
REPAINT: Knowledge Transfer in Deep Reinforcement Learning

A. Algorithms
In order to conduct a fair comparison with the baseline
algorithms regarding the reduction of number of training it-
erations, and demonstrate that REPAINT improves the sam-
ple efficiency in knowledge transfer, we use an alternating
variant of REPAINT with Clipped PPO in the experiments.
The algorithm is provided in Algorithm 2, where we adopt
on-policy representation transfer and off-policy instance
transfer alternately, so that the REPAINT performs policy
update one time per iteration using less samples. Indeed, Al-
gorithm 2 can be easily extended with different alternating
ratios other than 1:1 alternating. The corresponding results
and discussion can be found in Section C.1.

Note that in Algorithm 1 and Algorithm 2, we can use dif-
ferent learning rates α1 and α2 to control the update from
representation transfer and instance transfer, respectively.
Moreover, it is straightforward to using multiple and differ-
ent teacher policies in each transfer step, and our algorithm
can be directly applied to any advantage-based policy gradi-
ent RL algorithms. Assume there are m previously trained
teacher policies π1, . . . , πm. In the instance transfer, we
can form the replay buffer S̃ by collecting samples from
all teacher policies. Then in the representation transfer, the
objective function can be written in a more general way:

Lkrep(θ) = Lclip(θ)−
m∑
i=1

βki H (πi(a|s)‖πθ(a|s)) , (A.1)

where we can impose different weighting parameters for
different teacher policies.

In addition, the first term in (A.1), i.e., Lclip(θ), can be
naturally replaced by the objective of other RL algorithms,
e.g., Advantage Actor-Critic (A2C) (Sutton et al., 2000):

LA2C(θ) = Êt
[
log πθ(a|s)Ât

]
,

and Trust Region Policy Optimization (TRPO) (Schulman
et al., 2015a):

LTRPO(θ) = Êt
[
πθ(a|s)
πθold(a|s)

Ât − βKL[πθold(·|s), πθ(·|s)]
]

for some coefficient β of the maximum KL divergence com-
puted over states.

REPAINT can also be adapted to other policy-gradient-
based algorithms that are not based on advantage values.
To this end, one can define a different metric for relatedness.
For example, we can use REPAINT with REINFORCE
(Williams, 1992), by defining the relatedness metric to be
R̂− b, where R̂ is the off-policy return and b is the baseline
function in REINFORCE, which can be state-dependent.
Then the experience selection approach can be built based
on the new relatedness metric.

Algorithm 2 Alternating REPAINT with Clipped PPO

Initialize parameters ν, θ
Load teacher policy πteacher(·)
Set hyper-parameters ζ, α1, α2, and βk’s in (4.1)
for iteration k = 1, 2, . . . do

if k is odd then // representation transfer
Collect samples S = {(s, a, s′, r)} using πθold(·)
Fit state-value network Vν using S to update ν
Compute advantage estimates Â1, . . . , ÂT
Compute sample gradient of Lkrep(θ) in (4.1)
Update policy network by θ ← θ + α1∇θLkrep(θ)

else // instance transfer
Collect samples S̃ = {(s̃, ã, s̃′, r̃)} using πteacher(·)
Compute advantage estimates Â′1, . . . , Â

′
T ′

for t=1,. . . ,T ′ do // experience selection
if Â′t < ζ then

Remove Â′t and the corresponding transition
(s̃t, ãt, s̃t+1, r̃t) from S̃

Compute sample gradient of Lins(θ) in (4.2)
Update policy network by θ ← θ + α2∇θLins(θ)

We now discuss how the REPAINT algorithm can be ex-
tended to Q-learning. Since Q-learning is an off-policy
algorithm, it is easy to notice that the kickstarting approach
cannot be directly used. Although some other representa-
tion transfer approaches are suitable for Q-learning, e.g.,
using a neural network for feature abstraction, we skip the
discussion as it is not our goal in this paper. Instead, we will
focus on how to extend our experience selection approach
to the instance transfer of Q-learning.

In the instance transfer for Q-learning, the Q-value network,
parameterized by φ, is updated by minimizing the following
loss function:

L(φ) =
1

2

∑
i

‖Qφ(si, ai)− yi‖2 ,

where the samples are drawn from the replay buffer that
is collected following some teacher policy, and the target
values yi’s are defined by

yi = r(si, ai) + γmax
a′i

Qφ(s
′
i, a
′
i) ,

with γ the discount factor. Now given some threshold ζ ≥ 0,
we can select the samples that satisfy the following condition
to update φ:

yi −Qφ(si, ai) > ζ .

Similar to REPAINT with actor-critic methods, the threshold
ζ here is task specific, but it needs more careful treatment in
Q-learning. Since we aim to obtain an optimal Q-function
Q∗(s, a), we should use a ζ such that Q∗(s, a) ≥ y >
Qφ(s, a) + ζ. For actor-critic methods, we can empirically

REPAINT: Knowledge Transfer in Deep Reinforcement Learning

(a) MuJoCo-Reacher (b) MuJoCo-Ant (c) DeepRacer multi-car racing (d) StarCraft II

Figure 9. The simulation environments used in the experiments. Note that in DeepRacer multi-car racing, the racing car is equipped by a
stereo camera and a Lidar, as shown in (c). However, in the single-car time trial, the racing car only has a monocular camera. In addition,
for the StarCraft II environment, 40 Zerglings are randomly generated in the unrevealed areas around the map.

show that REPAINT is robust to the advantage threshold.
However, for Q-learning, we usually need to set ζ to be
very small and use the experience selection only in the
early training stage. Motivated by Oh et al. (2018), we can
also set ζ = 0. Then the convergence of Q-value follows
Q∗(s, a) ≥ y > Qφ(s, a). By filtering out the samples such
that Qφ(si, ai) ≥ yi, one can expect the instance transfer to
improve the sample efficiency and reduce the total training
time for complex target tasks.

In practice, to trade off the exploitation with exploration
in Q-learning, we can collect some samples following the
ε-greedy policy from the online Q-value network, and add
those samples to the replay buffer as well.

B. Details of Experimental Setup
B.1. Environments

We now provide the details of our experimental setup. The
graphical illustration of the environments used is presented
in Figure 9. First of all, MuJoCo is a well-known physics
simulator for evaluating agents on continuous motor control
tasks with contact dynamics, hence we omit the further
description of MuJoCo in this paper.

DeepRacer simulator. In AWS DeepRacer simulator3,
the RL agent, i.e., an autonomous car, learns to drive by
interacting with its environment, e.g., the track with moving
bot cars, by taking an action in a given state to maximize
the expected reward. Figure 9(c) presents the environmental
setting for racing against moving bot cars, where four bot
cars are generated randomly on the track and the RL agent
learns to finish the lap with overtaking bot cars. Another
racing mode we used in this paper is the single-car time-trial
race, where the goal is to finish a lap in the shortest time.

In single-car racing, we only install a front-facing camera

3https://github.com/awslabs/
amazon-sagemaker-examples/tree/master/
reinforcement_learning/rl_deepracer_
robomaker_coach_gazebo

on the RL agent, which obtains an RGB image with size
120× 160× 3. The image is then transformed to gray scale
and fed into an input embedder. For simplicity, the input
embedder is set to be a three-layer convolutional neural
network (CNN) (Goodfellow et al., 2016). For the RL agent
in racing against bot cars, we use a stereo camera and a
Lidar as sensors. The stereo camera obtains two images
simultaneously, transformed to gray scale, and concatenates
the two images as the input, which leads to a 120× 160× 2
input tensor. The input embedder for stereo camera is also a
three-layer CNN by default. The stereo camera is used to
detect bot cars in the front of learner car, while the Lidar is
used to detect any car behind. The backward-facing Lidar
has an angle range of 300 degree and a 64 dimensional
signal. Each laser can detect a distance from 12cm to 1
meter. The input embedder for Lidar sensor is set to be a two-
layer dense network. In both environments, the output has
two heads, V head for state value function output and policy
head for the policy function output, each of which is set
to be a two-layer dense networks but with different output
dimensions. The action space consists of a combination
of five different steering angles and two different throttle
degrees, which forms a 10-action discrete space. In the
evaluation of DeepRacer experiments, the generalization
around nearby states and actions is also considered (Balaji
et al., 2019), where we add small noises to the observations
and actions.

StarCraft II learning environments (SC2LE). The
BuildMarines mini-game is shown in Figure 9(d), where
it limits the possible actions that the agent can take to ei-
ther of selecting points, building workers, building supply
depots, building barracks, and training marines. For Build-
Marines+FindAndDefeatZerglings (BM+FDZ), we extend
the action space to allow the agent to select the army and
to attack with the army. As mentioned before, we keep the
state and action spaces the same between source and target
tasks in the experiments. Therefore, we provide the two
army-related actions in BuildMarines but they are always
unavailable.

https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning/rl_deepracer_robomaker_coach_gazebo
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning/rl_deepracer_robomaker_coach_gazebo
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning/rl_deepracer_robomaker_coach_gazebo
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/reinforcement_learning/rl_deepracer_robomaker_coach_gazebo

REPAINT: Knowledge Transfer in Deep Reinforcement Learning

Table 2. StarCraft II BM+FDZ reward scheme.
Condition Reward

Performing an unavailable action -0.01
A marine dying -4

Selecting an unavailable point -0.01
Selecting an available point 0.01

Training an SCV 0.5
Building barrack 0.2

The default observations provided in the SC2LE are used
and we follow a similar network architecture to the baseline
presented in Vinyals et al. (2017). Spatial features, including
screen features (size = 84× 84× 9) and mini-map features
(size = 84× 84× 3), are each fed through input embedders
consisting of CNN with two layers. Non-spatial features,
including the measurements (size = 5; e.g., mineral count,
food count, army count) and the one-hot encoded vector of
available actions (size = 7, e.g., build worker, select screen)
are fed into an input embedder consisting of linear layers
with a tanh activation.

The action space consists of one discrete action to determine
the command to take (i.e., build supply depot, build barrack,
train SCV, train marine, select point on screen, attack point
on screen, select army) and two actions to indicate where
to commence the action on the screen (spatial action). For
example, with a command to build a barrack, the spatial
action determines where the barrack will be built, and to
attack the spatial action determines where the marines will
attack. It is important to note that not all commands rely on
a corresponding spatial action. For example, when issuing a
command to train a marine, the spatial action is ignored.

In addition, several rules are implemented to ensure that the
mini-game progresses as expected. Firstly, workers (SCVs)
cannot attack so that the agent will not find and attempt
to defeat Zerglings with the workers. Secondly, Zerglings
cannot enter the base so that Zerglings do not overrun the
base before marines are built.

The BM+FDZ agent is rewarded for each marine built and
each Zergling killed. Specifically, a +5 reward is imposed
when a marine is built and +10 reward when a Zergling is
killed. Table 2 shows small rewards and penalties that are
given to facilitate the agent to achieve these goals.

B.2. Hyper-parameters

We have implemented our algorithms based on Intel Coach4.
The MuJoCo environments are from OpenAI Gym5. The
StarCraft II learning environments are from DeepMind’s

4https://github.com/NervanaSystems/coach
5https://gym.openai.com/envs/#mujoco

Table 3. Hyper-parameters used in the MuJoCo simulations.

Hyperparameter Value
Num. of rollout steps 2048
Num. training epochs 10

Discount (γ) 0.99
Learning rate 3e-4

GAE parameter (λ) 0.95
Beta entropy 0.0001

Cross-entropy weight (β0) 0.2
Reacher - Advantage Threshold (ζ) 0.8

Reacher - Num. REPAINT iterations 15
Ant - Num. REPAINT iterations 50

Table 4. Hyper-parameters used in the DeepRacer simulations.

Hyperparameter Value
Num. of rollout episodes 20

Num. of rollout episodes when using πteacher 2
Num. training epochs 8

Discount (γ) 0.999
Learning rate 3e-4

GAE parameter (λ) 0.95
Beta entropy 0.001

Cross-entropy weight (β0) 0.2
Advantage Threshold (ζ) 0.2

Single-car - Num. REPAINT iterations 4
Multi-car - Num. REPAINT iterations 20

Table 5. Hyper-parameters used in the StarCraft II simulations.

Hyperparameter Value
Num. of rollout episodes 2

Num. of rollout episodes when using πteacher 2
Num. training epochs 6

Discount (γ) 0.99
Learning rate 3e-5

GAE parameter (λ) 0.95
Beta entropy 0.01

Cross-entropy weight (β0) 0.1
Advantage Threshold (ζ) 0.2

Num. REPAINT iterations 25

PySC26. Regarding the advantage estimates, we use the
generalized advantage estimator (GAE) (Schulman et al.,
2015b). If not specified explicitly in the paper, we always
use Adam as the optimizer with minibatch size as 64, clip-
ping parameter ε as 0.2, and βk+1 = 0.95βk throughout the
experiments. The other hyper-parameters are presented in
Tables 3-5.

6https://github.com/deepmind/pysc2

https://github.com/NervanaSystems/coach
https://gym.openai.com/envs/#mujoco
https://github.com/deepmind/pysc2

REPAINT: Knowledge Transfer in Deep Reinforcement Learning

0 50 100 150 200
evaluation iteration

12

10

8

6

4
m

ea
n

re
wa

rd

1:1
2:1

0 50 100 150 200
evaluation iteration

14

12

10

8

6

4

m
ea

n
re

wa
rd

1:1
2:1

Figure 10. Evaluation performance for MuJoCo-Reacher, averaged
across five runs. Left: Teacher task is similar to the target task.
Right: Teacher task is dissimilar to the target task.

0 250 500 750 1000
evaluation iteration

0

1000

2000

3000

4000

5000

m
ea

n
re

wa
rd

Baseline
= 0
= 0.8
= 1.2
= 1.5

Figure 11. REPAINT performance for MuJoCo-Ant with different
advantage thresholds in experience selection, averaged across three
runs. Same teacher policy is used for all thresholds.

C. Extensive Experimental Results
C.1. Discussion on Alternating Ratios

In Algorithm 2, we alternate representation transfer and
instance transfer after each iteration. Here, we aim to il-
lustrate the effect of using different alternating ratios by
the MuJoCo-Reacher environment. We compare the 1:1
alternating with a 2:1 ratio, namely, two on-policy repre-
sentation transfer (kickstarting) iterations before and after
an off-policy instance transfer iteration. The evaluation per-
formance is shown in Figure 10. When the teacher task is
similar to the target task, adopting more kickstarted train-
ing iterations leads to faster convergence, due to the policy
distillation term in the loss function. On the other hand,
when the task similarity is low, instance transfer contributes
more to the knowledge transfer due to the advantage-based
experience selection. Therefore, we suggest to set the alter-
nating ratio in Algorithm 2, or the α1 and α2 parameters in
Algorithm 1 and Algorithm 2, according to the task simi-
larity between source and target tasks. However, the task
similarity is usually unknown in most of the real-world ap-
plications, or the similarities are mixed when using multiple
teacher policies. It is interesting to automatically learn the
task similarity and determine the best ratio/parameters be-
fore actually starting the transfer learning. We leave the
investigation of this topic as a future work.

C.2. Advantage Threshold Robustness in MuJoCo-Ant

Figure 11 indicates that our REPAINT algorithm is robust
to the threshold parameter when ζ > 0. Similar learning

0 5 10 15
evaluation iteration

100

200

300

400

m
ea

n
re

wa
rd

Baseline
=0
=0.2
=0.4

(a) Outer-lane task with inner-
lane teacher

0 5 10 15 20
evaluation iteration

100

200

300

m
ea

n
re

wa
rd

Baseline
=0
=0.2
=0.4

(b) Inner-lane task with outer-
lane teacher

Figure 12. Evaluation performance with respect to different ζ’s,
averaged across five runs.

0 5 10 15
evaluation iteration

100

200

300

400

m
ea

n
re

wa
rd

Baseline
0=0.1
0=0.2
0=0.3

(a) Outer-lane task with inner-
lane teacher

0 5 10 15
evaluation iteration

100

200

300

m
ea

n
re

wa
rd

Baseline
0=0.1
0=0.2
0=0.3

(b) Inner-lane task with outer-
lane teacher

Figure 13. Evaluation performance with respect to different initial
β0’s, averaged across five runs. Here we fix the β update to be
βk+1 = 0.95βk.

0 5 10 15
evaluation iteration

100

200

300

400

m
ea

n
re

wa
rd

Baseline
k + 1 = 0.95 k

k + 1 = 0.9 k

k + 1 = 0.8 k

(a) Outer-lane task with inner-
lane teacher

0 5 10 15
evaluation iteration

100

200

300

m
ea

n
re

wa
rd

Baseline
k + 1 = 0.95 k

k + 1 = 0.9 k

k + 1 = 0.8 k

(b) Inner-lane task with outer-
lane teacher

Figure 14. Evaluation performance with respect to different β
schedules, averaged across five runs.

progresses are observed from training with different ζ val-
ues.

C.3. More Results on DeepRacer Single-car Time Trial

In the DeepRacer single-car time-trial task, we also study
the effect of different cross-entropy weights βk and instance
filtering thresholds ζ, as mentioned in the paper. We first
present the results of instance transfer learning with different
ζ values in Figure 12, where we can again see that our
proposed advantage-based experience replay is robust to the
threshold parameter.

We then study the performance of training with different
cross-entropy loss weights βk. First, we fix the diminishing
factor to be 0.95, namely, βk+1 = 0.95βk, and test differ-
ent β0’s. From Figure 13, we can see that training with all
β0 values can improve the initial performance compared to
the baseline. However, when the teacher task is different

REPAINT: Knowledge Transfer in Deep Reinforcement Learning

Table 6. Summary of wall-clock time of experiments.

Env. Training Teacher Target TBaseline TKS TIT TREPAINT
hardware type score (hrs) (pct. reduced) (pct. reduced) (pct. reduced)

Reacher laptop similar -7.4 2.1
0.6 (71.4%) 1.1 (47.6%) 0.4 (81.0%)

different 0.9 (57.1%) 1.4 (33.3%) 0.6 (71.4%)

Ant laptop similar 3685 19.1 8.0 (58.1%) 12.8 (33.0%) 7.5 (60.7%)

Single-car AWS, p2 different 394 2.2 Not achieved Not achieved 1.5 (31.8%)
AWS, p2 different 345 2.3 Not achieved Not achieved 1.5 (34.8%)

Multi-car AWS, p2 sub-task 1481 16.4 4.8 (70.7%) 12.6 (23.2%) 4.5 (72.6%)
AWS, p2 diff/sub-task 2.7 9.6 9.3 (3.1%) 8.3 (13.5%) 3.7 (61.5%)

0 20 40 60 80
evaluation iteration

200

400

600

800

1000

m
ea

n
re

wa
rd

Baseline
Kickstarting
Instance transfer
REPAINT

20 40 60 80
evaluation iteration

20

40

60

80

m
ea

n
pr

og
re

ss
 (%

)

Baseline
Kickstarting
Instance transfer
REPAINT

(a) Task with advanced reward

0 20 40 60 80
evaluation iteration

15

10

5

0

m
ea

n
re

wa
rd

Baseline
Kickstarting
Instance transfer
REPAINT

20 40 60 80
evaluation iteration

20

40

60

m
ea

n
pr

og
re

ss
 (%

)

Baseline
Kickstarting
Instance transfer
REPAINT

(b) Task with progress-based reward

Figure 15. Evaluation performance for DeepRacer multi-car racing
against bot cars, using 4-layer CNN. The plots are smoothed for
visibility.

from the target task, larger β0 values, like 0.3, may reduce
the agent’s asymptotic performance since the agent over-
shoots learning from teacher policy. In addition, we then
fix β0 = 0.2 and test different βk schedules. The results
are shown in Figure 14. We can observe some trade-offs
between training convergence time and final performance.
By reducing the β values faster, one can improve the final
performance but increase the training time that needed to
achieve some certain performance level. It is of interest to
automatically determine the best βk values during training,
which needs further investigation. We leave it as another
future work.

C.4. Neural Network Architectures

For completeness of the experiments, we also provide some
results regarding different neural network architectures in
this section. Take the DeepRacer task of multi-car racing
against bot cars as an example, we have used three-layer

0 25 50 75 100
evaluation iteration

200

400

600

800

1000

m
ea

n
re

wa
rd

Baseline
Kickstarting
Instance transfer
REPAINT

0 25 50 75 100
evaluation iteration

20

40

60

m
ea

n
pr

og
re

ss
 (%

)

Baseline
Kickstarting
Instance transfer
REPAINT

(a) Task with advanced reward

0 20 40 60 80
evaluation iteration

15

10

5

0

m
ea

n
re

wa
rd

Baseline
Kickstarting
Instance transfer
REPAINT

0 20 40 60 80
evaluation iteration

20

40

60

80

m
ea

n
pr

og
re

ss
 (%

)

Baseline
Kickstarting
Instance transfer
REPAINT

(b) Task with progress-based reward

Figure 16. Evaluation performance for DeepRacer multi-car racing
against bot cars, using 5-layer CNN. The plots are smoothed for
visibility.

CNN as the default architecture in experiments. Here, we
present the comparison of REPAINT against other base-
lines with the evaluation performance using four-layer CNN
(Figure 15) and five-layer CNN (Figure 16).

C.5. Summary of Wall-Clock Training Time

In addition to the summary of reduction performance with
respect to number of training iterations presented in Table 1,
we also provide the data of wall-clock time in Table 6. Note
that we run StarCraft II experiments using different lap-
tops, the comparison might not be convincing, and hence
is omitted here. Again, we can see a significant reduction
by training with REPAINT, which reaches at least 60% be-
sides the DeepRacer single-car time trial. The kickstarted
training performs well when a similar teacher policy is used.
Although training with only instance transfer cannot boost
the initial performance, it still reduces the training cost to
achieve some specific performance level.

REPAINT: Knowledge Transfer in Deep Reinforcement Learning

D. Convergence of Off-policy Instance
Transfer

In order to apply the two time-scale stochastic approxima-
tion theory (Bhatnagar et al., 2009; Karmakar & Bhatnagar,
2018) for the convergence proof, the off-policy instance
transfer learning is required to satisfy Assumptions (A1)-
(A7) in Holzleitner et al. (2020). We now discuss what
assumptions we need to impose and how our instance trans-
fer meets those properties.

First of all, regarding Assumptions (A1) and (A7), we can
add some regularization terms in practice. For example, in
our experiments for this paper, we have added weight decay,
entropy regularization, and KL divergence terms.

Similar to Holzleitner et al. (2020), in order to satisfy As-
sumptions (A2) and (A6), we need to make assumptions
on the loss functions for actor and critic, i.e., Assumptions
(L1)-(L3) in Holzleitner et al. (2020). As mentioned before,
the actor loss is denoted by Jins(θ). Since the Q-function
estimates in Jins involves the critic function, we denote
the loss by Jins(θ, ν). We also denote the critic loss by
Jcritic(θ, ν). Since the actor πθ and the critic Vν are ap-
proximated by deep neural networks, they are considered to
be sufficiently smooth. Moreover, we should also assume
sufficient smoothness for the two loss functions.

Assumption D.1. The loss functions Jins(θ, ν) and
Jcritic(θ, ν) have compact support and are at least three times
continuously differentiable with respect to θ and ν.

Next, for each starting point (θ0, ν0), we want to find a
neighborhood such that it contains only one critical point.
Therefore, we further make the following two assumptions.

Assumption D.2. For each θ, all critical points of
Jcritic(θ, ν) are isolated local minima and there are only
finitely many. The local minima {λi(θ)}k(θ)

i=1 can be ex-
pressed locally as at least twice continuously differen-
tiable functions with associated domains of definitions
{Wλi(θ)}

k(θ)
i=1 .

Assumption D.3. Locally in Wλi(θ), Jins(θ, λi(θ)) has
only one local minimum.

Based on the above assumptions, for a fixed starting point
(θ0, ν0), we can construct a neighborhood W0 × U0, which
contains unique local minimum. Assumption (A3) is not
related to the instance transfer developed here, hence is
omitted. We can either make the assumption explicitly
for the update process, or follow the treatment mentioned
in Holzleitner et al. (2020), e.g., using online stochastic
gradient descent (SGD) for update.

The next assumption we need to make is on the learning
rates, i.e., Assumption (A4) in Holzleitner et al. (2020).

Denote the learning rates for actor and critic by ak and bk,
respectively.

Assumption D.4. The learning rates ak and bk should sat-
isfy: ∑

k

ak =∞,
∑
k

a2
k <∞,∑

k

bk =∞,
∑
k

b2k <∞,

and limk→∞ ak/bk = 0. Moreover, ak and bk are non-
increasing for all k ≥ 0.

At last, Assumption (A5) is satisfied as long as the transition
kernels for the MDPs are continuous with respect to the
weak topology in the space of probability measures. There-
fore, after imposing Assumptions D.1-D.4, we can directly
follow the two time-scale stochastic approximation theory
(Karmakar & Bhatnagar, 2018) and get that our proposed
off-policy instance transfer can converge to some local opti-
mum almost surely under the assumptions.

E. Convergence Rate and Sample Complexity
for REPAINT

The analysis and proof in this section is adapted from Kumar
et al. (2019). Without loss of generality, we first assume
that the teacher (source) task and student (target) task share
the same state and action spaces S ×A. Then we make the
following assumptions on the regularity of the student task
and the parameterized student policy πθ.

Assumption E.1. The reward function for student task is
uniformly bounded. Namely, denote the reward by Rstudent.
Then there exists a positive constant Ustudent, such that
Rstudent(s, a) ∈ [0, Ustudent] for any (s, a) ∈ S ×A.

Since the policy (actor) is parameterized by neural networks,
it is easy to see that πθ is differentiable. In addition, we
make an assumption on the corresponding score function.

Assumption E.2. The score function ∇ log πθ(a|s) is Lip-
schitz continuous and has bounded norm, namely, for any
(s, a) ∈ S × A, there exist positive constants LΘ and BΘ,
such that

||∇ log πθ1(a|s)−∇ log πθ2(a|s)|| ≤ LΘ‖θ1−θ2‖,∀θ1, θ2,
(E.1)

and
||∇ log πθ(a|s)|| ≤ BΘ,∀θ. (E.2)

Note that by the above two assumptions, one can also obtain
that the corresponding Q-function and objective function
are also absolutely upper bounded. In order to prove our
theorem, we also need the following i.i.d. assumption.

REPAINT: Knowledge Transfer in Deep Reinforcement Learning

Assumption E.3. In both teacher and student tasks, the
random tuples (st, at, s′t, a

′
t), t = 0, 1, . . . are drawn from

the stationary distribution of the Markov reward process
independently across time.

In practice, the i.i.d assumption does not hold (Dalal et al.,
2017). But it is common when dealing with the convergence
bounds in RL.

To ensure the Q-function evaluation and the stochastic esti-
mate of the gradient unbiased, we consider the case where
the Q-function admits a linear parameterization of the form
Q̂πθ (s, a) = ξTϕ(s, a) where ξ is a finite vector of real
numbers of size p and ϕ : S × A → Rp is a nonlinear
feature map. In practice, we normalize the feature represen-
tation to guarantee the feature norm is bounded. Therefore,
we can assume the norm boundedness of the feature map.

Assumption E.4. For any state-action pair (s, a) ∈ S ×A,
the norm of the student’s feature representation ϕ(s, a) is
bounded by a constant Cstudent.

To simplify the proofs, we will consider that the experiences
are not filtered. The experience filtering results in possibly
biased estimate of the gradient and impacts the variance
bounds (Greensmith et al., 2004). Next, we will assume that
the update of the critic (Q-function) converges by some rate.

Assumption E.5. The expected error of the critic parameter
for the student task is bounded by O(k−b) for some b ∈
(0, 1], i.e., there exists a positive constant L1, such that

E(||ξk − ξ?||) ≤ L1k
−b. (E.3)

Now we consider the update for actor in REPAINT. Assume
that the learning rates α1 and α2 are also iteration dependent.
Then we rewrite the actor update in Algorithm 1 as

θk+1 = θk + α1,k∇θJrep(θk) + α2,k∇θJins(θk). (E.4)

For on-policy representation transfer, the gradient is defined
by

∇Jrep(θ) = ∇JRL(θ)− βk∇Jaux(θ). (E.5)

More specifically,

∇JRL(θ) = Es∼dstudent
a∼πstudent

[∇ log πθ(a|s)Qπθ (s, a)], (E.6)

where dstudent is the limiting distribution of states under πθ,
and

∇Jaux(θ) = ∇H(πteacher||πθ) = −Eπteacher [∇θ log πθ(a|s)].
(E.7)

For simplicity, we assume βk = 0 for all k ≥ 0. Namely,
we ignore the cross-entropy term in the proof of our theorem.

However, we will present the extension of βk > 0 cases
later. Then the stochastic estimate of the gradient is unbiased
when the Q-function evaluation is unbiased, and is given by

∇̂Jrep(θ) = Q̂πθ (sT , aT)∇ log πθ(aT |sT), (E.8)

where sT , aT is the state-action pair collected following the
student policy πθ with some time step T .

The derivation of the instance transfer gradient estimate is
similar to the off-policy actor-critic (Degris et al., 2012),
which is defined as

∇̂Jins(θ) =
πθ(ãT |s̃T)
πteacher

Q̂πθ (s̃T , ãT)∇ log πθ(ãT |s̃T),
(E.9)

with some sample s̃T , ãT collected following the teacher
policy πteacher.

In summary, when updating the actor network. We collect
rollouts following both teacher policy and student policy,
and randomly select two samples for the following online
update:

θk+1 − θk = α1,kQ̂
πθ (sTk , aTk)∇ log πθ(aTk |sTk)

+ α2,k
πθ(ãTk |s̃Tk)

πteacher(ãTk |s̃Tk)
Q̂πθ (s̃Tk , ãTk)∇ log πθ(ãTk |s̃Tk).

(E.10)

Next, we assume that the estimate of the objectives’ gradient
conditioned on some filtration is bounded by some finite
variance.

Assumption E.6. Let ∇̂Lrep(θ) and ∇̂Lins(θ) be the esti-
mators of ∇Lrep(θ) and ∇Lins(θ), respectively. Then, there
exist finite σrep and σins such that

E(||∇̂Lrep(θ)||2|Fk) ≤
σ2

rep

4 , (E.11)

E(||∇̂Lins(θ)||2|Fk) ≤ σ2
ins
4 . (E.12)

Since the teacher policy is a deterministic policy distribution.
It is also common to assume some boundedness for πteacher
(Degris et al., 2012).

Assumption E.7. The teacher policy has a minimum posi-
tive value bmin ∈ (0, 1], such that πteacher(a|s) ≥ bmin for all
(s, a) ∈ S ×A.

Now we have stated all assumptions that are needed for
deriving the convergence rate and sample complexity. Next,
we introduce the proofs of two lemmas. The first lemma is
on the Lipschitz continuity of the objective gradients. The
proof can be found in, e.g., Zhang et al. (2020).

Lemma E.8. The objective gradients∇Jrep and∇Jins are
Lipschitz continuous, namely, there exist constants Lrep and
Lins, such that for any θ1 and θ2,

||∇Jrep(θ1)−∇Jrep(θ2)|| ≤ Lrep||θ1 − θ2||, (E.13)
||∇Jins(θ1)−∇Jins(θ2)|| ≤ Lins||θ1 − θ2||. (E.14)

REPAINT: Knowledge Transfer in Deep Reinforcement Learning

For simplicity, we can let L := max(Lrep, Lins), so L is the
Lipschitz constant for both inequalities above. Next we will
derive an approximate ascent lemma for a random variable
Wk defined by

Wk =Jrep(θk) + Jins(θk)

− L

σ2
rep

∞∑
j=k

α2
1,j + σ2

ins

∞∑
j=k

α2
2,j

 .
(E.15)

Since the rewards and score functions are bounded above
(see Assumptions E.1 and E.2), then we can also get there
exist constants Crep and Cins, such that

||∇Jrep|| ≤ Crep and ||∇Jins|| ≤ Cins. (E.16)

Lemma E.9. The sequence Wk defined above satisfies the
inequality

E[Wk+1|Fk] ≥Wk

− (Crep + Cins)CstudentBΘ(α1,k +
α2,k

bmin
)E[||ξk − ξ∗|||Fk]

+ α1,k||∇Jrep(θk)||2 + α2,k||∇Jins(θk)||2

+ (α1,k + α2,k)∇Jrep(θk)
>∇Jins(θk) (E.17)

Proof. By definition, we can write

Wk+1 =Jrep(θk+1) + Jins(θk+1)

− L

σ2
rep

∞∑
j=k+1

α2
1,j + σ2

ins

∞∑
j=k+1

α2
2,j

 .

(E.18)
By the Mean Value Theorem, there exists θ̃k ∈ [θk, θk+1],
such that

Jrep(θk+1) = Jrep(θk) + (θk+1 − θk)>∇Jrep(θ̃k). (E.19)

By Cauchy Schwartz inequality, we have

(θk+1 − θk)>(∇Jrep(θ̃k)−∇Jrep(θk))

≥− ‖θk+1 − θk‖‖∇Jrep(θ̃k)−∇Jrep(θk)‖
≥ − Lrep‖θk+1 − θk‖2

≥− L‖θk+1 − θk‖2.

(E.20)

After similar treatment for Jins(θ), we can get

Wk+1 ≥Wk + (θk+1 − θk)>(∇Jrep(θk) + Jins(θk))

− 2L‖θk+1 − θk‖2.
(E.21)

Take the expectation with respect to the filtration Fk and

substitue the definition for the actor updat. Since

E[‖θk+1 − θk‖2|Fk]
= E[‖α1,k∇̂Jrep(θk) + α2,k∇̂Jins(θk)‖2|Fk]
≤ 2(E[‖α1,k∇̂Jrep(θk)‖2|Fk] + E[‖α2,k∇̂Jins(θk)‖2|Fk])

≤ 1

2
(α2

1,kσ
2
rep + α2

2,kσ
2
ins),

(E.22)
we can get

E[Wk+1|Fk] ≥Wk + E[θk+1 − θk|Fk]>∇Jrep(θk)

+ E[θk+1 − θk|Fk]>∇Jins(θk).
(E.23)

Plug in the linear parameterized Q-function to the actor
update, we can get

θk+1 − θk = α1,kξ
T
k ϕ(sTk , aTk)∇ log πθ(aTk |sTk)

+ α2,k
πθ(ãTk |s̃Tk)
πteacher

ξTk ϕ(s̃Tk , ãTk)∇ log πθ(ãTk |s̃Tk).
(E.24)

To simplify the notation, let’s denote

Zkrep(θ) = α1,k(ξ
T
k − ξ∗)ϕ(sTk , aTk)∇ log πθ(aTk |sTk),

Zkins(θ) = α2,k(ξ
T
k − ξ∗)ϕ(s̃Tk , ãTk)∇ log πθ(ãTk |s̃Tk).

Take expectation conditioned on the filtration and get

E[θk+1 − θk|Fk] = E[Zkrep(θ)|Fk] + α1,k∇Jrep(θk)

+ E[Zkins(θ, k)
πθ(ãTk |s̃Tk)
πteacher

|Fk] + α2,k∇Jins(θk)

(E.25)

Then on both sides, take the inner product with ∇Jrep(θk):

E[θk+1 − θk|Fk]>∇Jrep(θk) = E[Zkrep(θ)|Fk]>∇Jrep(θk)

+ α1,k‖∇Jrep(θk)‖2

+ E[Zkins(θ)
πθ(ãTk |s̃Tk)
πteacher

|Fk]>∇Jrep(θk)

+ α2,k∇Jins(θk)
>∇Jrep(θk)

≥− |E[Zkrep(θ)|Fk]>∇Jrep(θk)|
+ α1,k‖∇Jrep(θk)‖2

− |E[Zkins(θ)
πθ(ãTk |s̃Tk)
πteacher

|Fk]>∇Jrep(θk)|

+ α2,k∇Jins(θk)
>∇Jrep(θk).

(E.26)

By the assumptions, we can get following bounds.

||ϕ(sTk , aTk)|| · ||∇ log πθ(aTk |sTk)||·||∇Jrep(θk)||
≤ CstudentBΘCrep,

(E.27)

REPAINT: Knowledge Transfer in Deep Reinforcement Learning

||πθ(ãTk |s̃Tk)
πteacher

|| · ||ϕ(s̃Tk , ãTk)|| · ||∇ log πθ(ãTk |s̃Tk)||

·||∇Jrep(θk)|| ≤ CstudentBΘCrep/bmin. (E.28)

Therefore, replace the bounds and we can get

E[θk+1 − θk|Fk]>∇Jrep(θk) ≥
−CstudentBΘCrepα1,kE[||ξk − ξ∗|||Fk]
+α1,k||∇Jrep(θk)||2

−CstudentBΘ
Crep

bmin
α2,kE[||ξk − ξ∗|||Fk]

+α2,k∇Jins(θk)
T∇Jrep(θk). (E.29)

Similarly, for the objectives corresponding to the instance
transfer, we can get

E[θk+1 − θk|Fk]T∇Jins(θk) ≥
−CstudentBΘCinsα1,kE[||ξk − ξ∗|||Fk]
+α1,k∇Jrep(θk)

>∇Jins(θk)

−CstudentBΘ
Cins

bmin
α2,kE[||ξk − ξ∗|||Fk]

+α2,k||∇Jins(θk)||2. (E.30)

Now we add them together. Let C = Crep + Cins, then

E[Wk+1|Fk] ≥Wk

− CCstudentBΘ(α1,k +
α2,k

bmin
)E[||ξk − ξ∗|||Fk]

+ α1,k||∇Jrep(θk)||2 + α2,k||∇Jins(θk)||2

+ (α1,k + α2,k)∇Jrep(θk)
>∇Jins(θk). (E.31)

We now present the main result which is the convergence
rate of Q-value-based REPAINT. Let Kε be the smallest
number of updates k required to attain a function gradient
smaller than ε,

Kε = min{k : inf
0≤m≤k

F(θm) < ε}, (E.32)

where Ak = α2,k/α1,k and

F(θm) = ||∇Jrep(θm)||2 +A||∇Jins(θm)||2

+ (1 +Ak)∇Jrep(θm)>∇Jins(θm). (E.33)

Theorem E.10. Suppose the representation transfer step
size satisfies α1,k = k−a for a > 0 and the critic update
satisfies Assumption E.5. The instance transfer step size
satisfies α2,k = Akα1,k for Ak ∈ R+. When the critic bias
converges to null as O(k−1) (b = 1), then TC(k) = k + 1
critic updates occur per actor update. Alternatively, if the

critic bias converges to null more slowly as O(k−b) with
b ∈ (0, 1) in Assumption E.5, then TC(k) = k critic updates
per actor update are chosen. Then the actor sequence defined
in Algorithm 1 satisfies

Kε ≤ O(ε−1/l), (E.34)

where l = min{a, 1− a, b}. Moreover, minimizing over a,
the resulting sample complexity depends on the attenuation
b of the critic bias as

Kε ≤
{
O(ε−1/b) b ∈ (0, 1/2)
O(ε−2) b ∈ (1/2, 1]

(E.35)

Proof. Substitute for Wk in Lemma E.9,

E[Jrep(θk+1)|Fk] + E[Jins(θk+1)|Fk]

− L(σ2
rep

∞∑
j=k+1

α2
1,j + σ2

ins

∞∑
j=k+1

α2
2,j)

≥ Jrep(θk) + Jins(θk)

− L(σ2
rep

∞∑
j=k

α2
1,j + σ2

ins

∞∑
j=k

α2
2,j)

− CCstudentBΘ(α1,k +
α2,k

bmin
)E[||ξk − ξ∗|||Fk]

+ α1,k||∇Jrep(θk)||2 + α2,k||∇Jins(θk)||2

+ (α1,k + α2,k)∇Jrep(θk)
>∇Jins(θk). (E.36)

Cancel some common terms from both sides and take the
total expectation, we can get

E[Jrep(θk+1)] + E[Jins(θk+1)]

≥ E[Jrep(θk)] + E[Jins(θk)]

− L(σ2
repα

2
1,k + σ2

insα
2
2,k)

− CCstudentBΘ(α1,k +
α2,k

bmin
)E[||ξk − ξ∗||]

+ E[α1,k||∇Jrep(θk)||2 + α2,k||∇Jins(θk)||2

+ (α1,k + α2,k)∇Jrep(θk)
>∇Jins(θk). (E.37)

Rearrange the terms and get

E[α1,k||∇Jrep(θk)||2 + α2,k||∇Jins(θk)||2

+ (α1,k + α2,k)∇Jrep(θk)
>∇Jins(θk)]

≤ E[Jrep(θk+1)]− E[Jrep(θk)]

+ E[Jins(θk+1)]− E[Jins(θk)]

+ CCstudentBΘ(α1,k +
α2,k

bmin
)E[||ξk − ξ∗||]

+ L(σ2
repα

2
1,k + σ2

insα
2
2,k). (E.38)

Denote by LHS and RHS the left hand side and right hand
side of the above equation. Define Uk = J(θ∗)− J(θk) for

REPAINT: Knowledge Transfer in Deep Reinforcement Learning

both rep and ins where θ∗ is the optimal parameters. Then

RHS = E[Uk,rep]− E[Uk+1,rep]

+ E[Uk,ins]− E[Uk+1,ins]

+ CCstudentBΘ(α1,k +
α2,k

bmin
)E[||ξk − ξ∗||]

+ L(σ2
repα

2
1,k + σ2

insα
2
2,k). (E.39)

Let Akα2,k/α1,k, then

LHS = α1,kE[||∇Jrep(θk)||2 +Ak||∇Jins(θk)||2

+ (1 +Ak)∇JTrep(θk)∇Jins(θk)], (E.40)

and

RHS = E[Uk,rep]− E[Uk+1,rep]+

E[Uk,ins]− E[Uk+1,ins]+

+ CCstudentBΘ(α1,k +
Akα1,k

bmin
)E[||ξk − ξ∗||]

+ L(σ2
repα

2
1,k + σ2

insA
2
kα

2
1,k). (E.41)

Divide both sides by α1,k and take the sum over {k −
N, . . . , k} for some integer 1 < N < k. Then we have

newLHS =

k∑
j=k−N

E
[
||∇Jrep(θj)||2 +Ak||∇Jins(θj)||2

+(1 +Ak)∇Jrep(θj)
>∇Jins(θj)

]
, (E.42)

and

newRHS =

k∑
j=k−N

1

α1,j
(E[Uj,rep]− E[Uj+1,rep])

+

k∑
j=k−N

1

α1,j
(E[Uj,ins]− E[Uj+1,ins])

+ CCstudentBΘ(1 +
Ak
bmin

)

k∑
j=k−N

E[||ξj − ξ∗||]

+ L(σ2
rep + σ2

insA
2
k)

k∑
j=k−N

α1,j . (E.43)

Rearrange the first two terms and get

newRHS =

k∑
j=k−N

(
1

α1,j
− 1

α1,j−1
)E[Uj,rep]

− 1

α1,k
E[Uk+1,rep] +

1

α1,k−N−1
E[Uk−N,rep]

+

k∑
j=k−N

(
1

α1,j
− 1

α1,j−1
)E[Uj,ins]

− 1

α1,k
E[Uk+1,ins] +

1

α1,k−N−1
E[Uk−N,ins]

+ CCstudentBΘ(1 +
Ak
bmin

)

k∑
j=k−N

E[||ξj − ξ∗||]

+ L(σ2
rep + σ2

insA
2
k)

k∑
j=k−N

α1,j . (E.44)

Since E[Uk+1,rep] ≥ 0 and E[Uk+1,ins] ≥ 0, we have

newRHS ≤
k∑

j=k−N

(
1

α1,j
− 1

α1,j−1
)E[Uj,rep]

+
1

α1,k−N−1
E[Uk−N,rep]

+

k∑
j=k−N

(
1

α1,j
− 1

α1,j−1
)E[Uj,ins]

+
1

α1,k−N−1
E[Uk−N,ins]

+ CCstudentBΘ(1 +
Ak
bmin

)

k∑
j=k−N

E[||ξj − ξ∗||]

+ L(σ2
rep + σ2

insA
2
k)

k∑
j=k−N

α1,j . (E.45)

Since we have rewards and score functions bounded above,
we can find two positive constants Drep and Dins, such that
Uk,rep ≤ Drep and Uk,ins ≤ Dins for all k. Substituting for

REPAINT: Knowledge Transfer in Deep Reinforcement Learning

these bounds and get

newRHS ≤
k∑

j=k−N

(
1

α1,j
− 1

α1,j−1
)Drep+

1

α1,k−N−1
Drep

+

k∑
j=k−N

(
1

α1,j
− 1

α1,j−1
)Dins +

1

α1,k−N−1
Dins

+ CCstudentBΘ(1 +
Ak
bmin

)

k∑
j=k−N

E[||ξj − ξ∗||]

+ L(σ2
rep + σ2

insA
2
k)

k∑
j=k−N

α1,j . (E.46)

Unravel the telescoping sums:

newRHS ≤
Drep +Dins

α1,k

+ CCstudentBΘ(1 +
Ak
bmin

)

k∑
j=k−N

E[||ξj − ξ∗||]

+ L(σ2
rep + σ2

insA
2
k)

k∑
j=k−N

α1,j . (E.47)

Plug in the assumption that α1,k = k−a, and the conver-
gence rate of the critic (replace ξk by ξTC(k)):

newRHS ≤ (Drep +Dins)k
a

+ CCstudentBΘ(1 +
Ak
bmin

)

k∑
j=k−N

L1TC(j)
−b

+ L(σ2
rep + σ2

insA
2
k)

k∑
j=k−N

j−a. (E.48)

Let

F(θj) := ||∇Jrep(θj)||2 +Ak||∇Jins(θj)||2

+ (1 +Ak)∇Jrep(θj)
>∇Jins(θj). (E.49)

When b ∈ (0, 1), we set TC(k) = k. Since
∑k
j=k−N j

−a ≤
(k1−a − (k −N − 1)1−a)/(1− a), we have

newLHS ≤ (Drep +Dins)k
a

+ CCstudentBΘ(1 +
Ak
bmin

)
L1

1− b
(k1−b − (k −N − 1)1−b)

+ (σ2
rep + σ2

insA
2
k)

L

1− a
(k1−a − (k −N − 1)1−a).

(E.50)

Divide both sides by k and set N = k − 1,

1

k

k∑
j=1

E[F(θj)] ≤ (Drep +Dins)k
a−1

+
L(σ2

rep + σ2
insA

2
k)

1− a
k−a

+ CCstudentBΘ(1 +
Ak
bmin

)
L1

1− b
k−b. (E.51)

By definition of Kε we have that E[F(θj)] > ε for j =
1, . . . ,Kε so

ε ≤ 1

Kε

Kε∑
j=1

E[F(θj)] ≤ O(Ka−1
ε + K−aε + K−bε)

(E.52)

Defining l = min{a, 1− a, b} and inverting, we have

Kε ≤ O(ε−1/l) (E.53)

When b = 1, we set TC(k) = k + 1. Similarly, we can get

newLHS ≤ (Drep +Dins)k
a

+ CCstudentBΘ(1 +
Ak
bmin

)L1(log(k + 1)− log(k −N))

+ (σ2
rep + σ2

insA
2
k)

L

1− a
(k1−a − (k −N − 1)1−a).

(E.54)

Divide both sides by k and set N = k − 1,

1

k

k∑
j=1

E[F(θj)] ≤ (Drep +Dins)k
a−1

+
L(σ2

rep + σ2
insA

2
k)

1− a
k−a

+ CCstudentBΘ(1 +
Ak
bmin

)L1
log(k + 1)

k
. (E.55)

Again, we can get

ε ≤ 1

Kε

Kε∑
j=1

E[F(θj)] ≤

O(Ka−1
ε +K−aε +

log(Kε + 1)

Kε
). (E.56)

Optimizing over a, we can get ε ≤ O(K−
1
2

ε) when b > 1
2 ,

and ε ≤ O(K−bε) when b ≤ 1
2 .

REPAINT: Knowledge Transfer in Deep Reinforcement Learning

E.1. Extension: Adding the Cross-entropy Term

In this section, we want to demonstrate that when the aux-
iliary cross-entropy is involved in Jrep, our results do not
change.

By definition:

∇Jaux(θ) = ∇H(πteacher||πθ) = −Eπteacher [∇θ log πθ(a|s)]

= −Eπθ
[
πteacher(a|s)
πθ(a|s)

∇θ log πθ(a|s)
]
. (E.57)

We now make an extra assumption on the student policy πθ.

Assumption E.11. The student policy has a minimum
positive value dmin ∈ (0, 1] : πθ(a|s) ≥ dmin for all
(s, a) ∈ S ×A.

We now have an unbiased estimate for ∇Jrep with cross-
entropy regularization

∇̂Jrep(θ) = Q̂πθ (sT , aT)∇ log πθ(aT |sT)

+ βk
πteacher(aT |sT)
πθ(aT |sT)

∇θ log πθ(aT |sT). (E.58)

where sT , aT is the state-action pair collected following the
student policy.

Then the actor update obeys

θk+1 − θk = α1,kQ̂
πθ (sTk , aTk)∇ log πθ(aTk |sTk)

+α1,kβk
πteacher(aTk |sTk)
πθ(aTk |sTk)

∇θ log πθ(aTk |sTk)

+α2,k
πθ(ãTk |s̃Tk)

πteacher(ãTk |s̃Tk)
Q̂πθ (s̃Tk , ãTk)∇ log πθ(ãTk |s̃Tk).

(E.59)

This results in having an additional term in Zkrep(θ) in the
proof of Lemma E.9.

Zkrep(θ) = α1,k(ξ
T
k − ξ∗)ϕ(sTk , aTk)∇ log πθ(aTk |sTk)

+ α1,kβk
πteacher(aTk |sTk)
πθ(aTk |sTk)

∇θ log πθ(aTk |sTk). (E.60)

Since

||πteacher

πθ
||.||∇ log πθ(aTk |sTk)|| ≤

BΘ

dmin
, (E.61)

it will only change the parameter in the proof of Lemma E.9
but not affect the final conclusion.

