
DriftSurf: Stable-State / Reactive-State Learning under Concept Drift

A. Pseudocode of STRSAGA

As shown in Figure 1 and Figure 2, DriftSurf calls a function Update(w,S,Xt) that takes a model w, a sample set S , and a
set of training points Xt. We let ρ be the computational power available at each time step; for an SGD-based algorithm, ρ is
the number of gradients that can be computed in a time step. The Update function performs ρ updates to w and returns the
resulting model; as a side effect, it also updates S.

In this paper, we primarily use STRSAGA (Jothimurugesan et al., 2018), shown in Algorithm 4, for our Update function.
STRSAGA differs from SGD (Algorithm 3) in that (i) it uses variance-reduced update steps that result in faster convergence,
and (ii) it handles streaming data that do not arrive at a steady rate by controlling the rate at which its sample set grows.
(In this paper, we only consider data that arrive at a fixed rate at each time step, but by using STRSAGA, the results can
be readily extended to Poisson and other arrival distributions.) In STRSAGA, data points are not sampled from the entire
available stream segment, but instead from a separately maintained sample set. Newly arriving data are first added to a buffer
(called WaitingRoom), and then points are moved from WaitingRoom to the sample set at a controlled rate “to ensure that
the optimization error on the subset that has been trained is balanced with the statistical error of the effective sample size”
(Jothimurugesan et al., 2018). The implementation of STRSAGA we use in this paper uses the “alternating schedule” in its
sampling.

Algorithm 3 Update(w,S,Xt): Process of updating parameters w using SGD, given sample set S and newly arrived data
points Xt

// ρ is the computational power and determines the number of update steps that can be performed
// η is the learning rate
Add Xt to S
for j ← 1 to ρ do

Sample a point p uniformly from S
g ← ∇fp(w) {fp is the loss function at p}
w← w − η · g

end for
return w

Algorithm 4 Update(w,S,Xt): Process of updating parameters w using STRSAGA, given sample set S and newly arrived
data points Xt

// ρ is the computational power and determines the number of update steps that can be performed
// η is the learning rate
Add Xt to WaitingRoom {WaitingRoom is the set of training points not added to S yet}
for j ← 1 to ρ do

if WaitingRoom is non-empty & j is even then
Move a single point, p, from WaitingRoom to S
α(p)← 0 {α(p) is the prior gradient of p, initialized to 0}

else
Sample a point p uniformly from S

end if
A←

∑
x∈S α(x)/|S| {A is the average of all gradients and can be maintained incrementally}

g ← ∇fp(w) {fp is the loss function at p}
w← w − η(g − α(p) +A)
α(p)← g

end for
return w

The time complexity of Algorithms 3 and 4 is on the order of ρ times the cost of a gradient computation with respect to a
single data point. Each gradient computation is typically O(d) for model parameter dimension d. The space complexity of
Algorithm 3 is O(D(|S|+ |Xt|) + d) to store the samples and model parameters, where D is the dimension of the data.
The space complexity of Algorithm 4 incurs an additive O(d(|S|+ |Xt|)) to store the prior gradients α(p) for each data
point (for linear models, this cost is reduced to O(|S|+ |Xt|) since each gradient is a scalar multiple of the corresponding
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Table 4: Summary of notation used in the analysis

Xt Data points arriving at time step t
m = |Xt|, the number of points arriving at each t
r length of the reactive state (in time steps)
W length of the windows W1 and W2 (in time steps)
α the exponent in the statistical error boundH(n) = hn−α

h the constant factor in the statistical error boundH(n) = hn−α

δ the threshold in condition 2 for entering the reactive state
δ′ the threshold in condition 3 for switching the model at the end of the reactive state
∆ the magnitude of a given sustained performance-degrading drift
ps upper bound on the probability DriftSurf enters the reactive state in a stationary environment
pd lower bound on the probability DriftSurf enters the reactive state in the presence of drift
qs upper bound on the probability DriftSurf switches the model at the end of the reactive state in a stationary environment
qd lower bound on the probability DriftSurf switches the model at the end of the reactive state in the presence of drift

data point).

B. Proofs from the Analysis of DriftSurf

This section contains proof details from the analysis of DriftSurf (§5). As noted in §5, we make the following assumptions
throughout our analysis. We assume that H(n) = hn−α, for a constant h and 1/2 ≤ α ≤ 1, is an upper bound on the
statistical error over a set of data points of size n. Next, the base learner reduces the sub-optimality over its sample set to
within the statistical error bound (Assumption 1, which is repeated below).

Assumption 1. Let t0 be the time the base learner B was initialized. At each time step t,

E[SUBOPTSt0,t(B)] ≤ H(nt0,t).

Let td1 , td2 , . . . denote the sequence of time steps at which a drift occurs. We assume that each drift at tdi is abrupt (i.e.,
the distribution changes across a single time step)—this is solely for the analysis, as our algorithm more generally applies
to gradual drifts, as our experimental results show. Further, we assume for the analysis that each drift induces sustained
performance-degradation in DriftSurf (Assumption 2, which is repeated below). Note if there is only one stored frozen model
wb1 associated with the predictive model at the time of the drift (because the second window has not started yet), then
Assumption 2 applies only to wb1. Also note each drift magnitude ∆ for the drift at tdi may be distinct, and the dependence
on i is suppressed notationally.

Assumption 2. For the drift at time tdi , and for both frozen models wb ∈ {wb1,wb2} stored at tdi , we haveRXt(wt−1) >
Rb for each time tdi < t < tdi+1

as long as DriftSurf has not recovered. Furthermore, we denote ∆ to be the magnitude of
the drift where ∆ = minwb(RJ(wb)−RI(wb)) where I denotes the distribution at the time tdi − 1 before the drift, and J
denotes the distribution at tdi .

We assume that all loss functions fx are bounded [0, 1], that R∗It = infw∈F RIt(w) = 0 for each distribution It, that the
batch size m > 16/δ′, that each drift magnitude ∆ > δ, and that the window size W for storing a frozen model is upper
bounded by both 1

2 exp( 1
2mδ

2) and 1
2 exp( 1

2m(∆ − δ)2) for each drift magnitude ∆. Finally, we assume that for each
frozen model wb that yielded a minimal observed riskRb, that its expected risk is at least as good as its expectation; i.e.,
when wb is trained over n points, thenR(wb) < E[R(w′)] for a model w′ trained over n points from the same distribution.

Table 4 summarizes the notation used in this section.

We first establish a couple of preliminary facts we will use.

Observation 1. Suppose the base learner B trains a model w over a stream segment S ∼ In. Then the expected risk is
bounded E[RI(w)−R∗I ] ≤ 2H(n), where R∗I = infw′∈F RI(w′).

Observation 1 follows from Assumption 1 and applying Equation 1 twice.
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Each loss function `x is bounded in [0, 1], and hence, is sub-Gaussian with parameter σ = 1/2. Therefore, the sum of
independent losses has the following concentration.

Theorem 2. (Hoeffding Bound) Suppose a model w is trained over S ∼ In1 . The empirical risk on the test set T ∼ Jn2 is
bounded relative to the expected risk on the distribution J as

Pr[RT (w) > RJ(w) + ε] ≤ exp(−2n2ε
2)

and
Pr[RT (w) < RJ(w)− ε] ≤ exp(−2n2ε

2).

We will also use the following fact about sub-Gaussian random variables:

Theorem 3. For a sequence (not necessarily independent) of zero-mean random variables Z1, Z2, . . . , Zk, each sub-
Gaussian with parameter σ, the maximum is bounded

Pr[maxZi ≥
√

2σ2(log k + ε)] ≤ exp(−ε).

In the remainder of this section we complete the proofs for the results in §5 that establish the conditions under which
DriftSurf is risk-competitive with Aware both in a stationary environment and in the presence of abrupt drifts.

B.1. In a Stationary Environment

In §5.1, we considered only the stationary environment during the time 1 < t < td1 before any drifts. In this section, we
generalize the results to the stationary environment for any time tdi + ri ≤ t < tdi+1 , where ri is the recovery time for the
drift at tdi . We refer to such a time period as a recovered state, in which each model of DriftSurf is trained solely over points
from the newest distribution.

Lemma 6. (Generalized statement of Lemma 1.) In a recovered state, the probability of entering the reactive state is upper
bounded by bounded by ps = 2 exp(− 1

8mδ
2).

Proof. Let I denote the distribution that each batch is sampled from at each time since the beginning of the first stable state
corresponding to the recovered state that DriftSurf is in. The best observed risk Rb (and the corresponding frozen model
wb) is one of the observed empirical risks RXi(wi−1) from the latest time step i = t to at most i = t − 2W time steps
ago. Each empirical risk RXi(wi−1) is the sum of independent sub-Gaussians and is also sub-Gaussian with σ = 1

2
√
m

.
Applying Theorem 3 on the sequence Zi = RI(wi−1)−RXi(wi−1), we have with probability 1− exp(−ε1),

Zb = RI(wb)−Rb ≤
√

1

2m
(log 2W + ε1).

Furthermore, by Theorem 2 (Hoeffding Bound), with probability 1− exp(−2mε22),

RXt
(wb) ≤ RI(wb) + ε2.

Choosing ε1 = 2mε22 = mδ2/8, we have with probability at least 1 − ps = 1 − (exp(−ε1) + exp(−2mε22)), that
RXt

(wb)−Rb ≤ δ, using the triangle inequality and the assumption 2W < exp( 1
2mδ

2).

Corollary 2. In a recovered state, if DriftSurf enters the reactive state, then with probability at least 1− prs it will exit the
reactive state early.

Proof.

Pr[early exit] = Pr[

i=r⋃
i=1

early exit after i time steps] ≥
r∑
i=1

(1− ps)pi−1s = (1− ps)(
prs − 1

ps − 1
) = 1− prs.
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The bound ps for entering the reactive state is a constant, which by itself, leads to only a constant lower bound asymptotically
on the expected age of the model for a standalone drift detection algorithm based on condition 2, which we later show in
Lemma 8. The key to DriftSurf maintaining asymptotically more points is that the bound qs for switching the model at the
end of the reactive state decays as the age of the frozen model increases, which we show next in Lemma 7. In the proof we
will use the following theorem (Bennett’s inequality).

Theorem 4. (Bennett’s inequality) Let X1, X2, . . . , Xn be independent zero-mean random variables such that |Xi| ≤M
and let σ2 = 1

n

∑n
i=1 Var(Xi). Then

Pr

[
1

n

n∑
i=1

Xi ≥ ε

]
≤ exp

(
−nσ

2

M2
h

(
Mε

σ2

))
,

where h(u) = (1 + u) log(1 + u)− u.

Lemma 7. (Generalized statement of Lemma 2.) In a recovered state, if DriftSurf enters the reactive state, the probability of
switching to the reactive model at the end of the reactive state is bounded by qs = c1/β

2 for β > c2, where β is the number
of time steps between the initialization of the model wb and the time it was frozen, and the constants c1 = (2h/mα)mrδ

′/4

and c2 = 1
m (2h/δ′)1/α.

Proof. Let I denote the distribution that each batch is sampled from in the current recovered state. For the model wb which
obtained the minimal observed riskRb within its window, by the assumption that its risk is less than the expectation, we
haveRI(wb) ≤ 2H(mβ), using Observation 1 and the assumptionR∗I = 0.

We apply Theorem 4 (Bennett’s inequality) onRT (wb)−RI(wb). For risk bounded in [0, 1], we have that Var(RI(wb)) ≤
E[RI(wb)] ≤ 2H(mβ). Therefore,RT (wb) < 2H(mβ)+δ′/2 with probability 1−exp

(
−mrσ2h

(
δ′

2σ2

))
≥ 1−c1/β2,

using the assumption that m > 16/δ′.

Note that for β > c2, we have 2H(mβ) < δ′/2. Therefore, with probability 1− c1/β2,

RT (w′f )−RT (wb) + δ′ ≥ RT (w′f )− (2H(mβ) + δ′/2) + δ′

> RT (w′f )− δ′ + δ′

≥ 0,

again using the fact that the risk is bounded in [0, 1].

We can now prove Corollary 3 to bound the size of the predictive model’s sample set.

Corollary 3. (Generalized statement of Corollary 1.) Let tr be the time step DriftSurf enters a recovered state after a drift
at time tdi . With probability 1− ε, the size of the sample set S for the predictive model in the stable state is larger than
ntr,t/2 at any time step tr + 2W + c4/(ε − c3) ≤ t < tdi+1 , where ntr,t is the total number of data points that arrived
from time tr until time t, and constants c3 = c1((c2 +W )− 1/c2)ps and c4 = (2c3 − 8)c21p

2
s + 6c1ps (where c1 and c2

are the constants in Lemma 2 (same as in Lemma 7)).

Proof. Let t′ = t − tr. Let βj denote the age of the predictive model at time tr + j. For t′ < tdi+1
, DriftSurf is in a

recovered state, and so the probability of discarding the predictive model (entering the reactive state, not exiting early, and
changing to the reactive model) at each time step tr + j can be bounded in terms of ps and qs as Pr[discard at tr + j|βj ] ≤
pr+1
s qs(max(0, βj − 2W )), since the frozen model is at most 2W time steps behind the predictive model. To ensure the

probability of switching the model is well defined, let q′s(x) = c1/x
2 for x > c2 + 2W , and q′s(x) = 1 for x ≤ c2 + 2W .



DriftSurf: Stable-State / Reactive-State Learning under Concept Drift

For simplicity, we bound Pr[discard at tr + j|βj ] ≤ psq′s(βj − 2W ). Therefore,

Pr[βt′ > t′/2] ≥ Pr[do not discard the model between t′/2 and t′]

≥
∏

j∈(t′/2,t′]

Pr[not discard at j|βj ≥ j − t′/2]

≥ 1−
t′∑

j=t′/2+1

Pr[discard at j|βj ≥ j − t′/2]

≥ 1−
t′∑

j=t′/2+1

psq
′
s(j − t′/2− 2W )

= 1−
t′/2∑
i=1

psq
′
s(i− 2W ),

where the third line is Weierstrass’ inequality. The last sum is the lower Riemann sum of a decreasing function of the interval
I = (0, t′/2] into unit subintervals, which is upper bounded by the area over I . Continuing,

Pr[βt′ > t′/2] ≥ 1−
∫ t′/2

0

psq
′
s(x− 2W )dx

≥ 1− (c2 + 2W )ps − c1ps
[
−1

x− 2W

]t′/2
c2+2W

,

which is lower bounded by 1− ε whenever t′ > 2W + c4/(ε− c3).

Similarly, we can compare the expected value of the age β of the predictive model of DriftSurf to the expected value of the
age γ of the predictive model in the standalone drift detection algorithm that resets the model whenever condition 2 holds.
Lemma 8. (Generalized statement of Lemma 3.) Let tr be the time step DriftSurf enters a recovered state after a drift at
time tdi . At time t, let β be the age of the predictive model in DriftSurf and let γ be the age of the model of standalone drift
detection. For tr + (2W + 2c4

1−2c3 ) < t < tdi+1
,E[β] > (t− tr)/4. Meanwhile, E[γ] ≥ 1

ps
− o(1) as t→∞ (i.e., in the

absence of future drifts after tdi .)

Proof. Choosing ε = 1/2 in the proof of 3 gives the bound on E[β]. To show the bound for standalone drift detection, let
t′ = t− tr, and recall that at every time step in a recovered state, the probability of detecting a drift is upper bounded by the
constant ps by Lemma 6. Therefore,

E[γ] =

t′−1∑
k=0

Pr[γ > k]

≥
t′−1∑
k=0

(1− ps)k

=
1− (1− ps)t

′

ps
.

B.2. In Presence of Abrupt Drifts

For the case of abrupt drift, we first bound the recovery time for DriftSurf through Lemmas 9 and 11, and then establish
risk-competitiveness after recovery in Theorem 1.

Consider the case where drift happens during a stable state. In this case, we could bound the number of times DriftSurf enters
reactive state:
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Lemma 9. With probability 1− ε1, for any value of k > 0, the number of times DriftSurf enters the reactive state before
recovering from a drift is less than k+1

qd
where 1

ε1
≤ 1 + k2

1−qd .

Proof. Let X be a random variable denoting the number of times DriftSurf enters the reactive state after a drift and before
recovering from it. Using Cantelli’s inequality for any real number λ > 0, we have:

Pr[X − µ ≥ λ] ≤ σ2

σ2 + λ2

where µ = E[X] = 1
qd

and σ2 = Var [X] = 1−qd
qd2

. Let λ = k
qd

, therefore,

Pr[X ≥ (k + 1)

qd
] ≤ 1

1 + k2

1−qd

≤ ε1

Using Lemma 9, we can provide a high probability guarantee on the number of times DriftSurf enters a reactive state before
recovering from a drift. Given that the length of a reactive state is at most r, we will have a high probability guarantee on the
total time DriftSurf spends in reactive states before it recovers. In addition to that, we need to investigate the total amount of
time DriftSurf will spend in stable states. Lemma 10 addresses this problem.

Lemma 10. Let Y =
∑k′

i=1 Yi, where k′ ≥ 1 and Yi for i = 1, ..., k′, are independent geometric random variables
distributed Yi ∼ Ge(pd) and E[Y ] = k′

pd
. For any λ ≥ 1, we have:

Pr

[
X ≥ λk′

pd

]
≤ e−k

′(λ2−ln 2)

Proof. Similar to the proof of Theorem 2.1 in (Janson, 2018) and by setting parameter t (defined in their proof) to pd
2 .

Now, by putting together the results of Lemma 9 and lemma:GeometricBound, we can now provide a probabilistic upper
bound on the recovery time as follows:

Lemma 11. With probability 1 − εr, the recovery time of DriftSurf after a drift that happened during the stable state, is

bounded by W , where εr = ε1 + ε2, 1
ε1
≤ 1 +

(
Wqd
rg −1)

2

1−qd , ε2 ≥ e−
W
rg , and g = 4 ln 2

pdr
+ 1.

Proof. The number of time steps in recovery time can be divided into two disjoint set of time steps: i) time steps spent in
reactive state, and ii) time steps spent in stable state. Using Lemma 9, we can bound the number of times X that DriftSurf
enters reactive state before recovering from a drift. Therefore, w.p. at least 1− ε1, for any value of k > 0, we have X < k+1

qd
,

where 1
ε1
≤ 1+ k2

1−qd . Therefore, for the proper choice of ε1, total number of time steps spent in the reactive state is bounded

by r ×X < (k+1)r
qd

. Note that early exiting the reactive state leads to spent less than r time steps in a reactive state, and
therefore, does not change this upper bound.

On the other hand, we have Lemma 10, which bounds the number of time steps spent in the stable state. Let Y =
∑k′

i=1 Yi,
where k′ ≥ 1 and Yi for i = 1, ..., k′, are independent geometric random variables with distributions: Yi ∼ Ge(p). In fact,
each Yi denotes the number of time steps DriftSurf spent in stable state between i− 1th and i-th times it enters reactive state
before recovering from the drift. Using Lemma 10 we have:

Pr

[
Y ≥ k′λ

pd

]
≤ e−k

′(λ2−ln 2)

Therefore, with probability 1−ε2, for any value k′ ≥ 1 we have Y < k′λ
pd

, where ε2 ≥ e−k
′(λ2−ln 2). Note that k′ is the same

as X which we bounded in before by (k+1)
qd

. Consequently, for the choice of k = Wqd
rg − 1 and λ = rpd(g − 1) = 4 ln 2,

where g = 4 ln 2
pdr

+ 1, w.p. at least 1 − ε, we have the recovery time is bounded by W , where ε = ε1 + ε2, with the
corresponding conditions on ε1 and ε2.
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So far we have discussed the case where drift happens during the stable state. For the case that drift happens within the
reactive state, then by the early-exit condition, the drift is likely to be detected upon returning to the stable state and then
later re-entering the reactive state with the same probability bound pd, and switching the model with the same probability
bound qd. We make this precise in the following, and bound the recovery time for either case of drift in Lemma 14.

On the other hand, we have:

Lemma 12. If a drift happens during the stable state and DriftSurf enters the reactive state, then w.p. at most 1− prd it will
exit the reactive state early.

Proof.

Pr[early exiting] = Pr[

i=r⋃
i=1

early exit after i time steps] =

i=r∑
i=1

Pr[early exit after i time steps]

≥
r∑
i=1

(1− pd)pi−1d = (1− pd)(
prd − 1

pd − 1
) = 1− prd

Lemma 13. If DriftSurf enters reactive state due to a false positive, and then a drift happens after j time steps in the reactive
state, then w.p. at least 1− pjsp

r−j
d DriftSurf exits the reactive state early.

Proof.

Pr[early exiting] = Pr[

i=r⋃
i=1

early exit after i time steps] =

i=r∑
i=1

Pr[early exit after i time steps]

≥
j−1∑
i=1

(1− ps)pi−1s +

r−j∑
i=1

pjs(1− pd)pi−1d

= (1− pjs) + pjs(1− p
r−j
d ) = 1− pjsp

r−j
d

Using Lemma 13, and denoting the probability of not exiting the reactive state by ε3, we can generalize Lemma 11 as
follows:

Lemma 14. With probability 1− ε′r, the recovery time of DriftSurf, from a drift that occurs while either in the stable state

or in the reactive state, is bounded by W , where ε′r = ε1 + ε2 + ε3, 1
ε1
≤ 1 +

(
Wqd
rg −1)

2

1−qd , ε2 ≥ e−
W
rg , g = 4 ln 2

pdr
+ 1, and

ε3 ≤ pd.

One more fact we will use before we prove Theorem 1 on risk-competitiveness is the the following Lemma from (Danesh-
mand et al., 2016), which is a consequence of the generalization bound in Equation 1.

Lemma 15. (THEOREM 3 IN (DANESHMAND ET AL., 2016)) If E[SUBOPTT (w)] ≤ ε, then E[SUBOPTS(w)] ≤ ε +
n−m
n H(m) where T ⊂ S, |T | = m, |S| = n, and T and S − T are drawn from the same distribution.

With the preceding lemmas, we can now establish the risk-competitiveness of DriftSurf in the stationary period between
abrupt drifts at times tdi and tdi+1

. Note that if two drifts occur rapidly in succession, the condition in Lemma 1 of
tdi + l < t < tdi+1

may correspond to an empty domain if the recovery time bound of DriftSurf exceeds the gap between the
drifts.

Theorem 1. With probability 1− ε, the predictive model of DriftSurf in the stable state is 7
41−α -risk-competitive with Aware

at any time step tdi + 3W + c4/(εs − c3) ≤ t < tdi+1 , where tdi is the time step of the most recent drift and ε = εs + εr
where εr is bounded by Lemma 11 (and where c3 and c4 are the same constants in Corollary 1).
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Proof. By Lemma 11, with probability 1− εr, DriftSurf recovers from drift after W time steps. After recovering from the
drift, DriftSurf is in a recovered state. Let tr be the time step that DriftSurf recovers from the most recent drift at time td = tdi .
Also, let te be the time step that the current predictive model was initialized.

. . .

td tr te told distribution

W ×m nte,t

ntd,t

Figure 5: A drift happens at time td. DriftSurf recovers by time tr. The current predictive model is initialized at time te.

To show DriftSurf is 7
41−α -risk-competitive to Aware, we want to show nte,t ≥

ntd,t
4 . Using Corollary 3, w.p. 1 − εs we

have nte,t ≥
ntr,t
2 at any time step t such that tr + 2W + c4/(εs − c3) ≤ t < tdi+1

. Therefore, nte,t ≥ ntr,te . On the other
hand, we have

nte,t = ntd,t − ntd,tr − ntr,te
= ntd,t −W ×m− ntr,te ≥ ntd,t −W ×m− nte,t.

Also, at any time step t such that t− td ≥ 3W + c4/(εs − c3) ≤ t < tdi+1
, we have t− td ≥ 2W . Therefore,

2nte,t ≥ ntd,t −W ×m ≥
ntd,t

2
.

It remains to bound the expected sub-optimality over Std,t. Assumption 1 bounds the expected sub-optimality over Ste,t as
(1 + o(1))H(nte,t), and Lemma 15 relates the expected sub-optimality over Ste,t to the expected sub-optimality over Std,t:

E[SUBOPTStd,t(DriftSurf)] ≤ H
(ntd,t

4

)
+
ntd,t − ntd,t/4

ntd,t
H
(ntd,t

4

)
≤ 7

41−α
H(ntd,t).

Similar results can be proved for the case where drift happens during a reactive state. The only difference would be that εr
will be replaced by ε′r, which is defined in Lemma 14.

C. Additional Details on the Experimental Setup
This section contains additional details on the algorithms, datasets, and training for the experimental evaluation.

C.1. Algorithms Evaluated

In our experimental evaluation, we compare our algorithm DriftSurf to MDDM (Pesaranghader et al., 2018) and AUE
(Brzezinski & Stefanowski, 2013), as representatives of state-of-the-art drift-detection-based and ensemble-based algorithms,
respectively. The MDDM algorithm maintains a sliding window over the prediction results, which is a binary series
indicating for each data point whether the model’s predicted label matches the true label. MDDM signals a drift whenever a
weighted mean over the sliding window is worse than the best observed weighted mean so far by a specified threshold. Upon
signaling a drift, the current model is discarded and a new model is initialized starting at the current time step. Pesaranghader
et al. offer three variants of their algorithm, MDDM-A, MDDM-G, and MDDM-E, differing in the weighting scheme
applied over the sliding window. Pesaranghader et al. remark that “all three variants had comparable levels of accuracy”
across each dataset they tested and that “the optimal shape for the weighting function is data, context and application
dependent” (Pesaranghader et al., 2018). Generally, we do not know the type of drifts that will occur in advance, and
so in our experiments, we used the intermediate choice MDDM-G, corresponding to a geometric weighting. (We also
perform a sensitivity study among all three variants.) We reused the source code for MDDM-G available in the Tornado
framework from Pesaranghader et al., and we used their default parameters for their algorithm: the window size n = 100,
the confidence level δw = 10−6, and the geometric weighting factor r = 1.01.
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The AUE algorithm (sometimes called AUE2 to distinguish from a preliminary published version of the algorithm) manages
an ensemble of k experts that are incrementally trained over the stream. After each batch of arrivals, AUE updates the
weight of each expert based on its prediction error, and drops the lowest weighted expert to introduce a new expert. The
prediction output from the ensemble is a weighted vote by its experts. We used the parameter k = 10 as the limit on the total
number of experts, following the choice made by Brzezinski and Stefanowski in their experimental evaluation (Brzezinski &
Stefanowski, 2013).

Another ensemble algorithm we compare against is the Paired Learners (PL) algorithm (Bach & Maloof, 2008). In PL, two
models are maintained at a time, a long-lived model that is best-suited in the stationary case, and a new model trained over a
recent sliding window of size w that is best-suited in the case of a drift. The new model is switched to based on a test as a
function of the recent performance of the two models and a threshold θ. In adapting the original point-wise algorithm to the
batched setting in our experiments, we set w to the batch size instead of being a tunable parameter. For the value of θ, the
original paper does not suggest a default choice, so we used θ = 0.2, which led to the lowest observed misclassification rate
averaged across all datasets when choosing from the range [0.05, 0.5] in increments of 0.05.

For the implementation of our algorithm DriftSurf, we used the following parameters. The length of the reactive state
r = 4. Regarding the conditions to enter the reactive state described in §4, the threshold for condition 2 is δ = 0.1, and the
threshold for condition 3 is δ′ = δ/2. The window size W = 50. In the experimental evaluation, we use an empirically
better performing substitute for the corner case condition than the early exit process described in the pseudocode—instead
of exiting the reactive state early when there is no observed performance degradation, the implementation uses lack of
degradation followed by degradation as a sign of potential drift to skip the stable state and immediately re-enter the reactive
state.

In our main experiment, on each dataset discussed below, we evaluate DriftSurf, MDDM (the MDDM-G variant), Stand-
ardDD, AUE, and the Aware algorithm with oracle access to when drifts occur (discussed in §5). We also run additional
experiments for MDDM-A, MDDM-E, PL, single-pass SGD, and an oblivious algorithm, which maintains a single model
updated with STRSAGA. The version of STRSAGA in the oblivious algorithm samples uniformly from its sample set at each
iteration and has no bias towards sampling more recent data arrivals.

When using STRSAGA or any other SGD-style optimization, we consider a parameter ρ that dictates the number of update
steps (specifically, gradient computations) that are available to train the model. The different adaptive learning algorithms
maintain a different number of models—DriftSurf uses between 1 and 2; Aware, MDDM, and StandardDD use 1; AUE uses
10; and PL uses 2. This leads us to consider two different possibilities for training at each time: (1) each algorithm can
use ρ steps per model; or (2) each algorithm has ρ steps in total that are divided equally across its models. The second
approach accounts for the varying computational efficiency of each algorithm and lets us examine the accuracy achieved
when enforcing equal processing time.

For our evaluation under equal processing time, we also evaluate another ensemble method, Condor (Zhao et al., 2020).
Condor is a more computationally efficient ensemble method than AUE because it only trains one newly added expert at
a time. Condor manages a total of K experts, for which weights are updated based on observed losses with exponential
decay factor η, and the prediction output is a weighted vote. After each epoch of Condor, a new model is added (deleting
the oldest if the total exceeds K) to minimize the loss over the previous epoch plus an added biased regularization term
µ
2 ||w −wp||2, where wp is the weighted linear combination of the ensemble’s experts. In adapting the original point-wise
Condor algorithm to our batch setting, we redefine an epoch to be the batch size of the stream for consistent comparison.
We set K = 25, η = 0.75 following the choice made by the authors in their experimental evaluation. Finally, we set µ to
be the same regularization constant per dataset we use for L2-regularization in training the models of the other evaluated
algorithms.

C.2. Datasets

Our experiments use the 5 synthetic, 2 semi-synthetic and 3 real-world datasets shown in Table 5 and described below. The
selection of datasets included all datasets for binary classification used in the experimental evaluations by Pesaranghader et
al. on their MDDM algorithm (namely, SINE1 and Electricity) and Brzezinski and Stefanowski on their AUE algorithm
(SEA10, Hyperplane-Slow, Hyperplane-Fast, Electricity, and Airlines).

• SEA (Bifet et al., 2010): This dataset is generated using the Massive Online Analysis (MOA) framework. There
are three attributes in [0, 10]. The label is determined by x1 + x2 ≤ θj where j corresponds to 4 different concepts,
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Table 5: Basic statistics of datasets

DATASET # INSTANCE # DIM

SYNTHETIC

SEA 100000 3
HYPERPLANE 100000 10
SINE1 10000 2
MIXED 100000 4
CIRCLES 10000 2

SEMI-
SYNTHETIC

RCV1 20242 47235
COVERTYPE 581012 54

REAL
AIRLINE 5810462 13
ELECTRICITY 45312 13
POWERSUPPLY 29928 2

θ1 = 9, θ2 = 8, θ3 = 7, θ4 = 9.5 (the third attribute x3 is not correlated with the label). We synthetically generated
25000 points from each concept in the order 3, 2, 4, 1, following the example from the MOA manual. We experimented
on four different datasets varying the amount of noise, SEA0, SEA10, SEA20, SEA30, corresponding to 0%, 10%,
20%, and 30% of the labels being swapped during the generation of the dataset. SEA-gradual is generated by generating
samples from two concepts (the first two concepts discussed above) during the drift period.

• Hyperplane (Bifet et al., 2010): This dataset is generated using the MOA framework. For each data point, the label
corresponds to its half space for an underlying hyperplane, where each coordinate of the hyperplane changes by some
magnitude for each point in the stream, representing a continually gradually drifting concept. We experimented on two
variations, Hyperplane-Slow and Hyperplane-Fast, corresponding to a 0.001 and a 0.1 magnitude of change. In each
case, at each point in the stream, there is a 10% probability that the direction of the change is reversed.

• SINE1 (Pesaranghader et al., 2016): This dataset contains two attributes (x1, x2), uniformly distributed in [0, 1]. Label
of each data is determined using a sine curve as follows: x2 ≤ sin(x1). Labels are reversed at drift points.

• Mixed (Pesaranghader et al., 2016): This dataset contains four attributes (x1, x2, x3, x4), where x1 and x2 are boolean
and x3, x4 are uniformly distributed in [0, 1]. Label of each data is determined to be positive if two of x1, x2, and
x4 < 0.5 + 0.3× sin(3πx3) hold. Labels are reversed at drift points.

• Circles (Pesaranghader et al., 2016): This dataset contains two attributes (x1, x2), uniformly distributed in [0, 1]. Label
of each data is determined using a circle as the decision boundary as follows: (x1 − c1)2 + (x2 − c2)2 <= r, where
(c1, c2) and r are (respectively) center and radius of the circle. Drift happens in a gradual manner where the center and
radius of decision boundary changes over a period of time. We experimented on a generated dataset with 3 gradual
drift introduced at time 25, 50, and 75, where the transition period for each drift is 5 time steps.

• RCV1 (Lewis et al., 2004): This real world data set contains manually categorized newswire stories. The original order
of the data set we used was randomly permuted before inserting drift. At drift points, we introduce a sharp abrupt
drift by swapping each label. For the experiments on the high-dimensional RCV1 when using the Hoeffding Tree and
Naive Bayes base learners, we add a pre-processing step to the dataset to select only 100 features, as determined by the
coordinates with the highest magnitude when fitting a logistic regression model to the dataset before drift was added.

• Covertype (Dua & Graff, 2017): This real world data set contains observation of a forest area obtained from US
Forest Service (USFS) Region 2 Resource Information System (RIS). Binary class labels are involved to represent the
corresponding forest cover type. The original order of the data set we used was randomly permuted before inserting
drift. At drift points, we introduce an abrupt drift by rotating each data point by 180◦ along the 1st and 8th attributes.
This particular rotation was chosen because it resulted in approximately 40% misclassification rate with respect to the
current predictive model.

• Airline(2008) (Ikonomovska): This real world data set contains records of flight schedules. Binary class labels are
involved to represent if a flight is delayed or not. Concept drift could appear as the result of changes in the flights
schedules, e.g. changes in day, time, and the length of flights. In our experiments, we used the first 58100 points of the
data set, and pre-processed the data by using one-hot encoding for categorical features and scaling numerical features
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to be in the range [0, 1]. The original dataset contains 13 features. But, after using one-hot encoding the dimension
increases to 679.

• Electricity (Harries, 1999): This real world data set contains records of the New South Wales Electricity Market in
Australia. Binary class labels are involved to represent the change of the price (i.e., up and down). The concept drift
may result from changes in consumption habits or unexpected events.

• Power Supply (Dau et al., 2019): This real world data set contains records of hourly power supply of an Italy electricity
company which records the power from two sources: power supply from main grid and power transformed from other
grids. Binary class labels are involved to represent which time of day the current power supply belongs to (i.e. am or
pm). The concept drifting in this stream may results from the change in season, weather or the differences between
working days and weekend.

The type of drift in each dataset is detailed in Table 6. When working with real datasets, precisely determining the time drift
occurs is somewhat guesswork. Brzezinski and Stefanowski remarked they “cannot unequivocally state when drifts occur or
if there is any drift” on the real datasets they considered (Brzezinski & Stefanowski, 2013). Still, we had to mark the drift
times for the implementation of Aware, which resets the model whenever drifts occur. We chose these times by observing
the misclassification rates of an oblivious algorithm that is not designed to adapt to drift, and noting for which time steps
there was a significant increase in misclassifications on the newly arrived batch.

Table 6: Details of drifts in datasets

DATASET DRIFT TYPE DRIFT TIMES

SYNTHETIC

SEA ABRUPT [25, 50, 75]
GRADUAL [40-60]

HYPERPLANE GRADUAL -
SINE1 ABRUPT [20, 40, 60, 80]
MIXED ABRUPT [20, 40, 60, 80]
CIRCLES GRADUAL [25-30, 50-55, 75-80]

SEMI-
SYNTHETIC

RCV1 ABRUPT [30, 60]
COVERTYPE ABRUPT [30, 60]

REAL
AIRLINE - [31, 67]
ELECTRICITY - [20]
POWERSUPPLY - [17, 47, 76]

C.3. Training and Hyperparameters

On each dataset, the prediction task is binary classification. Each model w trained is a linear model, using STRSAGA to
optimize the L2-regularized logistic loss over the relevant stream segment. For a data point (x, y), the corresponding loss
function is f(x,y)(w) = log(1 + exp(−ywTx)) + µ

2 ||w||
2
2.

There are two hyperparameters used by STRSAGA, the regularization factor µ and the constant step size η. To set them, we
first took each dataset in static form (opposed to streaming) and applied a random permutation, partitioning an 80% split
for training and 20% for validation. (For the case of the semi-synthetic datasets where we introduced our own drift, the
hyperparameter selection was done prior to modifying the data.) We used grid search to determine the values of µ and η
that optimized the validation set error after running STRSAGA over the static training set for a number of iterations equal
to two times the number of data points. We searched for µ of the form 10−a for 1 ≤ a ≤ 7 and η of the form b × 10−c

for b ∈ {1, 2, 5} and 1 ≤ c ≤ 5. The parameters we chose are given in Table 7. In experiments where we used SGD for
training, we used the same constant step size η.

We also run experiments using Hoeffding Trees (HT) and Naive Bayes (NB) as base learners. We use the implementation of
HT and NB available in the scikit-multiflow package (Montiel et al., 2018), using their default hyperparameters (namely for
HT, the grace period is 200, the split criterion uses information gain, the split confidence is 10−7, and the tie-threshold is
0.05). In these experiments, we use the following hyperparameters for DriftSurf: r = 6, δ = 0.05, δ′ = δ/10,W = 50.

In the streaming data setting studied in this paper (§3), the batch size is determined by the rate of arrival of new data points,
and hence not a hyperparameter to be tuned. For simplicity, we assume that data arrive over the course of b time steps in
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Table 7: Hyperparameters and batch sizes

DATASET REGULARIZATION µ STEP SIZE η BATCH SIZE m

SEA (ALL) 10−2 1× 10−3 1000
HYPER-SLOW 10−3 1× 10−1 1000
HYPER-FAST 10−3 1× 10−2 1000
SINE1 10−3 2× 10−1 100
MIXED 10−3 1× 10−1 1000
CIRCLES 10−3 1× 10−1 100
RCV1 10−5 5× 10−1 202
COVERTYPE 10−4 5× 10−3 5810
AIRLINE 10−3 2× 10−2 581
ELECTRICITY 10−4 1× 10−1 1333
POWERSUPPLY 10−3 1× 10−1 299

equally-sized batches containing m = (dataset size)/b points, where b = 100 for all datasets other than Electricity. For the
case of Electricity, we defined the number of time steps b = 34 so that one time step corresponds to 28 days of the collected
data, and was a scale where we could visually observe drift in the results. The resulting batch sizes are shown in the last
column of Table 7.

D. Additional Experimental Results
This section contains experimental results under both training strategies of equal computational power for each model and
equal computational power for each algorithm, which is divided among its models. Additionally, we report results for a
sensitivity analysis of the threshold in DriftSurf, results for DriftSurf without the greedy approach during the reactive state,
results for single-pass SGD and an oblivious algorithm using STRSAGA, results for each algorithm when SGD is used as the
update process instead of STRSAGA, results when using Hoeffding Trees and Naive Bayes classifiers as the base learners,
and results of each algorithm under a 95%-recovery-time metric.

D.1. Equal Computational Power for Each Model

First, we compare each algorithm under the setting where at every time step, each algorithm uses ρ = 2m update steps
(gradient computations) to update each of its models. In this case, the total computational power used varies per algorithm.
For example, at each time step AUE maintains an ensemble of ten models, while MDDM maintains just one (and DriftSurf
maintains either one or two), so AUE uses ten times the total computation of MDDM. (Later in §D.2, we will study a
different setting where the available computational power for each algorithm is divided equally among all of its models, in
order to account for the varying computational efficiency of each algorithm.)

We present the misclassification rates at each time step over the new batch in Figure 6, and the average misclassification rate
over all time steps is summarized in Table 8. (These results are a superset of those presented in Figure 1 and Table 2 from
§6). The advantage of DriftSurf over MDDM is most evident on the noisy versions of SEA (also shown in Figure 7), and on
CoverType, Electricity, and PowerSupply. The drift detection method MDDM (and similarly over StandardDD) encounters
false positives that lead to unnecessary resetting of the predictive model, while DriftSurf avoids the performance loss after
most of the false positives by catching them via the reactive state. In particular, the CoverType dataset was especially
problematic for MDDM, which continually signaled a drift.

For sharp drifts when immediately switching to a new model is desirable, we observe, most evident on SINE1, that MDDM
is the fastest to adapt, followed shortly by DriftSurf, then PL, with AUE lagging behind. CoverType also is a clear example
where DriftSurf and StandardDD adapt faster than AUE (but MDDM suffered as previously mentioned). For these drifts,
MDDM and StandardDD naturally lead because they are using a new model when they accurately detect a drift, while
DriftSurf always takes at least one time step to switch because it waits until it sees a batch where the new (reactive) model
outperforms the older (stable) model. AUE also takes at least one time step, because its ensemble members are weighted
based on the previous performance, but it can take longer, because even if the older, inaccurate models are low-weighted,
they are not weighted zero, and shortly after a drift, most of the models in the ensemble are trained on old data and can still
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(a) SEA0
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(b) SEA10
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(c) SEA20
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(d) SEA30
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(e) SEA-gradual

20 40 60 80 100
Time

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
isc
la
ss
ifi
ca
tio
n 
ra
te

MDDM
AUE
StandardDD
Aware
DriftSurf

(f) SINE1
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(g) HyperPlane-slow
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(h) HyperPlane-fast
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(i) Circles
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(j) Mixed
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(k) RCV1
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(l) CoverType
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(m) PowerSupply
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(n) Electricity
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Figure 6: Misclassification rate over time (ρ = 2m for each model)
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Table 8: Total average of misclassification rate (ρ = 2m for each model)

DATASET Aware DriftSurf StandardDD MDDM-G MDDM-A MDDM-E AUE PL 1PASS-SGD OBL

SEA0 0.137 0.086 0.097 0.086 0.090 0.087 0.093 0.085 0.131 0.110
SEA10 0.197 0.160 0.168 0.180 0.166 0.172 0.163 0.161 0.188 0.176
SEA20 0.264 0.243 0.249 0.289 0.278 0.289 0.245 0.243 0.267 0.254
SEA30 0.350 0.335 0.338 0.358 0.358 0.352 0.337 0.337 0.348 0.338
SEA-GRADUAL 0.177 0.159 0.160 0.165 0.167 0.174 0.162 0.157 0.196 0.173
HYPER-SLOW 0.116 0.118 0.116 0.116 0.117 0.116 0.112 0.118 0.139 0.170
HYPER-FAST 0.191 0.173 0.168 0.163 0.163 0.164 0.179 0.188 0.177 0.280
SINE1 0.171 0.187 0.184 0.176 0.175 0.178 0.212 0.193 0.223 0.477
MIXED 0.192 0.204 0.204 0.204 0.204 0.203 0.209 0.219 0.208 0.455
CIRCLES 0.368 0.371 0.377 0.372 0.375 0.372 0.379 0.373 0.385 0.508
RCV1 0.121 0.125 0.126 0.125 0.130 0.130 0.167 0.148 0.276 0.468
COVERTYPE 0.267 0.268 0.267 0.311 0.311 0.313 0.279 0.287 0.298 0.321
AIRLINE 0.338 0.334 0.338 0.345 0.346 0.348 0.333 0.333 0.340 0.359
ELECTRICITY 0.315 0.290 0.320 0.344 0.339 0.341 0.296 0.291 0.347 0.302
POWERSUPPLY 0.309 0.292 0.308 0.322 0.315 0.329 0.301 0.306 0.307 0.312
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Figure 7: Total average of misclassification rate for SEA dataset with different levels of noise

negatively impact the predictions. On SINE1, we observe that the ensemble of two models, PL, adapts faster than AUE. At
every time step, PL trains a new model over the latest batch, similarly to AUE, but differs in that it the latest model is either
switched to as the predictive model, or discarded. That is, PL uses exclusively an old or new model, instead of a weighted
combination over ten models like in AUE.

There are two major advantages of DriftSurf and AUE not immediately switching to the latest model: (i) there are drifts for
which switching to a new model is not desired because the older model can still provide good accuracy, and (ii) delaying the
switch to a new model can be desired if the new model has poor accuracy immediately after the drift while it warms up.
Regarding the first point, observe the drift in SEA10 at t = 25 and the drift in Electricity. There is a notable degradation in
accuracy of each algorithm at the time of the drift, but resetting the model as Aware does is a poor choice. We even observe
that the oblivious algorithm (OBL) (which trains a model from the beginning of time and is not designed to adapt to drifts)
outperforms Aware on these datasets. Despite the initial degradation in accuracy at the time of drift, we find that the older
model is able to converge again after the drift, even while the older model is trained on data from both before and after
the drift. Meanwhile, training a new model from scratch as Aware does is not worth the initial start-up cost when the older
model performs well.

The reader may be skeptical specifically of Aware’s reset to a random model for predictions at the time step drift occurs—
practically, would it be preferable to use the previously-learned model for the first time step, and then switch to the new
model? We considered this alternative implementation of Aware, and observed that across each dataset, the average
misclassification rate of the alternative Aware was better by at most 1.1 percentage points than the version of Aware reported
in Table 8, and was worse on SINE1 and RCV1. There was no case where the alternative Aware outperformed any algorithm
in the table that Aware did not already outperform.
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The second advantage previously mentioned, of delaying the switch to the new model, is best exemplified on Airline.
Immediately after the two drifts, DriftSurf and AUE are the best performers, followed by StandardDD and MDDM, and then
Aware. Immediately after the drift, DriftSurf continues to use the older, stable model, which outperforms a newly created
model (compare DriftSurf to Aware), because a new model needs a few time steps to train before it is a better choice, and
then DriftSurf switches later. AUE is of intermediate error in the time steps immediately after the drift, because it does place
greater weight on the better performing, older models, but is still worse than placing unit weight on an old model.

The Hyperplane-slow and Hyperplane-fast datasets warrant their own discussion. These two datasets represent a continually
drifting concept throughout the entire stream. For Hyperplane-slow, AUE is the best performing algorithm, while for
Hyperplane-fast, MDDM is the best performing. The advantage that AUE and MDDM have over DriftSurf in these datasets
is that AUE adds a new model at every time step, and MDDM has the capability of switching to a new model at any time
step, and therefore, they can better fit the most recent data in the stream. On the other hand, DriftSurf is only able to create
a new model upon transitioning to the reactive state, so DriftSurf does not have the capability of creating new models at
time steps during its reactive state. DriftSurf is not designed for the setting where creating a new model at every time step is
desirable, but nonetheless, the accuracy of DriftSurf is still comparable. Furthermore, on the remaining datasets with gradual
drift, SEA-gradual and Circles, that contain stationary periods and drift periods instead of the continual drift of Hyperplane,
DriftSurf is the best performer.

Table 8 includes results for MDDM-G (what we use generally for MDDM), as well as two other MDDM variants, MDDM-A
and MDDM-E, for a more thorough comparison. The average misclassification rates were similar across each dataset, with
no single MDDM variant that consistently outperformed the others. Given the poor performance of MDDM on CoverType,
we re-did the experiment on CoverType with two other drift detection methods, DDM (Gama et al., 2004) and EDDM
(Baena-García et al., 2006) to investigate further. In Figure 8, we observed DDM accurately detected the two drifts, but
EDDM also suffered with continual false positives.
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20 40 60 80 100
Time

0.25

0.30

0.35

0.40

0.45

M
isc

la
ss
ifi
ca

tio
n 
ra
te

DDM
DriftSurf

(c) DDM

20 40 60 80 100
Time

0.25

0.30

0.35

0.40

0.45

M
isc

la
ss
ifi
ca

tio
n 
ra
te

EDDM
DriftSurf

(d) EDDM

Figure 8: CoverType dataset, comparing different drift detectors (ρ = 2m for each model)

Table 8 also includes results for PL, the ensemble of 2 models. As noted earlier, by choosing exclusively an old or new
model it can adapt faster than AUE on datasets like SINE1 or RCV1. However, PL’s performance is still short of DriftSurf
on SINE1, as well as on PowerSupply, because PL may falsely switch to the new model in the absence of drift, while the
condition DriftSurf reduces false switches. Furthermore, PL is short of DriftSurf on RCV1 because PL only gives the new
model one time step to be switched in before being discarded, requiring multiple tries to switch after the drift.

D.2. Equal Computational Power for Each Algorithm

Next, we present results for the training strategy where each algorithm has access to ρ update steps in total that are divided
among all its models so that the computation time of each algorithm is identical. For the case ρ = 4m, the misclassification
rate at each time step is shown in Figure 9 for the comparison of DriftSurf, Aware, MDDM, and AUE and in Figure 10 for
the additional algorithmic comparisons against two ensemble methods, AUE (k = 2) and Condor. The average over time is
in Table 9. For the case ρ = 2m, the misclassification rate at each time is shown in Figure 11, and the average over time is
in Table 10.

Let us discuss a few differences from the previous case where each model was trained with ρ steps. We generally observe
lower relative accuracy for AUE, and especially so after drifts. (The exceptions are on Circles and PowerSupply, where the
extra training iterations do not matter as much; compare to the fast convergence of Aware after a reset.) This is because
AUE is an ensemble of 10 models, and so each model is trained at most 1/5 of the steps that the models of DriftSurf get, and
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Figure 9: Misclassification rate over time (ρ = 4m divided among all models of each algorithm) comparing Aware,DriftSurf,
AUE and MDDM
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Figure 10: Misclassification rate over time (ρ = 4m divided among all models of each algorithm) comparing
Aware,DriftSurf, AUE with k = 2 and Condor
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Table 9: Total average of misclassification rate (ρ = 4m divided among all models of each algorithm)

DATASET Aware DriftSurf StandardDD MDDM-G AUE AUE (k=2) CONDOR PL

SEA0 0.120 0.084 0.091 0.092 0.179 0.226 0.192 0.085
SEA10 0.179 0.167 0.169 0.160 0.218 0.269 0.234 0.160
SEA20 0.256 0.247 0.247 0.258 0.280 0.320 0.283 0.242
SEA30 0.334 0.327 0.327 0.341 0.342 0.365 0.338 0.338
SEA-GRADUAL 0.170 0.159 0.162 0.160 0.215 0.267 0.232 0.161
HYPER-SLOW 0.145 0.119 0.128 0.132 0.158 0.120 0.103 0.117
HYPER-FAST 0.222 0.177 0.171 0.154 0.238 0.154 0.144 0.191
SINE1 0.149 0.176 0.158 0.157 0.263 0.181 0.159 0.192
MIXED 0.188 0.201 0.200 0.200 0.254 0.203 0.182 0.217
CIRCLES 0.345 0.365 0.357 0.341 0.372 0.424 0.360 0.370
RCV1 0.101 0.116 0.110 0.113 0.310 0.404 0.341 0.137
COVERTYPE 0.260 0.264 0.259 0.302 0.301 0.314 0.303 0.287
AIRLINE 0.335 0.330 0.333 0.337 0.360 0.366 0.353 0.332
ELECTRICITY 0.310 0.289 0.332 0.324 0.348 0.326 0.300 0.289
POWERSUPPLY 0.303 0.300 0.294 0.292 0.284 0.393 0.282 0.300

Table 10: Total average of misclassification rate (ρ = 2m divided among all models of each algorithm)

DATASET Aware DriftSurf StandardDD MDDM-G AUE AUE (k=2) CONDOR PL

SEA0 0.133 0.094 0.097 0.089 0.201 0.230 0.200 0.131
SEA10 0.197 0.161 0.163 0.183 0.237 0.275 0.238 0.194
SEA20 0.266 0.249 0.253 0.283 0.291 0.327 0.292 0.271
SEA30 0.352 0.337 0.339 0.360 0.354 0.381 0.345 0.352
SEA-GRADUAL 0.174 0.160 0.161 0.172 0.24 0.273 0.239 0.188
HYPER-SLOW 0.117 0.130 0.117 0.116 0.191 0.166 0.122 0.185
HYPER-FAST 0.191 0.188 0.168 0.164 0.278 0.211 0.166 0.222
SINE1 0.168 0.209 0.180 0.178 0.309 0.246 0.179 0.207
MIXED 0.191 0.204 0.204 0.204 0.259 0.204 0.182 0.229
CIRCLES 0.368 0.369 0.380 0.372 0.401 0.415 0.384 0.388
RCV1 0.120 0.143 0.128 0.131 0.403 0.467 0.401 0.195
COVERTYPE 0.267 0.271 0.267 0.313 0.317 0.330 0.312 0.280
AIRLINE 0.338 0.348 0.338 0.351 0.369 0.380 0.365 0.369
ELECTRICITY 0.311 0.308 0.319 0.339 0.364 0.363 0.313 0.354
POWERSUPPLY 0.311 0.307 0.311 0.309 0.313 0.463 0.338 0.342

only 1/10 of the models for MDDM and Aware. DriftSurf now dominates AUE in average misclassification rate on each
dataset except for PowerSupply. The relative performance of PL to DriftSurf is generally similar in the ρ = 4m case, but in
the ρ = 2m case, PL does relatively worse, losing its edge on Electricity and the SEA datasets. Because PL only gives
a new model one chance to perform well before discarding it, the restricted training iterations of the new model makes it
significantly harder to adapt.

We observe DriftSurf compares favorably to MDDM and StandardDD on the same datasets as it did in the undivided ρ
case. However, MDDM’s and StandardDD’s advantages are magnified on SINE1 and RCV1, the datasets with sharp drifts
that were clear to detect, and when immediate switching to the new model was desired. On PowerSupply, we observe that
the false positives are not as punitive for MDDM and StandardDD as before, because their relative additional training per
model means that their new models catch up faster. For Hyperplane-fast, the relative additional training for MDDM was
advantageous. We suspect that when fewer computational steps are available, it is no longer desirable to create new models
(which take longer to warm up) so frequently as MDDM did in the ρ = 4m case where it outperformed DriftSurf.

In Tables 9 and 10, we present results for a variation on AUE that is limited to only two experts, which we refer to as AUE
(k = 2). In our comparison of each algorithm when enforcing equal computation time, dividing the ρ steps equally among a
total of ten experts in the original AUE is unsurprisingly detrimental to its performance. An alternative comparison is to
reduce the total number of experts so that in AUE (k = 2), each of the two experts is updated with ρ = 2m steps, identical
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Figure 11: Misclassification rate over time (ρ = 2m divided among all models of each algorithm)



DriftSurf: Stable-State / Reactive-State Learning under Concept Drift

to DriftSurf. We observe that AUE (k = 2) performs better than AUE on five datasets: Hyperplane-slow, Hyperplane-fast,
SINE1, Mixed, and Electricity. We previously mentioned that for Hyperplane, the continual drift means always using the
latest available model works well, and we mentioned that for Electricity, the drift that does not require adaptation means
always using the oldest available model works well. Therefore, on these datasets, the additional eight experts of the original
AUE have little utility and AUE (k = 2) performs better. The reason for improvement of AUE (k = 2) on SINE1 and Mixed
datasets is less clear, but we suspect that the additional experts of the original AUE penalize the accuracy immediately after
the abrupt drifts when it is desirable to assign the most weight to the newest expert.

In Tables 9 and 10, we present results for another ensemble method Condor, which is better suited for the setting studied
in this section normalizing the computational power because it only requires training a single model at a time. Another
distinctive feature of Condor is that it uses biased regularization during training to anchor the newest model closer to the
weighted ensemble average from the previous time step. For these two factors, we expect that Condor is better at adapting to
drift at the expense of stationary performance, which is exemplified by its high accuracy on the Mixed, PowerSupply and the
continually drifting Hyperplane datasets and its relative improvement over AUE on some other datasets including SINE1,
Circles, Airline, Electricity and PowerSupply.

D.3. Sensitivity Analysis of δ

Choosing the right threshold is a key challenge for any drift detection technique. However, one of the key strengths of
DriftSurf is its resilience to imprecision in detection. In this experiment, we compared DriftSurf to StandardDD (the baseline
drift detection algorithm that uses condition 2 to decide whether to reset the model) under a range of settings of δ and plotted
the misclassification rate for each dataset in Figure 12.

As we observed in §6 from the results averaged over the datasets in Figure 3, we can generally choose a small value of δ in
DriftSurf to detect subtle drifts while not sacrificing performance between drifts because the reactive state catches most false
positives.

Over all variations of the SEA dataset, RCV1, Electricity, and Airline, larger values of δ improve the performance since the
permitted variation within the results will not be mistaken as drifts. This is true for both StandardDD, especially, while
DriftSurf’s performance is more stable because the reactive state corrects the false positive detections either by switching to
the old model or by early exiting.

For the Hyperplane datasets (fast and slow) with continuous gradual drifts, StandardDD outperforms DriftSurf because
resetting the model after any drift detection tends to improve the performance. There is an exception to this for the
Hyperplane-slow under very small δ, where the reactive state length of DriftSurf limits excessive switching. As δ increases,
neither DriftSurf and StandardDD detect changes, and as a result, they perform the same.

In some other datasets with large, abrupt drifts (SINE1, Mixed, CoverType), StandardDD outperforms DriftSurf, especially
for larger values for δ. In such cases, the right thing to do is to reset the model, but DriftSurf suffers from a delayed reaction
to such drifts it has to enter reactive state and leave the reactive state with a new model. These delays in reacting to actual
drifts make StandardDD outperform DriftSurf even for smaller choices of δ on SINE1.

D.4. Evaluation of Greedy Reactive State

This section includes results for the comparison of DriftSurf to DriftSurf (no-greedy). Recall that DriftSurf uses greedy
prediction in the reactive state, meaning that the predictive model used at one time step is the model with better performance
from the previous time step, while DriftSurf (no-greedy) only uses the older model during the reactive state, and may only
switch to the new model at the end of the reactive state. In Table 11 we observe that DriftSurf performs similar or better
across each dataset, with the biggest improvements on the SINE1, RCV1, and Mixed datasets that we earlier observed
MDDM and Aware perform well on because it is desirable to immediately switch to the new model after the large, abrupt
drift.

D.5. Comparison to 1PASS-SGD and Oblivious

Figure 13 shows the comparison to 1PASS-SGD and the oblivious algorithm (OBL) for the RCV1 and Electricity datasets at
each time. The time average misclassification rate for each dataset are in Table 8. In the case of the large, abrupt drift in
RCV1, we observe that 1PASS-SGD and especially oblivious have poor performance after drift. The oblivious algorithm
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(e) SEA-gradual
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(f) SINE1
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(g) HyperPlane-slow
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(h) HyperPlane-fast
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(i) Circles
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(j) Mixed
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(k) RCV1
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(l) CoverType
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(m) PowerSupply
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(n) Electricity
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Figure 12: δ-sensitivity (ρ = 2m for each model)
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Table 11: Total average of misclassification rate - DriftSurf vs DriftSurf (no-greedy) (ρ = 2m for each model)

DATASET DriftSurf DriftSurf (NO-GREEDY)

SEA0 0.087 0.085
SEA10 0.161 0.158
SEA20 0.247 0.246
SEA30 0.335 0.336
SEA-GRADUAL 0.158 0.159
HYPER-SLOW 0.117 0.118
HYPER-FAST 0.173 0.177
SINE1 0.191 0.220
MIXED 0.204 0.238
CIRCLES 0.371 0.376
RCV1 0.134 0.158
COVERTYPE 0.267 0.273
AIRLINE 0.333 0.333
ELECTRICITY 0.284 0.287
POWERSUPPLY 0.303 0.303

continues to re-sample the data from the older distributions, and leads to a model with random, or worse than random,
accuracy on the current distribution. Even for 1PASS-SGD, which only trains over data from the most recent time step,
we observe its convergence rate is slow after a drift, where its previous training on the old data still hinders it. On the
Electricity data with a more subtle drift, we observe that oblivious is actually the best performing algorithm, as discussed
earlier, because data from all over time can be trained and fit by a single model. However, 1PASS-SGD still has lower
accuracy because, as a single pass method, it uses only m update steps at each time even when ρ = 2m are available to the
other algorithms, and also because SGD has a slower convergence rate than the variance-reduced method STRSAGA.
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Figure 13: Misclassification rate over time (ρ = 2m for each model)

D.6. Using SGD as the Update Process

As mentioned earlier we choose STRSAGA as the update process because of two main reasons: (i) STRSAGA is designed
in a way that can handle different arrival distributions, and (ii) it achieves a faster convergence rate because of using
variance-reduced update step. We study the impact of the choice of the update process on the performance. We re-run the
previous experiments using SGD instead of STRSAGA. Table 12 shows the average misclassification rate for the case where
ρ = 2m update steps are used for each model.

As the results presented in Table 12 suggest, AUE, unlike the previous experiment, outperforms MDDM and DriftSurf for the
majority of the studied datasets. The reason is that AUE mitigates the high variance of SGD. MDDM, StandardDD, and
DriftSurf all use performance-degradation for drift detection. Such drift detection is sensitive to the high variance during
the training which may be mistaken for drift in the underlying distribution. However, comparing the results of DriftSurf
and MDDM shows the advantage of going though a reactive state before restarting the model in reducing the false positive
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Table 12: Total average of misclassification rate - update process: SGD (ρ = 2m for each model)

DATASET Aware DriftSurf StandardDD MDDM-G AUE

SEA0 0.170 0.119 0.115 0.127 0.125
SEA10 0.217 0.186 0.191 0.197 0.184
SEA20 0.279 0.271 0.276 0.296 0.263
SEA30 0.360 0.352 0.360 0.382 0.340
SEA-GRADUAL 0.205 0.179 0.193 0.216 0.188
HYPER-SLOW 0.169 0.155 0.146 0.140 0.124
HYPER-FAST 0.272 0.201 0.203 0.179 0.204
SINE1 0.194 0.199 0.216 0.200 0.239
MIXED 0.194 0.207 0.209 0.209 0.242
CIRCLES 0.362 0.389 0.390 0.386 0.362
RCV1 0.151 0.154 0.155 0.162 0.208
COVERTYPE 0.274 0.276 0.273 0.326 0.286
AIRLINE 0.356 0.351 0.353 0.359 0.343
ELECTRICITY 0.335 0.337 0.359 0.348 0.299
POWERSUPPLY 0.350 0.321 0.390 0.365 0.300

Table 13: Total average of misclassification rate - update process: SGD (ρ = 2m divided among all models of each
algorithm)

DATASET Aware DriftSurf StandardDD MDDM-G AUE

SEA0 0.163 0.127 0.125 0.123 0.193
SEA10 0.229 0.186 0.198 0.197 0.238
SEA20 0.283 0.267 0.279 0.311 0.287
SEA30 0.366 0.353 0.355 0.376 0.358
SEA-GRADUAL 0.204 0.187 0.188 0.196 0.236
HYPER-SLOW 0.169 0.155 0.149 0.143 0.158
HYPER-FAST 0.269 0.211 0.191 0.185 0.274
SINE1 0.200 0.241 0.212 0.205 0.302
MIXED 0.195 0.207 0.206 0.209 0.262
CIRCLES 0.306 0.371 0.389 0.367 0.429
RCV1 0.146 0.168 0.156 0.161 0.437
COVERTYPE 0.275 0.282 0.275 0.323 0.316
AIRLINE 0.354 0.365 0.353 0.366 0.370
ELECTRICITY 0.343 0.316 0.342 0.350 0.354
POWERSUPPLY 0.336 0.318 0.348 0.356 0.316

rate of drift detection. AUE, on the other hand, overcomes the high variance of SGD by using a bag of experts and making
ensemble based decisions.

Similar to the previous experiments, to examine the accuracy achieved when enforcing equal processing time, we repeated
the experiment for the case where ρ = 2m steps are used by each algorithm and divided among its models. Reported results
in Table 13 suggest that the variance-reduction effect of AUE is not able to overcome the limited training.

STRSAGA because of its variance-reduced update step achieves a faster convergence rate in comparison to SGD. Difference
between the reported results in Table 8 and Table 12 confirms the advantage of using STRSAGA over SGD as the update
process.

D.7. Using Hoeffding Trees and Naive Bayes as Base Learners

For the experiments in §D.1–§D.6, the base learner across each algorithm is a logistic regression model using either
STRSAGA or SGD as the update process. In this section, we study two additional base learners: Hoeffding Trees (HT), and
Naive Bayes (NB).

When using HT as the base learner, we also compare against an additional adaptive learning algorithm, Hoeffding Adaptive
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Table 14: Total average of misclassification rate - base learner: HT (ρ = 2m divided among all models of each algorithm)

DATASET Aware DriftSurf StandardDD MDDM-G AUE HAT

SEA0 0.038 0.032 0.032 0.045 0.053 0.037
SEA10 0.139 0.134 0.136 0.139 0.143 0.140
SEA20 0.233 0.230 0.231 0.231 0.234 0.233
SEA30 0.327 0.324 0.329 0.329 0.327 0.326
SEA-GRADUAL 0.141 0.133 0.135 0.131 0.148 0.135
HYPER-SLOW 0.162 0.140 0.126 0.153 0.123 0.149
HYPER-FAST 0.245 0.173 0.159 0.168 0.162 0.173
SINE1 0.170 0.194 0.176 0.176 0.251 0.329
MIXED 0.178 0.192 0.193 0.191 0.240 0.195
CIRCLES 0.191 0.173 0.182 0.178 0.184 0.186
RCV1 0.139 0.158 0.142 0.177 0.171 0.188
COVERTYPE 0.226 0.221 0.238 0.261 0.251 0.221
AIRLINE 0.388 0.378 0.377 0.379 0.378 0.376
ELECTRICITY 0.260 0.255 0.274 0.265 0.248 0.268
POWERSUPPLY 0.286 0.283 0.279 0.281 0.282 0.276

Table 15: Total average of misclassification rate - base learner: NB

DATASET Aware DriftSurf StandardDD MDDM-G AUE

SEA0 0.062 0.056 0.055 0.083 0.054
SEA10 0.150 0.144 0.143 0.144 0.143
SEA20 0.239 0.235 0.233 0.233 0.234
SEA30 0.328 0.326 0.323 0.325 0.324
SEA-GRADUAL 0.154 0.147 0.148 0.147 0.147
HYPER-SLOW 0.146 0.118 0.110 0.131 0.109
HYPER-FAST 0.257 0.161 0.148 0.160 0.151
SINE1 0.166 0.203 0.176 0.171 0.238
MIXED 0.180 0.193 0.193 0.193 0.254
CIRCLES 0.187 0.174 0.174 0.177 0.178
RCV1 0.124 0.131 0.138 0.130 0.150
COVERTYPE 0.311 0.314 0.310 0.311 0.312
AIRLINE 0.386 0.379 0.377 0.378 0.376
ELECTRICITY 0.274 0.259 0.263 0.262 0.259
POWERSUPPLY 0.284 0.278 0.278 0.278 0.284

Tree (HAT) (Bifet & Gavaldà, 2009). HAT continually maintains the starting HT throughout time, but reacts to drift by
swapping out subtrees based on an internal drift detection module. This represents a more granular approach to adapting to
drift, compared to replacing the entire model in traditional drift detection. We use the implementation of HAT available in
scikit-multiflow using their default hyperparameters (Montiel et al., 2018).

The results when using HT are shown in Table 14 for the setting where the computation available to each algorithm is
divided among all its models. Note, however, that HAT is a single-pass algorithm, and only used half the number of available
update steps that each other algorithm used. We observe that DriftSurf is an effective algorithm for this base learner, too. As
we saw with other base learners, DriftSurf performs especially well on RCV1 and CoverType where it quickly switches to
a new model after the drift and concentrates its processing power on the new model, but that DriftSurf loses to the large
ensemble that AUE has on the continually drifting Hyperplane datasets. We observe that HAT’s granular adaptation to drift
compares favorably on the real datasets of Airline and Powersupply, but suffers on the sharpest drifts like in SINE1 and
RCV1. For the NB base learner, the results are shown in Table 15. With NB, there is no advantage to repeated sampling
of earlier visited points, and so we compare each algorithm as they run a single pass over the data. In this setting, AUE’s
ensemble of 10 experts is the overall best-performer, using more computation than DriftSurf and MDDM, although AUE was
the slowest at adapting to the sharp drifts on SINE1 and RCV1.
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D.8. Recovery Time Analysis

In this paper, we defined recovery time as the number of time steps after a drift before switching to a model trained only over
the new distribution. However, an alternative metric for recovery we consider in this section is the 95%-recovery-time metric
proposed by (Shaker & Hüllermeier, 2015). The 95%-recovery-time is the length of a time interval called the recovery phase.
The recovery phase starts when the predictive model’s performance drops below 95% of the performance attained over the
first distribution, and the recovery phase ends when the model’s performance recovers up to 95% of the performance curve
that is ultimately obtained over the new distribution.

Table 16 shows the 95%-recovery-time over each dataset. When there is more than one drift in a dataset, the reported
recovery time is the average over all the drifts. Note that no recovery time is reported for Hyperplane datasets because they
contain a continually gradual drift that last throughout the entire stream, and the metric is not defined for such drifts.

The recovery time in some cases is reported to be 0. This is because the performance never dropped below 95% of the
performance curve over the original distribution. Also, it is worth mentioning that the recovery time of Aware is regularly
longer the other algorithms (while under our definition of recovery, Aware recovers immediately by resetting the model at
the time of drift). This occurs because restarting from scratch after a drift means that Aware always enters the recovery
phase, while the other algorithms may not enter the recovery phase if their performances did not drop below 95% of that
under the original distribution.

We observe that DriftSurf overall performs well on the 95%-recovery-time metric. On RCV1 and CoverType, DriftSurf
outperforms AUE which takes several time steps to shift its weight towards the newer models. Furthermore, on CoverType,
DriftSurf outperforms MDDM, which suffers significant false positives throughout the stream.

Table 16: 95%-recovery-time (ρ = 2m for each model)

DATASET Aware DriftSurf StandardDD MDDM-G AUE

SEA0 10.67 0.33 3.67 0.33 0.33
SEA10 9.33 0.33 0.33 6.00 0.33
SEA20 5.00 0.00 0.00 4.33 0.00
SEA30 2.33 0.33 0.33 3.00 0.33
SEA-GRADUAL 4.50 0.00 0.00 7.00 0.00
SINE1 2.75 3.00 3.25 3.00 3.50
MIXED 1.00 1.00 1.00 1.00 2.00
CIRCLES 1.00 1.00 1.00 0.83 1.00
RCV1 10.00 8.50 11.50 9.50 13.50
COVERTYPE 3.50 4.00 4.00 19.50 9.00
AIRLINE 12.50 10.50 10.50 10.50 10.50
ELECTRICITY 1.00 0.00 0.00 0.00 0.00
POWERSUPPLY 3.00 1.33 1.00 2.00 1.67

AVG 5.12 2.33 2.81 5.15 3.24


