stepsize
among all t’s updates, w1 is the classifier after the first up-
date and δmin is the minimum of all δts in Proposition 4.2.
All instances at initialization can be correctly classified by
w∗0 .

We first show wt+1
Tw∗t+1 ≥ wt+1

Tw∗t . Rewriting the
weight vector wt into a normal vector and a bias gives us[

ŵt+1

bt+1

]
=

[
ŵt
bt

]
+ ηyt

[
x̂t
1

]
(3)

From Eqn.(3), we have wt+1 = [ŵt + ηytx̂t, bt + ηyt]
T

at update t. According to the definition of γt and γt+1,
we obtain w∗t+1 = [ŵt + ytx̂t, γt+1] and w∗t = [ŵt, γt].
Therefore, we can derive that

wt+1
Tw∗t+1 − wt+1

Tw∗t

= (ŵt + ηytx̂t)
Tηytx̂t + (bt + ηyt)(γt+1 − γt)

= ‖xt‖2 η2 + yt(ŵtx̂t − γt + γt+1)η + bt(γt+1 − γt)

≥ ‖xt‖2 η2 + yt(γt+1 − 2γt)η + bt(γt+1 − γt)
(4)

Taking η = ηt gives us wt+1
Tw∗t+1 ≥ wt+1

Tw∗t by the
assumption. Note that the assumption in Theorem 4.3 eas-
ily holds when ηt is a large but finite number due to the
property of quadratic equation of one variable in Eqn.(4).

To proceed, we find upper and lower bounds on the length
of the weight vector wt to show finite number of updates.
By convenience, we normalize w∗t to ‖w∗t ‖ = 1. Assume
that after t + 1 steps the weight vector wt+1 has been
computed. This means that at time t a training sample
was incorrectly classified by the weight vector wt and so
wt+1 = wt + ηtytxt. By one-to-one assignment, we have
yt = 1 if xt = argmaxx∈X wt

Tx and −1 otherwise.

By computing the length of wt+1, we arrive at

‖wt+1‖2 = (wt + ηtytxt)
T(wt + ηtytxt)

= ‖wt‖2 + ‖xt‖2 η2t + 2ytwt
Txtηt

≤ ‖wt‖2 + η2t

(5)

where the third equation holds because the length of in-
stance x is bounded by 1 and ytwtTxt is negative or zero
(otherwise we would have not corrected wt using sample
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(xt, yt) by perceptron’s update rule) . Induction through
Eqn.(5) then gives us

‖wt+1‖2 ≤ ‖w0‖2 +
t∑

k=0

η2k ≤ (t+ 1)η2max (6)

where ηmin = max{ηk : k = 0, 1, · · · , t}. To drive the
lower bound, we multiply w∗t in Proposition 4.2 on both
sides of wt+1 = wt + ηtytxt, it gives us wt+1

Tw∗t =
wt

Tw∗t + ηtytw
∗
t
Txt. By Eqn.(4), it can be relaxed into

wt+1
Tw∗t = wt

T(w∗t − w∗t−1 + w∗t−1) + ηtytw
∗
t
Txt

= wt
Tw∗t−1 + wt

T(w∗t − w∗t−1) + ηtytw
∗
t
Txt

≥ wtTw∗t−1 + ηtytw
∗
t
Txt

≥ wtTw∗t−1 + ηtδt
(7)

where the first inequality holds by Eqn.(4), the second
inequality holds by Proposition 4.2. Induction through
Eqn.(7) then yields

wt+1
Tw∗t ≥ w1

Tw∗0 +

t∑
k=1

ηkδk ≥ w1
Tw∗0 + tηminδmin

(8)
where δmin = min{δk : k = 1, · · · , t} and ηmin =
min{ηk : k = 1, · · · , t}. Combining Eqn.(6) and Eqn.(8),
we obtain that

w1
Tw∗0 + tηminδmin ≤

√
‖w0‖2 + (t+ 1)η2max (9)

Using
√
a+ b ≤

√
a+
√
b, the above implies that

w1
Tw∗0 + tηminδmin ≤ ‖w0‖+

√
tηmax + ηmax (10)

Using standard algebraic manipulations, the above implies
that

t ≤ (
ηmax +

√
η2max − 4ηminδmin(w1
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2ηminδmin

)2

≤ η2max − 2ηminδmin(w1
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2η2minδ
2
min

(11)
This completes the proof.

2. Positive Samples for Multiple Objects
As discussed in Section 4, when there exists an object in
the image, classification cost results in a clear score gap be-
tween the sample of the first-highest score and the sample
of the second-highest score. In Figure 1, we show positive
sample for multiple objects. Classification cost produces
two clusters of samples, one of which is composed of pos-
itive samples, and their scores are obviously higher than
samples in another cluster.

Figure 1. Positive samples in different training images. For bet-
ter visualization, we only show the part below the number of 104,
and scores are normalized to [0, 1]. Blue bins show the detector
trained with positive samples chosen by only location cost. Red
bins consider both location cost and classification cost. For mul-
tiple objects, classification cost produces two clusters of samples,
the scores of positive sample cluster are obviously higher than
samples in negative sample cluster.


