
Supervised Tree-Wasserstein Distance

A. Proofs
A.1. Proof of Theorem 1

To prove Theorem 1, we show the theorems presented in
(Korte & Vygen, 2006). The number of theorems in the
bracket is the number of theorems in (Korte & Vygen, 2006).

Theorem 3 (Theorem 2.5). Let V = {v1, · · · , vN} be a set
of nodes and G = (V ,E) be a directed graph. Then, the
following statements are equivalent:

• G is a directed tree with the root v1.

• For all v ∈ V , (v1, v) 6∈ E, and for all v ∈ V \ {v1},
a unique u ∈ V exists so that (v, u) ∈ E, and G
contain no circuit.

Definition 1 (Definition 2.8). Let V = {v1, . . . , vN} be
a set of nodes and G = (V ,E) be a directed graph. A
topological order of G is an order of the nodes so that for
each edge (vi, vj) ∈ E, we have i < j.

Theorem 4 (Proposition 2.9). A directed graph has a topo-
logical order if and only if it is acyclic.

By replacing all edges (vi, vj) ∈ E with (vj , vi), we have
the following.

Corollary 4.1. Let V = {v1, . . . , vN} be a set of nodes
and G = (V ,E) be a directed graph. If i > j for all edges
(vi, vj) ∈ E, then G is acyclic.

By using these theorems, we prove Theorem 1.

Proof. Because the adjacency matrix Dpar satisfies condi-
tion (2) in Theorem 1, for all v ∈ V , we have (v1, v) 6∈ E,
and for all v ∈ V \ {v1}, there exists a unique u ∈ V
such that (v, u) ∈ E. Because the adjacency matrix Dpar
satisfies conditions (1) in Theorem 1, we have i > j for all
edges (vi, vj) ∈ E. Due to Corollary 4.1, G is acyclic.

Therefore, G is a directed tree with root v1 by Theorem
3.

A.2. Details of Eq. (2)

Because Dpar is a nilpotent matrix, and DN
par is a zero matrix,

(I−Dpar)

∞∑
k=0

Dk
par = (I−Dpar)

N−1∑
k=0

Dk
par

= I−DN
par

= I.

Because I−Dpar is an upper triangular matrix and all diag-
onal elements are one, I−Dpar is a regular matrix. There-
fore, the sum of the infinite geometric series converges to
(I−Dpar)

−1.

A.3. Proof of Theorem 2

Proof. Assume that the tree metric is given, and let Dpar
be its adjacency matrix. The element in the i-th row and
j-th column of the adjacency matrix to the power of k is
the number of paths from vj to vi with k steps. Dpar is
the adjacency matrix of a tree, and the number of paths
is at most 1. If there is a path from vj to vi with k steps,
[Dk

par]i,j is one; otherwise, it is zero. Then if there is a
path from vj to vi, [(I−Dpar)

−1]i,j is one; otherwise, it is
zero. The existence of a path from vj to vi means that vj
is contained in the subtree rooted at vi. From the definition
of Psub(vj |vi), if vj is contained in the subtree rooted at vi,
Psub(vj |vi) is one; otherwise, it is zero. We now have

µ(Γ(v)) =
∑

u∈Γ(v)

µ(u) =
∑
u∈Vleaf

Psub(u|v)µ(u).

Therefore, if the tree metric is given and α approaches
∞, the soft tree-Wasserstein distance converges to the tree-
Wasserstein distance that is,

W soft
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A.4. Additional Theoretical Analyses

In the formulation of the soft tree-Wasserstein distance, all
nodes are contained in the subtree rooted at the root v1.
Furthermore, every node is contained in the subtree rooted
at itself.

Theorem 5. For all u ∈ V , Psub(u|v1) = 1.

Proof. We prove that the elements in the first row of (I−
Dpar)

−1 are all one. Because Dpar satisfies the conditions
of Theorem 1, we have that

1>NDpar = (0, 1, . . . , 1) ,

1>N (I−Dpar) = (1, 0, . . . , 0) .

Since there exists the inverse matrix (I−Dpar)
−1, we mul-

tiply this inverse matrix with the above equation, yielding

1>N = (1, 0, . . . , 0) (I−Dpar)
−1.

Therefore, the statement is true.

Theorem 6. For all v ∈ V , Psub(v|v) = 1.
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Proof. We prove that the diagonal elements of (I−Dpar)
−1

are all one. Because I−Dpar is an upper triangular matrix,
(I−Dpar)

−1 is an upper triangular matrix. Because I−Dpar
is an upper triangular matrix and all diagonal elements are
one, all its eigenvalues are one. Then all eigenvalues of
(I−Dpar)

−1 are one. Therefore, the diagonal elements of
(I−Dpar)

−1 are all one.

B. Additional Experimental Results
B.1. Additional Analyses of Batch Size

Figure 5 presents the time consumption of the tree-based
methods when varying the batch size on AMAZON. Figure
6 illustrates the time consumption of the tree-based methods
except for Flowtree. The results show that the time con-
sumption of Quadtree increases linearly with the number of
documents to be compared. However, the time consumption
for the STW distance to compute a single batch is almost
the same even if the batch size increases. As a result, if the
batch size is sufficiently large, the STW distance is faster
than that of Quadtree. Note that we implement the TSW
distance by using the same formulation as the STW distance,
which can be computed on a GPU. Figure 7, 8, 9, and 10
show the time consumption of all baseline methods and the
STW distance when the batch size is varied from 500, 1000,
2500, and 5000. We omit datasets that contain only the
number of training data below the batch size.

B.2. Additional Analyses of Depth Level

For the TSW and STW distances, we need to set the depth
level of the tree as the hyperparameters. Figure 11 shows the
time required to compare one document with 500 documents
of the TSW and STW distances when varying the tree’s
depth level. The results show that, even if the depth level of
the tree increases, the time consumption is almost the same.

B.3. Time Consumption on CPU

In this section, we show the time consumption of the STW
distance on a CPU. We implement the STW distance with
sparse matrix multiplications in SciPy. Table 4 shows the
time consumption of the STW distance with sparse matrix
multiplications on a CPU. Unfortunately, the results indicate
that the STW distance with sparse matrix multiplications
is slower than Quadtree. However, Quadtree is written in
C++ and highly tuned. That is, if we implement the STW
distance in the same way as Quadtree, the STW distance
can be computed as fast as Quadtree on a CPU.

B.4. Analyses of Soft Tree-Wasserstein Distance

In the STW distance, we learn the probability of the tree’s
parent-child relationships by using the label information of

Figure 5. Average time consumption for all tree-based methods to
compare one document with the number of batch size documents
on AMAZON.

Figure 6. Average time consumption for comparing one document
with the number of batch size documents on AMAZON.

documents, then we select the most probable parent node for
each node. In this section, we show how this thresholding
affects the accuracy. We refer to the STW distance with
D2, which represents the probability of the parent-child
relationship, and smooth approximation of the L1 norm as
the soft-smooth-STW distance and the STW distance with
smooth approximation of the L1 norm as the smooth-STW
distance. We show the results in Table 5. By comparing the
smooth-STW and soft-smooth-STW distances, the results
show that this thresholding reduces the accuracy by about
1%.

B.5. Other Experimental Results

We show the loss value in the training in Figure 12.
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Figure 7. Average time consumption for comparing 500 documents with one document. For WMD (Sinkhorn), S-WMD, the STW
distance, and the TSW distance, the batch size is set to 500.

Figure 8. Average time consumption for comparing 1000 documents with one document. For the STW distance and the TSW distance,
the batch size is set to 1000. For WMD (Sinkhorn) and S-WMD, the batch size is set to 500 due to the memory size limitations.

Figure 9. Average time consumption for comparing 2500 documents with one document. For the STW distance and the TSW distance,
the batch size is set to 2500. For WMD (Sinkhorn) and S-WMD, the batch size is set to 500 due to the memory size limitations.
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Figure 10. Average time consumption for comparing 5000 documents with one document. For the STW distance and the TSW distance,
the batch size is set to 5000. For WMD (Sinkhorn) and S-WMD, the batch size is set to 500 due to the memory size limitations.

Figure 11. Average time consumption on all datasets for comparing one document with 500 documents when varying the depth level of
the tree.

Table 4. Average time consumption to compare one document with 500 documents on a CPU [ms].

TWITTER AMAZON CLASSIC BBCSPORT OHSUMED REUTERS

Quadtree 0.13 0.25 0.16 0.77 0.39 0.17
STW (sparse) 1.78 4.79 3.77 7.65 6.42 4.49

Table 5. kNN test error rate.

TWITTER AMAZON CLASSIC BBCSPORT OHSUMED REUTERS

soft-smooth-STW 29.9 ± 1.3 8.4 ± 0.4 5.1 ± 0.2 4.5 ± 1.0 44.1 6.5
smooth-STW 30.0 ± 0.8 10.6 ± 0.4 9.6 ± 0.9 4.5 ± 0.9 45.6 6.5
STW 28.9 ± 0.7 10.1 ± 0.7 4.4 ± 0.7 3.4 ± 0.8 40.2 4.4
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Figure 12. The loss value for all datasets.


