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A. Proof of Theorem 1
We will prove the result by judiciously choosing a sufficiently large subset of tree-structured graphs whose corresponding
distributions are close enough (with respect to the KL-divergence “metric”), and then applying Fano’s lemma (Cover &
Thomas, 2006).

We assume, for simplicity, that d is odd, with d = 2t + 1 for some t ∈ N. Let the edge set E0 consist of 2t edges{
{Xj , X2t+1}

}2t

j=1
, and let the corresponding tree (resp. distribution) be denoted T0 (resp. P0). From (2) and (3), we know

that a tree distribution is uniquely defined by the edge correlation values. Let the edge correlations, under distribution P0, be
given by

ρj,2t+1 =

{
ρmin, if 1 ≤ j ≤ t
ρmax, if t+ 1 ≤ j ≤ 2t.

(18)

Let k be a positive integer satisfying 1 ≤ k ≤ t2, and define

ka , 1 +

⌊
k − 1

t

⌋
, kb , k − (ka − 1)t.

It is seen that 1 ≤ ka, kb ≤ t, and the pair (ka, kb) is unique for every k. Let Ek denote the edge set of tree structure Tk,
where

Ek = {ka, kb + t} ∪ E0 \ {ka, 2t+ 1}.

Hence, for 1 ≤ k ≤ t2, the edge set Ek differs from E0 in only one edge. Let Pk denote the tree distribution corresponding to
Tk. For {ka, kb + t} ∈ Ek, let ρka,kb+t = ρmin, and let the edge correlation for the remaining edges in Ek be given by (18).

Now consider the noise model in Sec. 2.1, with qi denoting the crossover probability for a sample corresponding to the ith
node. For d = 2t+ 1 nodes, we fix these values as follows

qi =

{
qmax, if 1 ≤ i ≤ t
0, else.

(19)

Let the above parameters be applicable to the noisy samples obtained from tree structure Tk, where 0 ≤ k ≤ t2. See Fig. 6
for diagrams of the trees constructed.

Let Yi denote the noisy sample corresponding to the ith node. Then, we have ρ̃i,j , E[YiYj ] = (1−2qi)(1−2qj)ρi,j (Niko-
lakakis et al., 2019b). Let P̃k denote the distribution for the noisy vector (Y1, Y2, . . . , Y2t+1). As noise is only applied to
leaf nodes (19), we have Yj = Xj for t + 1 ≤ j ≤ 2t + 1, and the conditional independence among Yi, 1 ≤ i ≤ 2t + 1
continues to remain encoded via the tree structure Tk.6 See Fig. 7 for the construction of the distribution of the noisy
samples.

Let M = t2, and let the tree structure T be chosen uniformly from the set {T0,T1, . . . ,TM}. Then we have the Markov
chain T −→ Xn

1 −→ Yn
1 −→ T̂, and Fano’s inequality gives a lower bound on the error probability P

(
Ψ(Yn

1 ) 6= T
)

for
any estimator Ψ using the multiple hypothesis testing framework. A key observation from our construction of the M + 1 tree
structures Tk, 0 ≤ k ≤M , is that their corresponding equivalence classes (see Sec. 2.2) are disjoint, i.e., [Ti] ∩ [Tj ] = ∅
for i 6= j. When learning the underlying tree structure using the multiple hypothesis framework, this observation has the
important consequence that P

(
Ψ(Yn

1 ) /∈ [T]
)

= P
(
Ψ(Yn

1 ) 6= T
)
, and we have the following result.

Lemma 1 (Fano’s Inequality, Lemma 6.2 in (Bresler & Karzand, 2020)). For k ∈ {0, 1, . . . ,M}, let P̃k be
the probability law of the noisy observation Y, with the models satisfying the properties given in Sec. 2.1. Let
Ψ : {+1,−1}d×n → Td denote an estimator using n i.i.d. samples Yn

1 . Let the KL-divergence be D(P̃k‖P̃0) ,

6In general, the noisy samples do not satisfy the Ising model (Bresler et al., 2013; Nikolakakis et al., 2019a). However, noisy samples
from an underlying tree-structured Ising model retain the tree-structure when noise is only applied to leaf nodes.
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Figure 6. Tree structures constructed in the proof of Theorem 1. Equivalence clusters are circled in red, where an equivalence cluster is
defined as a set containing a non-leaf (internal) node and all the leaf nodes connected to it (Katiyar et al., 2020).
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Figure 7. Construction of the distribution of the noisy samples {Yi}.
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y∈{+1,−1}d P̃k(y) log

(
P̃k(y)/P̃0(y)

)
, and define the symmetric KL-divergence J(P̃k, P̃0) , D(P̃k‖P̃0) +D(P̃0‖P̃k).

If the number of samples satisfy

n < (1− δ) logM
1

M+1

∑M
k=1 J(P̃k, P̃0)

,

then the minimax errorMn(qmax, ρmin, ρmax) in (5) is lower bounded as

Mn(qmax, ρmin, ρmax) ≥ δ − 1

logM
.

We remark that Lemma 1 continues to hold if the symmetric KL-divergence J(P̃k, P̃0) is replaced by D(P̃k‖P̃0); however,
we use the given form as it is easier to quantify J(P̃k, P̃0) for Ising models. We proceed to prove Theorem 1 by quantifying
J(P̃k, P̃0) and applying Lemma 1.

As discussed previously, if Yj denotes a noisy sample corresponding to the jth node, then the conditional independence
among Yj , 1 ≤ j ≤ 2t+ 1, continues to be encoded by the tree structure Tk for distribution P̃k. Further, for 1 ≤ k ≤M ,
the edge set Ek differs from E0 in only one edge, and we have Ek \ E0 = {ka, kb + t} and E0 \ Ek = {ka, 2t+ 1}. Let ρ(k)

j1,j2

(resp. ρ(0)
j1,j2

) denote the correlation E[Xj1Xj2 ] with respect to the distribution Pk (resp. P0). Then, from the construction of
Pk and P0 we have

ρ
(k)
ka,kb+t = ρmin, ρ

(k)
kb+t,2t+1 = ρmax, (20)

ρ
(0)
ka,2t+1 = ρmin, ρ

(0)
kb+t,2t+1 = ρmax. (21)

Let ρ̃(k)
j1,j2

(resp. ρ̃(0)
j1,j2

) denote the correlation E[Yj1Yj2 ] with respect to the distribution P̃k (resp. P̃0). Then, using (19),
(20), and (21), and applying the correlation decay property for tree-structured Ising models (Nikolakakis et al., 2019c,
Lemma A.2), we obtain

ρ̃
(k)
ka,kb+t = (1− qmax)ρmin, ρ̃

(k)
ka,2t+1 = (1− qmax)ρminρmax, (22)

ρ̃
(0)
ka,kb+t = (1− qmax)ρminρmax, ρ̃

(0)
ka,2t+1 = (1− qmax)ρmin. (23)

Finally, using (2), (3), (22), (23), and Eqn. (6.3) in Bresler & Karzand (2020), we obtain

J(P̃k, P̃0) = 2 atanh(ρq) ρq (1− ρmax) , (24)

where ρq = (1− qmax)ρmin. Now, using (24) and Lemma 1, we observe that if the number of samples satisfy

n < (1− δ) logM

2 atanh(ρq) ρq (1− ρmax)
,

then we haveMn(qmax, ρmin, ρmax) ≥ δ − (1/ logM). Setting δ = 1/2 + (1/ logM), and using the fact M = t2, we get
thatMn(qmax, ρmin, ρmax) ≥ 1/2 if n satisfies

n <
log(t)− 1

2 atanh(ρq) ρq (1− ρmax)
. (25)

The proof of Theorem 1 is complete by using (25) and observing that log(t)− 1 = log(d−1
2 )− 1 > 1

2 log d for d > 32.

B. Minimum and Maximum Possible Size of [T]
The following proposition quantifies the minimum and maximum size of the equivalence class [T], for a given number of
nodes d.
Proposition 4. Let d ≥ 4. Then, we have

min
T∈Td

|[T]| = 4, (26)

max
T∈Td

|[T]| ≤ 3(d/3), (27)

where the minimum is achieved in (26) for a chain tree structure, and the inequality in (27) becomes tight when d is a
multiple of 3.
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Algorithm 2 IS NON STAR
Let the set of 4 nodes be {X1, X2, X3, X4}
Input: Empirical correlations ρ̂i,j , 1 ≤ i < j ≤ 4, Threshold α =

1+ρ2max

2

if ρ̂1,3 ρ̂2,4ρ̂1,2 ρ̂3,4
< α and ρ̂1,3 ρ̂2,4

ρ̂1,4 ρ̂2,3
> α then

Declare Non-star where {X1, X2} forms a pair
else if ρ̂1,2 ρ̂3,4ρ̂1,3 ρ̂2,4

< α and ρ̂1,2 ρ̂3,4
ρ̂1,4 ρ̂2,3

> α then
Declare Non-star where {X1, X3} forms a pair

else if ρ̂1,2 ρ̂3,4ρ̂1,4 ρ̂2,3
< α and ρ̂1,2 ρ̂3,4

ρ̂1,3 ρ̂2,4
> α then

Declare Non-star where {X1, X4} forms a pair
else

Declare Star
end if

Proof. For a given d ≥ 4, and T ∈ Td, recall that LT is the set of leaf nodes of T. Now, partition LT into smaller subsets,
such that all elements in the same subset share a common neighbor in the tree structure T. Let κ denote the number of such
distinct subsets, and let L(i)

T denote the ith subset. Then, LT can be expressed as a disjoint union of L(i)
T as

LT =]κi=1 L
(i)
T .

Now, if `i , |L(i)
T |, then it follows from (4) that the size of the equivalence class is given by

| [T] | =
κ∏
i=1

(1 + `i). (28)

When κ = 1, then the tree structure is a star (Tan et al., 2011), and we have | [T] | = d ≥ 4. As `i ≥ 1, it follows from (28)
that for κ ≥ 2, we have | [T] | ≥ 4. In particular, for a chain tree structure, we have κ = 2 with `1 = `2 = 1, and hence
| [T] | = 4 for a chain.

We proceed to prove the upper bound in (27). From (28), it follows that the size | [T] | can be upper bounded by the solution
of the following constrained maximization problem,

| [T] | ≤ max
m1+···+mκ≤d

κ∏
i=1

mi.

The expression on the right side is upper bounded by 3d/3, and this bound is tight when d mod 3 = 0 (Krause, 1996). Thus,
we have

| [T] | ≤ 3d/3,

with equality if d is a multiple of 3. Note that when d mod 3 = 0, and κ = d/3 with `1 = · · · = `κ = 2, then we have
| [T] | = 3d/3.

C. Overview of the Algorithm by Katiyar et al. (2020) for Declaring Star/Non-star
Let yn1 = {y1, . . . ,yn} denote n independently sampled noisy observations, where the kth noisy sample is a d-dimensional
column vector yk = (yk,1, . . . , yk,d)

T . The estimator in Katiyar et al. (2020) proceeds by first calculating the pairwise
empirical correlations,

ρ̂i,j ,
1

n

n∑
k=1

yk,i yk,j , (29)

where 1 ≤ i < j ≤ d. The procedure used in Katiyar et al. (2020) to declare a set of 4 nodes as star or non-star, based on
the knowledge of empirical correlations ρ̂i,j , is described in Algorithm 2. The intuition behind Algorithm 2 can be roughly
outlined by considering an example where the 4 nodes form a Markov-chain X1 X2 X3 X4. If the noisy correlations
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are denoted ρ̃i,j , E[YiYj ],7 then we have ρ̃1,3 ρ̃2,4
ρ̃1,2 ρ̃3,4

≤ ρ2
max and ρ̃1,3 ρ̃2,4

ρ̃1,4 ρ̃2,3
= 1, and hence we would expect the empirical

correlations to satisfy the conditions ρ̂1,3 ρ̂2,4
ρ̂1,2 ρ̂3,4

< α and ρ̂1,3 ρ̂2,4
ρ̂1,4 ρ̂2,3

> α, where α = (1 + ρ2
max)/2.

The partial tree structure learning algorithm detailed in Katiyar et al. (2020) ensures that if Algorithm 2 correctly declares
any set of 4 nodes as star or non-star (with appropriate pairing of nodes), then the equivalence class [T] is successfully
detected, i.e. Ψ(yn1 ) ∈ [T]. Therefore, the performance of the estimator critically depends on the accuracy of Algorithm 2.

D. Proof of Theorem 3
The algorithm by Katiyar et al. (2020) correctly estimates the equivalence class [T] if any set of 4 nodes within each others
proximal sets are declared correctly as star or non-star. The algorithm used for declaring 4 nodes as star or non-star is
described in Alg. 2 in App. C. Let yn1 = {y1, . . . ,yn} denote n independently sampled noisy observations, where the ith
noisy sample is a d-dimensional column vector yi = (yi,1, . . . , yi,d)

T . The algorithm proceeds by first calculating the
pairwise empirical correlations, ρ̂j,k , 1

n

∑n
i=1 yi,j yi,k, where 1 ≤ j < k ≤ d.

Without loss of generality, consider the set of 4 nodes {X1, X2, X3, X4} with the corresponding noisy variables
{Y1, Y2, Y3, Y4}, and let ρ̃j,k = E[Yj Yk]. Let these nodes form a non-star with {X1, X2} as a pair. From the proce-
dure in Alg. 2 in App. C, it follows that a correct decision is made if

ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4
< α and

ρ̂1,3 ρ̂2,4

ρ̂1,4 ρ̂2,3
> α, (30)

where α = (1 + ρ2
max)/2. Now, as {X1, X2} forms a pair, we have

ρ̃1,3 ρ̃2,4

ρ̃1,2 ρ̃3,4
≤ ρ2

max and
ρ̃1,3 ρ̃2,4

ρ̃1,4 ρ̃2,3
= 1. (31)

Define ∆j,k , ρ̃j,k − ρ̂j,k, and ∆ = max1≤j<k≤4 |∆j,k|. We will show that the inequalities in (30) are satisfied if

∆ < δ̃ ,
t2(1− α)

20
, (32)

where t2 = min
{
t1,

t1(1−2qmax)
ρmax

}
and t1 = (1 − 2qmax)2ρ4

min. Assume the inequality in (32) to be true and define

β , 0.1(1− α). Then, for 1 ≤ j < k ≤ 4, we have

∣∣∣∣∆j,k

ρ̂i,j

∣∣∣∣ (a)

≤ ∆

0.5t2

(b)
<

δ̃

0.5t2

(c)
= β, (33)

where (a) follows from the fact that proximal sets are chosen to satisfy |ρ̂i,j | ≥ 0.5t2, (b) follows from (32), and (c) follows
from the definitions of δ̃ and β. Now, we have

ρ2
max

(d)

≥ ρ̃1,3 ρ̃2,4

ρ̃1,2 ρ̃3,4

=

(
ρ̂1,3 + ∆1,3

)(
ρ̂2,4 + ∆2,4

)(
ρ̂1,2 + ∆1,2

)(
ρ̂3,4 + ∆3,4

)
=
ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4

(
1 + ∆1,3/ρ̂1,3

)(
1 + ∆2,4/ρ̂2,4

)(
1 + ∆1,2/ρ̂1,2

)(
1 + ∆3,4/ρ̂3,4

)
(e)
>
ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4

(1− β)2

(1 + β)2
, (34)

7Note that ρ̃i,j = (1− 2qi)(1− 2qj) ρi,j .
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where (d) follows from (31), and (e) follows from (33). We can equivalently express (34) as

ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4
< ρ2

max

(1 + β)2

(1− β)2

< ρ2
max

1 + 2.1β

1− 2β

< ρ2
max(1 + 2.1β)(1 + 3β)

< ρ2
max(1 + 6β), (35)

where we have applied the fact that β < 0.1, and hence β2 < 0.1β. As β = 0.1(1 − α) = (1 − ρ2
max)/20, it follows

from (35) that

ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4
< ρ2

max + 0.3ρ2
max(1− ρ2

max)

< ρ2
max + 0.3(1− ρ2

max)

= 0.3 + 0.7ρ2
max

< 0.5 + 0.5ρ2
max

= α,

and this proves the first inequality in (30). To prove the second inequality in (30), we note that

1 =
ρ̃1,3 ρ̃2,4

ρ̃1,4 ρ̃2,3

=
ρ̂1,3 ρ̂2,4

ρ̂1,4 ρ̂2,3

(
1 + ∆1,3/ρ̂1,3

)(
1 + ∆2,4/ρ̂2,4

)(
1 + ∆1,4/ρ̂1,4

)(
1 + ∆2,3/ρ̂2,3

)
<
ρ̂1,3 ρ̂2,4

ρ̂1,4 ρ̂2,3

(1 + β)2

(1− β)2
, (36)

where the last inequality follows from (33). We can equivalently express (36) as

ρ̂1,3 ρ̂2,4

ρ̂1,4 ρ̂2,3
>

(1− β)2

(1 + β)2

>
1− 2β

1 + 2.1β

> (1− 2β)(1− 2.1β)

> 1− 5β

= 1− 0.25(1− ρ2
max)

= 0.75 + 0.25ρ2
max

> 0.5 + 0.5ρ2
max

= α,

thereby proving the second inequality in (30). Thus, we have shown that if {X1, X2, X3, X4} form a non-star with pair
{X1, X2}, then the condition in (32) is sufficient for the algorithm to make a correct decision. In a similar fashion, it can be
shown that (32) provides a sufficient condition for making the correct decision even when {X1, X2, X3, X4} form a star or
a non-star with a different pairing.

Define the event Bj,k for 1 ≤ j < k ≤ d as

Bj,k ,
{
|ρ̂j,k − ρ̃j,k| ≥ δ̃

}
. (37)

Then, as (32) is a sufficient condition for correct declaration as star/non-star for any set 4 nodes that are within the proximal
sets of each other, it follows that for any P ∈ PT(ρmin, ρmax), the error probability PP

(
Ψ(Yn

1 ) /∈ [T]
)

can be upper
bounded as

PP
(
Ψ(Yn

1 ) /∈ [T]
)
≤ Pr

(∪1≤j<k≤d Bj,k
)
. (38)
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From the definition of the event Bj,k in (37), it follows using Hoeffding’s inequality that

Pr
(
Bj,k

)
≤ 2 exp

(
−n δ̃

2

2

)
. (39)

Now, using (38), (39), and applying the union bound over
(
d
2

)
pairs of nodes, we obtain

PP
(
Ψ(Yn

1 ) /∈ [T]
)
≤ d2 exp

(
−n δ̃

2

2

)
. (40)

Therefore, for the error probability to be upper bounded by τ , it is sufficient for the number of samples n to satisfy

n ≥ 2

δ̃2
log

(
d2

τ

)
. (41)

This completes the proof.

D.1. Discussion

We note that this is significantly improved over Katiyar et al. (2020, Theorem 3) as the right-hand-side in (41) is O(1/δ̃2)

instead of O(1/δ2) (see Theorem 2). Recall that δ̃ = Θ(t2) while δ = Θ(t32) and t2 = min
{
t1,

t1(1−2qmax)
ρmax

}
and

t1 = (1− 2qmax)2ρ4
min.

The result in Theorem 3 was derived for the scenario where the noise statistics are unknown. However, if the noise distribution
at each node is known, the Chow-Liu algorithm (Chow & Liu, 1968) can be applied via appropriate pre-processing where
the input to Chow-Liu is a complete weighted graph with scaled weights ρ̂i,j/

(
(1− 2qi)(1− 2qj)

)
applied to node pair

{i, j}. In this case, it can be shown (by a careful application of the Hoeffding’s inequality) that for a given target error
probability τ ∈ (0, 1), the optimal sample complexity satisfies

n∗(ρmin, ρmax, qmax, d) ≤ n∗CL(ρmin, ρmax, qmax, d) = O

(
log(d/τ)

(1− ρmax)2(1− 2qmax)4ρ2
min

)
. (42)

Contrast this to the algorithm by Katiyar et al. (2020) (Theorem 3) and SGA (Proposition 1) which do not assume knowledge
of the qi’s. By noting that δ̃ ∝ (1−ρmax)(1−2qmax)3ρ4

min (assuming ρmax → 1), Theorem 3 and Proposition 1 respectively
say that

n∗(ρmin, ρmax, qmax, d) ≤ n∗KA(ρmin, ρmax, qmax, d) = O

(
log(d/τ)

(1− ρmax)2(1− 2qmax)6ρ8
min

)
, and (43)

n∗(ρmin, ρmax, qmax, d) ≤ n∗SGA(ρmin, ρmax, qmax, d) = O

(
log(d/τ)

(1− ρmax)2(1− 2qmax)6ρ8
min

)
. (44)

We note that (43) pertains to the improved analysis of the algorithm by Katiyar et al. (2020) and not Theorem 2. The
impossibility result in Theorem 1 (derived assuming the knowledge of the noise statistics) says that the optimal sample
complexity satisfies

n∗(ρmin, ρmax, qmax, d) = Ω

(
log(d/τ)

(1− ρmax)(1− 2qmax)2ρ2
min

)
. (45)

We make the following observations based on the above sample complexity bounds.

• The bound in (42) coincides with that by Nikolakakis et al. (2019a, Thm. 1). However, the latter is designed for the
more restrictive case in which the noise parameters {qi}di=1 are the same across all nodes. Note that in this case, one
can simply run the vanilla Chow-Liu algorithm to learn the tree since the order of the correlations or mutual information
quantities remains unchanged.

• Assuming the noise statistics are known, by comparing (42) and (45), we see that the dependence on ρmin is order-
optimal, i.e., Θ(ρ−2

min) with all other parameters fixed.
• Comparing (42), (43) and (44), we see that the dependence on 1− ρmax for scaled Chow-Liu, Katiyar et al. (2020) and

SGA are the same. Thus, in terms of the parameter 1− ρmax, there is no cost our incognizance of the noise statistics qi.
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• There is a gap between the sample complexity bounds in Theorems 1 and 3 and Proposition 1 in terms of 1− ρmax,
ρmin, and 1− 2qmax (as can be seen from (43)–(45)) because the noise statistics are assumed to be unknown for the
algorithm by Katiyar et al. (2020) (as well as SGA). As mentioned in Sec. 8, closing the gaps on the dependencies on
the parameters is a promising avenue of future work.

E. Proof of Proposition 1
The proof is similar to the proof of Theorem 3 in App. D, and we focus here only on the important steps. Consider the set of
4 nodes {X1, X2, X3, X4} that forms a non-star with {X1, X2} as a pair. From the procedure in Alg. 1, it follows that a
correct decision is made if √

|ρ̂1,3 ρ̂2,4 ρ̂1,4 ρ̂2,3|
|ρ̂1,2 ρ̂3,4|

< α,
ρ̂1,3 ρ̂2,4

ρ̂1,2 ρ̂3,4
< 1, and

ρ̂1,4 ρ̂2,3

ρ̂1,2 ρ̂3,4
< 1, (46)

where α = (1 + ρ2
max)/2. Now, as {X1, X2} forms a pair, we have√

ρ̃1,3 ρ̃2,4 ρ̃1,4 ρ̃2,3

ρ̃1,2 ρ̃3,4
≤ ρ2

max,
ρ̃1,3 ρ̃2,4

ρ̃1,2 ρ̃3,4
≤ ρ2

max, and
ρ̂1,4 ρ̂2,3

ρ̂1,2 ρ̂3,4
≤ ρ2

max. (47)

Define ∆j,k , ρ̃j,k − ρ̂j,k, and ∆ = max1≤j<k≤4 |∆j,k|. We will show that the inequalities in (46) are satisfied if

∆ < δ̃ ,
t2(1− α)

20
, (48)

where t2 = min
{
t1,

t1(1−2qmax)
ρmax

}
and t1 = (1 − 2qmax)2ρ4

min. Assume the inequality in (48) to be true and define

β , 0.1(1− α). Then, for 1 ≤ j < k ≤ 4, we have∣∣∣∣∆j,k

ρ̂i,j

∣∣∣∣ (a)

≤ ∆

0.5t2

(b)
<

δ̃

0.5t2

(c)
= β, (49)

where (a) follows from the fact that proximal sets are chosen to satisfy |ρ̂i,j | ≥ 0.5t2, (b) follows from (48), and (c) follows
from the definitions of δ̃ and β. Now, we have

ρ2
max

(d)

≥
√
ρ̃1,3 ρ̃2,4 ρ̃1,4 ρ̃2,3

ρ̃1,2 ρ̃3,4

=

√(
ρ̂1,3 + ∆1,3

)(
ρ̂2,4 + ∆2,4

)(
ρ̂1,4 + ∆1,4

)(
ρ̂2,3 + ∆2,3

)(
ρ̂1,2 + ∆1,2

)(
ρ̂3,4 + ∆3,4

)
=

√
ρ̂1,3 ρ̂2,4 ρ̂1,4 ρ̂2,3

ρ̂1,2 ρ̂3,4

√(
1 + ∆1,3/ρ̂1,3

)(
1 + ∆2,4/ρ̂2,4

)(
1 + ∆1,4/ρ̂1,4

)(
1 + ∆2,3/ρ̂2,3

)(
1 + ∆1,2/ρ̂1,2

)(
1 + ∆3,4/ρ̂3,4

)
(e)
>

√
ρ̂1,3 ρ̂2,4 ρ̂1,4 ρ̂2,3

ρ̂1,2 ρ̂3,4

(1− β)2

(1 + β)2
, (50)

where (d) follows from (47), and (e) follows from (49). Now, we can equivalently express (50) as√
ρ̂1,3 ρ̂2,4 ρ̂1,4 ρ̂2,3

ρ̂1,2 ρ̂3,4
< ρ2

max

(1 + β)2

(1− β)2

(f)
< α, (51)

where (f) follows by employing relations similar to those used around (35), and thereby establishes the first inequality
in (46). The other two inequalities in (46) can be readily proved in a similar way. Further, this approach can be repeated to
prove that the condition in (48) is sufficient for making a correct decision even when the nodes {X1, X2, X3, X4} form a
star or a non-star with a different pairing. Finally, the steps in (37)–(41) can be repeated to complete the proof.
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F. Proof of Proposition 2
• We first prove the claim given by Proposition 2(a) where P corresponds to a Markov chain. We observe from the chain

structure that the 4 nodes form a non-star with {X1, X2} forming a pair. It follows from the procedure in Algorithm 2
(in App. C) that the two events that lead to error using ΨKA are E1 =

{
ρ̂1,3 ρ̂2,4
ρ̂1,2 ρ̂3,4

≥ α
}

, and E2 =
{
ρ̂1,3 ρ̂2,4
ρ̂1,4 ρ̂2,3

≤ α
}

.

The exponents corresponding to these error events are defined as ei , limn→∞− 1
n log Pr

(
Ei
)
, i ∈ {1, 2}. Using

Sanov’s theorem (Cover & Thomas, 2006, Chap. 11), it follows that these exponents are given by (11) and (12),
respectively. Now, we have PP̃

(
Ψ(Yn

1 ) /∈ [T]
)

= PP̃
(
E1 ∪ E2

)
, and hence it follows from the definition in (10) that

E(ΨKA, P̃ ) = min{e1, e2}.
• We now prove the claim given by Proposition 2(b) where P corresponds to a star structured tree. When the 4 nodes

form a star structure, then an error is made if only if the procedure in Algorithm 2 (in App. C) make any one of the
following incorrect declarations:

– Non-star with pair {X1, X2}.
– Non-star with pair {X1, X3}.
– Non-star with pair {X1, X4}.

By symmetry of the underlying star structure, the probability of each of the three erroneous declarations is same,
and hence it is sufficient to analyze the exponent of the probability that a non-star with pair {X1, X2} is incorrectly
declared, in order to characterize E(ΨKA, P̃ ). Now, it follows from Alg. 2 that a non-star with pair {X1, X2} is
declared if ρ̂1,3 ρ̂2,4ρ̂1,2 ρ̂3,4

< α, and ρ̂1,3 ρ̂2,4
ρ̂1,4 ρ̂2,3

> α. Finally, using Sanov’s theorem (Cover & Thomas, 2006, Ch. 11), it follows
that the exponent of the probability that these conditions are satisfied are given by (13).

G. Proof of Proposition 3
• We first prove the claim given by Proposition 3(a) where P corresponds to a Markov chain. We observe from the chain

structure that the 4 nodes form a non-star with {X1, X2} forming a pair. It follows from the procedure in Algorithm 1
that a correct decision is made if (i) v2 < α, (ii) v2 < v3, and (iii) v2 < v4. Thus, an incorrect decision is made if any
of the following events are true.

– Event E3 ,
{√

|ρ̂1,3 ρ̂2,4 ρ̂1,4 ρ̂2,3|
|ρ̂1,2 ρ̂3,4| ≥ α

}
, implying v2 ≥ α.

– Event E4 , {|ρ̂1,3 ρ̂2,4| ≥ |ρ̂1,2 ρ̂3,4|}, implying v2 ≥ v3.8

– Event E5 , {|ρ̂1,4 ρ̂2,3| ≥ |ρ̂1,2 ρ̂3,4|}, implying v2 ≥ v4.
The exponents corresponding to these error events are defined as ei , limn→∞− 1

n log Pr
(
Ei
)
, i = {3, 4, 5}. Using

Sanov’s theorem (Cover & Thomas, 2006, Chap. 11), it follows that these exponents are given by (14), (15) and (16),
respectively. Now, we have PP̃

(
Ψ(Yn

1 ) /∈ [T]
)

= PP̃
(
E3 ∪ E4 ∪ E5

)
, and hence it follows from the definition in (10)

that E(ΨSGA, P̃ ) = min{e3, e4, e5}.
• We now prove the claim given by Proposition 3(b) where P corresponds to a star structured tree. When the 4 nodes

form a star structure, then an error is made if only if the procedure in Algorithm 1 make any one of the following
incorrect declarations:

– Non-star with pair {X1, X2}.
– Non-star with pair {X1, X3}.
– Non-star with pair {X1, X4}.

By symmetry of the underlying star structure, the probability of each of the three erroneous declarations is same,
and hence it follows from Algorithm 1 that E(ΨSGA, P̃ ) is equal to the exponent of the probability that v2 =√
|ρ̂1,3 ρ̂2,4 ρ̂1,4 ρ̂2,3|
|ρ̂1,2 ρ̂3,4| < α. Finally, using Sanov’s theorem (Cover & Thomas, 2006, Chap. 11), it follows that the

exponent of the probability that this condition is satisfied is given by (17).

8Note that we have taken a slightly pessimistic approach where an error is declared in case of a tie v2 = v3. In practice, the ties can be
broken by a coin toss, but this does not affect the error exponent.
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Figure 8. Comparison of error probabilities for 4-node noiseless chains when all the edge correlation are equal to ρ = 0.4.

H. Simulation results for 4-node homogeneous trees
Sec. 6.3 presented numerical results comparing the error exponents using the ΨSGA and ΨKA algorithms, derived using the
large deviation theory (Cover & Thomas, 2006, Sec. 11.4), for 4-node homogeneous trees. In this appendix, we present
Monte Carlo simulation results for 4-node homogeneous trees, that corroborate the results in Sec. 6.3. For any given tree
structure, and any value of n (number of samples), the error probability using ΨSGA or ΨKA is computed based on 105

iterations (or runs) in the simulation setup.

Fig. 8 compares the error probabilities for 4 node noiseless chains, using ΨSGA and ΨKA, when all the edge correlation are
equal to ρ = 0.4. Here, we consider all 12 distinct chain structures using 4 nodes (based on different permutations of the node
indices), and for any given n we compute the empirical mean, denoted µn, and the empirical standard deviation, denoted σn,
of the error probabilities using the 12 distinct chain structures. The shaded area in blue (resp. red) in Fig. 8 corresponds
to the region between µn(ΨSGA) + σn(ΨSGA) and µn(ΨSGA) − σn(ΨSGA) (resp. between µn(ΨKA) + σn(ΨKA) and
µn(ΨKA) − σn(ΨKA)). The negative slope of the error probability curve is indicative of the error exponent, and Fig. 8
demonstrates that the error exponent using ΨSGA is much higher than that using ΨKA when ρ = 0.4, as shown by the
corresponding error exponent values in Fig. 1(a).

Fig. 9 compares the error probabilities for 4 node noiseless chains, using ΨSGA and ΨKA, when all the edge correlation
are equal to ρ = 0.8. Again, the shaded area in blue (resp. red) in Fig. 9 corresponds to the region between µn(ΨSGA) +
σn(ΨSGA) and µn(ΨSGA) − σn(ΨSGA) (resp. between µn(ΨKA) + σn(ΨKA) and µn(ΨKA) − σn(ΨKA)), where µn
denotes the empirical mean and σn denotes the empirical standard deviation, for the error probabilities obtained using the 12
distinct chain structures. Fig. 9 shows that the slope of the error probability curves for ΨSGA and ΨKA are roughly equal
when ρ = 0.8, as indicated by the corresponding error exponent values in Fig. 1(a).

Fig. 10 compares the error probabilities for 4 node star structured trees, using ΨSGA and ΨKA. The shaded area in blue (resp.
red) in Fig. 10 corresponds to the region between µn(ΨSGA) + σn(ΨSGA) and µn(ΨSGA)− σn(ΨSGA) (resp. between
µn(ΨKA) + σn(ΨKA) and µn(ΨKA) − σn(ΨKA)), where µn denotes the empirical mean and σn denotes the empirical
standard deviation, for the error probabilities obtained using the 4 distinct star structured trees with 4 nodes (based on
different permutations of the node indices). Fig. 10 shows that the slopes of the error probability curves for ΨSGA and ΨKA

are not very different when ρ = 0.6, as suggested by the error exponent values in Fig. 2(a).

Overall, the simulation results in Fig. 8 and Fig. 9 show that the error probability values do not deviate much due to the
specific choice of a 4-node chain structure, while Fig. 10 indicates a similar behavior for 4-node star structured trees.
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Figure 9. Comparison of error probabilities for 4-node noiseless chains when all the edge correlation are equal to ρ = 0.8.

I. Different 12-node tree structures considered in Section 7
Fig. 11 presents 12-node trees with three different tree structures: (i) Chain, (ii) Hybrid, (iii) Star. The chain and the star
structures are known to be extremal tree structures in terms of the error probability (Tan et al., 2010; Tandon et al., 2020),
while the hybrid tree structure is a combination of the chain and star structures.

J. Extension of Katiyar et al. (2020) and SGA to Gaussian trees with numerical results
We compare the error probabilities of ΨSGA and ΨKA in recovering the trees from tree-structured Gaussian graphical
models with d = 10 nodes. The tree structures used for comparison are similar to those in the Ising model experiments in
Sec. 7. Each observation of Xi ∈ R is corrupted by independent but non-identically distributed Gaussian noise such that the
observed variable Yi = Xi +Ni, where the noise Ni ∼ N (0, σ2

i ) for some σi > 0.

J.1. Experiment setup

Generating samples for Gaussian models begins with choosing a tree structure TP = (V, EP ) where the number of nodes
d = 10. We then generate the inverse covariance matrix (Σ∗)−1, by setting its (i, j)th entry as

[(Σ∗)−1]i,j =


w, if (i, j) ∈ EP ;
1, if i = j;
0 otherwise

(52)

for some parameter w ∈ R. This matrix is then inverted to get the covariance matrix Σ∗ of the distribution P . The
correlation matrix K∗ is calculated from Σ∗ using the formula K∗ = (diag(Σ∗))−

1
2 Σ∗(diag(Σ∗))−

1
2 . This is used to

compute the minimum and maximum correlation coefficients ρmin and ρmax. The parameter w ∈ R is chosen so as to
ensure that ρmax ≈ 0.8 from the resulting K∗. Additionally, for the noiseless case, the diagonal matrix D∗ is taken to be the
zero matrix, and for the noisy case [D∗]i,i = 2 for i ∈ {1, 3, 5, 7, 9}; thus Gaussian noise of variance 2 is directly added to
the node observations for nodes with odd indices. Finally, samples were generated from the joint Gaussian distribution
P̃ (y) = N (y; 0,Σ∗ + D∗).

J.2. Modifications to the Algorithm

Even though Katiyar et al. (2019) proposed an algorithm for the partial learning of Gaussian graphical models (given noisy
observations), it is not directly implementable to the case in which we have a finite number of samples n. An algorithm for
learning trees with noisy samples up to their equivalence classes was proposed by Katiyar et al. (2020) but the algorithm
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Figure 10. Comparison of error probabilities for 4-node star structured trees when all the edge correlation are equal to ρ = 0.6 and
qmax = 0.
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Figure 11. Three different 12-node tree structures

provided therein was originally used to recover Ising models. Hence, some modifications to the algorithm had to be made so
that it is amenable to Gaussian graphical models. In particular, there are two thresholds given to form the proximal set of
any node i in the Ising case. The first, t1 , (1− 2qmax)2ρ4

min, gives a lower bound for the correlation between i any other
node with distance at most 4 between them. The second, t2 , min

{
t1,

t1(1−2qmax)
ρmax

}
, gives another lower bound for the

correlation of i and the first node in the path i to some other node j where ρ̃i,j ≥ t1.

A similar idea can be used to construct proximal sets for the Gaussian case using the correlation decay property. First, note
that the correlation coefficient between the variable Xi and its noisy counterpart Yi = Xi +Ni is

ρXiYi =
E[XiYi]√
E[X2

i ]E[Y 2
i ]

=
E[Xi(Xi +Ni)]√
E[X2

i ]E[(Xi +Ni)2]
=

E[X2
i ]√

E[X2
i ](E[X2

i ] + E[N2
i ])

=
1√

1 +
σ2
i

E[X2
i ]

. (53)

Let Si , σ2
i /E[X2

i ] and Smax , max1≤i≤d Si. With the correlation decay property for Gaussian tree models (Tan et al.,
2010, Eqn. (18)), any node j within radius 4 of i will have its noisy correlation coefficient bounded as follows

ρYiYj = ρYiXi · ρXiXj · ρXjYj ≥
1√

1 +
σ2
i

E[X2
i ]

· ρ4
min ·

1√
1 +

σ2
j

E[X2
j ]

≥ ρ4
min ·

1

1 + Smax
. (54)

In this way, we obtain the first threshold h1 , ρ4min

1+Smax
. Similarly, if we let node k be the first node in the path from j to i

(i.e., k is at distance 1 from j), then it holds that
ρYiYj
ρXkXj

= ρXiYi · ρXiXk · ρXkYk︸ ︷︷ ︸
ρYiYk

·
ρXjYj
ρXkYk

, (55)
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Figure 12. Comparison of error probabilities for a 10-node chain, with w = 0.5 (see (52)).

whence, by (53) and the definition of Si, the correlation coefficient between Yi and Yk can be bounded as follows

ρYiYk =
ρYiYj
ρXkXj

·
√

1 + Sj
1 + Sk

≥ h1

ρmax

√
1 + Smax

. (56)

Thus, we get our second threshold h2 , min
{
h1,

h1

ρmax

√
1+Smax

}
. So the proximal set of node i is defined as the set of all

nodes j that satisfy |ρ̂i,j | ≥ 0.5h2.

J.3. Numerical Results

We now present numerical results for Gaussian tree models, comparing the performance of ΨSGA and ΨKA for three
different tree structures with d = 10 nodes: (i) Chain, (ii) Hybrid, and (iii) Star. For a given tree structure T, and n noisy
samples Yn

1 , the error probability P
(
Ψ(Yn

1 ) /∈ [T]
)

for a given learning algorithm Ψ, is estimated using 105 iterations (or
runs) in the Monte Carlo simulation framework, where an error is declared if the estimated tree does not belong to the
equivalence class [T]. For the noisy case, we set [D∗]i,i = 2 for i ∈ {1, 3, 5, 7, 9}.

J.3.1. 10-NODE CHAIN

Fig. 12 plots the results for a 10-node chain for the (a) noiseless and (b) noisy cases, with w = 0.5 (see (52)). It is seen that
ΨSGA significantly outperforms ΨKA for the Gaussian chain; a similar trend was observed for the Ising chain in Fig. 3.

J.3.2. 10-NODE HYBRID TREE STRUCTURE

Fig. 13 plots the results for a 10-node hybrid tree structure for the (a) noiseless and (b) noisy cases, with w = 0.38 (see (52)).
The hybrid tree structure is a combination of chain and star structures where nodes 1 to 5 are linked in the form of a chain,
while nodes 6 to 10 are directly connected to node 5. Similar to the performance comparison for the Ising hybrid tree in
Fig. 4, it is seen that ΨSGA significantly outperforms ΨKA for the Gaussian hybrid tree.

J.3.3. 10-NODE STAR

Fig. 14 plots the results for a 10-node star tree structure for the (a) noiseless and (b) noisy cases, with w = 0.325 (see (52)),
where nodes 2 to 10 are directly connected to node 1. It is seen that the performance of ΨSGA is only slightly better than
that of ΨKA; a similar trend was observed for the Ising star tree in Fig. 5. This is corroborated by the error exponent results
in Fig. 2, which is for Ising models but we expect the same behavior for Gaussian models.

These experiments for Gaussian tree models learned using noisy samples demonstrate that the behavior of SGA and the
algorithm by Katiyar et al. (2020) are qualitatively very similar to the Ising case as detailed in Sec. 7. In particular, the
performance of SGA is far superior to that of Katiyar et al. (2020) for chains and hybrid trees (i.e., trees with moderate to
large diameter). SGA’s performance is comparable to the algorithm by Katiyar et al. (2020) for stars (i.e., trees with small
diameter), though in this case, SGA’s performance is still marginally better.
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Figure 13. Comparison of error probabilities for a 10-node hybrid tree structure, with w = 0.38.
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Figure 14. Comparison of error probabilities for a 10-node star tree, with w = 0.325.


