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Abstract

A discriminatively trained neural net classifier

can fit the training data perfectly if all informa-

tion about its input other than class membership

has been discarded prior to the output layer. Sur-

prisingly, past research has discovered that some

extraneous visual detail remains in the logit vec-

tor. This finding is based on inversion techniques

that map deep embeddings back to images. We

explore this phenomenon further using a novel

synthesis of methods, yielding a feedforward in-

version model that produces remarkably high fi-

delity reconstructions, qualitatively superior to

those of past efforts. When applied to an adver-

sarially robust classifier model, the reconstruc-

tions contain sufficient local detail and global

structure that they might be confused with the

original image in a quick glance, and the ob-

ject category can clearly be gleaned from the

reconstruction. Our approach is based on Big-

GAN (Brock, 2019), with conditioning on logits

instead of one-hot class labels. We use our re-

construction model as a tool for exploring the

nature of representations, including: the influ-

ence of model architecture and training objectives

(specifically robust losses), the forms of invari-

ance that networks achieve, representational dif-

ferences between correctly and incorrectly classi-

fied images, and the effects of manipulating log-

its and images. We believe that our method can

inspire future investigations into the nature of in-

formation flow in a neural net and can provide

diagnostics for improving discriminative models.

We provide pre-trained models and visualizations

at https://sites.google.com/view/

understanding-invariance/home.
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1. Introduction

Discriminatively trained deep convolutional networks have

been enormously successful at classifying natural images.

During training, success is quantified by selecting the cor-

rect class label with maximum confidence. To the extent

that training succeeds by this criterion, the output must

be invariant to visual details of the class instance such as

brightness changes, object pose, background configurations

or small amounts of additive noise. Consequently, the net

is encouraged to discard information about the image other

than the class label. A dog is a dog whether the input image

contains a closeup of a black puppy in a field or an elegant

white poodle being walked on a city street.

The successive layers of a convolutional net detect increas-

ingly abstract features with decreasing spatial specificity,

from pixels to edges to regions to local object components—

like eyes and legs—to objects—like dogs and cats (Zeiler

and Fergus, 2014). Is is commonly believed that this se-

quence of transformations filters out irrelevant visual detail

in favor of information critical to discriminating among

classes. This view is generally supported by methods that

have been developed to invert internal representations and

recover the visual information that is retained by the repre-

sentation in a given layer (Mahendran and Vedaldi, 2015;

Dosovitskiy and Brox, 2016a;b; Zhang et al., 2016; Shocher

et al., 2020). Inversion of layers close to the input yield

accurate reconstructions, whereas inversion of deep layers

typically results in a loss of visual detail and coherence.

Attempts to determine what visual information remains in

the class output distribution, as expressed by the logits that

are passed into the final softmax layer, have not been partic-

ularly compelling. A notable attempt to invert the logits is

the work of Dosovitskiy and Brox (2016a), which recovered

colors, textures and the coarse arrangement of image ele-

ments from the logits. However, the reconstructions appear

distorted and unnatural, and in the eleven examples shown

in Dosovitskiy and Brox (2016a, Figure 5), only about half

of the object classes are identifiable to a human observer.

One would not confuse the reconstructions with natural im-

ages. Although many visual details are present, the essence

of the objects in the original image is often absent.

In this paper, we demonstrate that the logit vector of a

https://sites.google.com/view/understanding-invariance/home
https://sites.google.com/view/understanding-invariance/home
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discriminatively trained network contains surprisingly rich

information about not only the visual details of a specific

input image, but also the objects and their composition in a

scene. With a method that leverages a combination of previ-

ously proposed techniques (Dosovitskiy and Brox, 2016a;

Brock et al., 2018), we obtain remarkably high fidelity re-

constructions of a source image from the logit vector of

an ImageNet classifier. To give the reader a peek ahead,

examine Figure 1 and compare the original image in column

1 of each set of five similar images to our reconstruction in

column 2. We show that the failure of previous efforts was

not due to the loss of instance-specific visual information

in the logits, but due to the less powerful inversion ma-

chinery. Apart from offering high quality reconstructions,

our approach is computationally efficient and flexible for

studying the reconstructions under various manipulations

on the logits. We therefore leverage our method to explore

the properties of logit representations across architectures

and optimization methodologies; we particularly focus on

comparing the properties of robust logits, optimized with an

adversarial training loop (Goodfellow et al., 2015), and stan-

dard logits, trained with a standard (non-robust) optimizer.

Our contributions are as follows:

• We improve on existing feature inversion techniques

by leveraging conditional projection discriminators

and conditional batch-norm. Compared to prior work

Dosovitskiy and Brox (2016a;b), this method gener-

ates higher qualitative reconstructions and is simpler

to implement.

• We show that both classifier architecture and optimiza-

tion procedure impact the information preserved in

logits of a discriminatively trained model. In particular,

robust classifiers show significantly better reconstruc-

tions, suggesting that robust logits encode more object-

and shape-relevant detail than non-robust logits. Fur-

ther, a ResNet architecture appears to preserve more

geometric detail than an Inception architecture does.

• We leverage our inversion technique to explore logit

reconstructions for: (1) correctly classified images

(and transforms that yield the same response) (2) in-

correctly classified images, (3) adversarially attacked

images, (4) manipulations in logit space, including

shifts, scales, perturbations, and interpolations, and

(5) out-of-distribution data.

• Our experiments show that robust logits behave differ-

ently than non-robust logits. Most notably, our inver-

sion model of robust logits, trained on ImageNet, can

invert data from other datasets without retraining. This

supports the view that adversarial training should be

used in real-life scenarios when out of domain general-

ization is important.

2. Related research

Methods developed to invert representations in classification

networks fall into two categories: optimization based and

learning based. Optimization based methods perform gra-

dient descent in the image space to determine images that

yield internal representations similar to the representation

being inverted, thus identifying an equivalence class of im-

ages insofar as the network is concerned. Back propagation

through the classification network is used to compute gradi-

ents in input space. For example, Mahendran and Vedaldi

(2015) search over image space, x ∈ R
H×W×C , to mini-

mize a loss of the form:

L(x, x0) = ||Φ(x)− Φ(x0)||2 + λR(x), (1)

where x0 is the original image, Φ(x) is the deep feature

representation of input x, R is a natural image prior, and λ

is a weighting coefficient. One drawback of this method is

that the solution obtained strongly depends on the random

initialization of the optimization procedure. With λ = 0,

the inverted representation does not resemble a natural im-

age. Engstrom et al. (2019) argued that training a model

for adversarial robustness (Madry et al., 2017) provides a

useful prior to learn meaningful high-level visual represen-

tations. To make their argument, they reconstruct images

from representation vectors from the penultimate layer of

a robust model using the iterative method. They showed

reconstructions for a few examples and found that the re-

covered image is less sensitive to the initial state of the

gradient-based search, and that image-space gradients are

perceptually meaningful.

Learning based methods use a separate training set of {log-

its, image pixels} pairs to learn a decoder network that maps

a logit vector to an image (Dosovitskiy and Brox, 2016a;b;

Nash et al., 2019; Rombach et al., 2020). After training,

image reconstruction is obtained via feedforward computa-

tion without expensive iterative optimization. For example,

Dosovitskiy and Brox (2016b) train a decoder network via

a pixel reconstruction loss and an image prior. To improve

the blurry reconstructions, Dosovitskiy and Brox (2016a)

followed up with an approach most similar to ours, in which

they add an adversarial loss to the reconstruction and percep-

tual losses, which substantially improves the reconstruction

quality. We follow a similar approach, but make use of

recent advances in generative modelling such as conditional

projection discriminators and conditional batch normaliza-

tion. These modification give higher quality results, and

result in a model that is less sensitive to hyperparameter

tuning.

3. Models

We adopt a learning based approach for reconstructing from

the logits. Specifically, we train conditional GANs (Mirza
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Figure 1. Original images and logit reconstructions. In each set of five images, the columns are: (1) the original image input to the

classifiers, (2) reconstruction from our method using logits of a robust ResNet-152, (3) reconstruction from the method of Dosovitskiy and

Brox (2016a) using logits of a robust ResNet-152, (4) reconstruction from our method using logits of a standard (non-robust) ResNet-152,

and (5) reconstruction from our method using logits of a standard (non-robust) Inception-V3. The images are selected at random from the

test set with the only constraint that all classifiers produced the correct response to the images. These images were not used for training

either the classifier or the reconstruction method.
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pre-trained 
classifier

𝚽

generator
G
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Figure 2. A pretrained and fixed-weight classifier provides logit

vectors which are used by a conditional GAN (Mirza and Osindero,

2014) to generate reconstructions. The discriminator is based on

the projection discriminator of (Miyato and Koyama, 2018), which

is fooled when both the reconstructed image looks natural and is a

match to the logit vector of the real image, x.

and Osindero, 2014) to synthesize images. Given an original

image x that is passed through a pre-trained classifier Φ
to obtain an nc-dimensional logit vector, z = Φ(x), our

method focuses on obtaining a reconstruction of the input,

x̂, from a generative model G that is conditioned on z:

x̂ = G(z, ǫ), where ǫ ∼ N (0, 1) is a 120-dimensional noise

vector that is used to obtain diversity in the generator output.

We build on the work of Dosovitskiy and Brox (2016a)

by using state-of-the-art classifiers and a powerful, elegant

adversarial model. Specifically, we leverage batch-norm

generator conditioning—first used for style transfer (Du-

moulin et al., 2016; De Vries et al., 2017), and later used

in GANs (Miyato and Koyama, 2018; Brock et al., 2018);

and projection discriminators—first introduced in Miyato

and Koyama (2018) and further popularized by BigGAN

(Brock et al., 2018). Instead of conditioning the model com-

ponents using a one-hot class representation, we condition

on the target logit distribution, Φ(x0). Such feature-based

conditioning of the discriminator is similar to Boundless

(Teterwak et al., 2019), and the feature conditioning of

the generator is similar to SPADE (Park et al., 2019), also

known as GauGan.

The generator network is trained to synthesize images that

can fool a discriminator network. The weights of both net-

works are optimized jointly. The discriminator, D(x̄, z),
takes either a real image, x̄ ≡ x, or its corresponding gen-

erated image, x̄ ≡ x̂, along with the logit vector z which

is either produced by the classifier for the real image, or is

used to synthesize the generated image. The discriminator

outputs a scalar, a large positive value when x̄ is real and a

large negative value when x̄ is synthetic.

The discriminator consists of two terms, one of which makes

the judgment based on whether the image is naturalistic and

the other based on whether the image would have produced

the given logits. Inspired by the projection discriminator of

Miyato and Koyama (2018), we use

D(x̄, z) = (w1 +W2z)
⊤
Ψ(x̄), (2)

where Ψ(·) is a deep net that maps to a nd-dimensional

feature vector; and w1 ∈ R
nd , W2 ∈ R

nd×nc . The w1 term

helps discriminate images based on whether they appear real

or synthetic, and the W2 term helps to discriminate images

based on whether or not they are consistent with the logit

vector z. The overall architecture is shown in Figure 2.

For an image x and its corresponding logit vector z = Φ(x),
we have adversarial losses for the discriminator D, and the

generator G:

LD = Ex,ǫ

[

max
(

−1, D
(

Ḡ(z, ǫ), z
))

−min (1, D(x, z))
]

,

LG = −Ex,ǫ

[

D̄(G(z, ǫ), z)
]

,

with z = Φ(x), generator noise distribution ǫ ∼ N (0, 1),
and Ḡ and D̄ denoting the parameter-frozen generator and

discriminator, respectively.

The discriminator is optimized to distinguish real and syn-

thetic images based both on the images themselves and the

logit vector. As a result, the discriminator is driven to distill

the classification network and then apply a form of adversar-

ial perceptual loss (Johnson et al., 2016). The generator is

optimized to fool the discriminator by synthesizing images

that are naturalistic and consistent with the given logit vec-

tor. Consequently, the discriminator must implicitly learn

the mapping performed by the classifier Φ(x).

Dosovitskiy and Brox (2016a) were able to approximately

invert representations by using a loss with three terms—

adversarial, perceptual, and pixel reconstruction—which

requires hyperparameter tuning. The approach we present

has the advantage of using a single loss term and thereby

avoiding tuning of relative loss weights.

Most of the previous conditional GANs uses the one-hot

class label vector for conditioning the generators (Brock

et al., 2018). Our generator G conditions on the logic vector

z instead. Following Brock et al. (2018), we do not treat

the conditioning vector z as a conventional input layer for

G, but rather use z to modulate the operation of each batch-

norm layer for a given channel k and a given layer l in G as

follows:

y′lk =
ylk − E[ylk]

S[ylk]
γlk(z) + βlk(z) (3)

where y and y′ are the layer input and output; γ(.) and

β(.) are differentiable functions of z, which we implement

as two-layer MLPs; and the expectation E and standard

deviation S are computed over all units in channel k over all

inputs in the batch of examples being processed.
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4. Methods

We explore three pretrained ImageNet models: ResNet-152-

V2 (He et al., 2016), Robust ResNet-152-V2 (Qin et al.,

2019), and Inception-V3 (Szegedy et al., 2016). The imple-

mentations we used are linked under the model names.

We train generators to produce 64×64 images, and therefore

use 64 × 64 images for input. We modify the BigGAN

implementation in the compare_gan code base to support

our new conditioning, with the configuration as described

in the Supplementary Materials. We train the generator on

TPUv3 accelerators using the same ImageNet (Russakovsky

et al., 2015) training set that the classifiers are trained on,

and evaluate using the test set.

We also replicated the method of Dosovitskiy and Brox

(2016a), upgrading the AlexNet classifier they were invert-

ing to a state-of-the-art model. We were able to retrain their

method, using their official Caffe (Jia et al., 2014) imple-

mentation, to invert the logits from the robust ResNet-152.

5. Results

5.1. Comparing reconstruction methods

We begin by comparing reconstructions from our method

with those from the method of Dosovitskiy and Brox

(2016a). These reconstructions are shown in columns 2

and 3 of the image sets in Figure 1, respectively, and can be

compared to the original images in column 1. Both methods

are trained using robust ResNet-152 logits. The images

shown in the Figure were not used for training, either the

classifier or the reconstruction method. Although both meth-

ods capture color and texture well, and both methods seem

to generate sensible reconstructions in a quick glance for

scenes that are basically textures—such as the underwater

seascapes—the Dosovitskiy and Brox method fails in re-

covering object shape, details, and the relationships among

parts. For example, distinguishing one dog species from

another is quite challenging, and the rabbit is a fuzzy blur.

5.2. Reconstruction from different classifiers

We now turn to exploring reconstructions using our method,

trained for different classifiers. In particular we direct the

reader to columns 2, 4, and 5 of each image set, which cor-

respond to reconstructions using a robustly trained ResNet-

152 (Qin et al., 2019), a standard ResNet-152 (He et al.,

2016), and a standard Inception-V3 (Szegedy et al., 2016).

Between columns 2 and 4 we can compare adversarial ro-

bust training to standard training with the same architecture,

and between columns 4 and 5 we can compare different

architectures under the same (standard) training procedure.

Before examining these detailed differences, we note that

overall the reconstructions from all models capture signifi-

cant detail about the visual appearance of the image, more

than just its class label. In a quick glance, the reconstruc-

tion would convey very similar information as the original

image. In general, color, texture details, and backgrounds

are preserved. However, other information is not preserved,

including: left-right (mirror) orientation, precise positions

of the image elements, details of the background image con-

text, and the exact number of instances of a class (e.g., the

hockey players or the black, white, and brown dogs). The

loss of left-right reflection and image-element positions may

be due to the fact that these classifier models are trained

with the corresponding data augmentations. From those

reconstructions we conclude that the logit vector of a dis-

criminatively trained classifier network indeed contains rich

information about the input images that could be extracted

to reconstruct the input with high fidelity in visual details.

Engstrom et al. (2019) showed that optimization-based fea-

ture inversion is significantly improved when using robustly

trained classifier models. The reason could be either that

the input-space gradients are more perceptually relevant, or

that the robust features actually encode more information,

or both. Being a learning-based method, our model is not

dependent on the input-space gradients. As a result, when

we invert robust logits, we can answer the question whether

adversarial optimization encodes more instance level infor-

mation than standard optimization. Examining Figure 1,

the robust model reconstructions (column 2 of the image

sets) match the original image (column 1) better than the

corresponding non-robust model reconstructions (column

4), capturing both local and global detail of the images. For

example, the fourth-from-bottom row of the middle collec-

tion of images shows a small animal on human skin more

clearly; and the cello in the second row is more discernible

in the robust model than in the non-robust model. Therefore

our results are fully in agreement with prior work such as

Engstrom et al. (2019) and Santurkar et al. (2019): robust

models are indeed superior to non-robust models in terms

of information captured in the logit layer.

Comparing the two non-robust models, ResNet-152 (col-

umn 4) and Inception V3 (column 5), the reconstructions

from ResNet seem to be truer to the original image, but the

reconstructions from Inception are often closer to photo-

realism. For example, in the middle collection of images,

the red t-shirt is reconstructed as purple with a very dif-

ferent design. And in the first row, middle collection, the

ResNet dog better matches the original than the Inception

dog. The Inception images are more stereotypical. Interest-

ingly, ResNet-152 achieve much better classification perfor-

mance than Inception. It is a bit surprising that a model that

better at classification actually retains richer information

relevant to per-instance visual details in the logit vectors.

These findings are further supported by a small-scale human

https://github.com/tensorflow/models/tree/master/research/slim
https://github.com/tensorflow/models/tree/master/research/slim
https://tfhub.dev/deepmind/local-linearity/imagenet/1
https://tfhub.dev/google/imagenet/inception_v3/classification/4
https://github.com/google/compare_gan
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Our Robust ResNet vs. D&B Robust ResNet
Ours: 87.5%; D&B: 12.5%

Our Robust ResNet vs. Our Non-Robust ResNet
Robust: 76.5%; Non-robust: 23.5%

Our ResNet vs. Our Inception
ResNet: 52.7%; Inception: 47.3%

Table 1. Two-Alternative Forced Choice (4 subjects, 64 images):

“Which reconstruction is closer to the ground truth?"

Robust Ours 0.3138

Robust D+B 0.3092

Non-robust resnet 0.3755

Inception-V3 0.3881

Table 2. LPIPS Between Input and Reconstruction (lower is better)

evaluation (4 subjects). Each subject was asked to perform

three two-alternative forced choice tasks, each task with 64

images. In each task, the subjects compared pairs of recon-

structed images to a ground truth image and were asked to

indicate which of the reconstructions was closer to ground

truth. As the results in Table 1 indicate: (1) reconstruc-

tions by our method is overwhelmingly preferred to that

of Dosovitskiy and Brox (2016a) for the same architecture;

(2) a robust ResNet is overwhelmingly preferred to a non-

robust ResNet with the same loss; and (3) among non-robust

networks, ResNet is slightly preferred over Inception.

For each of the four networks, we also computed the LPIPS

metric (Zhang et al., 2018) over a set of images (Table 2).

We see that the metric generally supports the preferences

of Table 1 except for the comparison between our method

and that of Dosovitskiy and Brox (2016a), which slightly

favors the latter. We believe the reason for this discrepancy

is that Dosovitskiy and Brox (2016a) train by minimizing a

perceptual loss very similar to that of LPIPS. This highlights

the bigger challenge of creating metrics that are not also

used as optimization criteria.

5.3. Visualizing Model Invariances

Next, we explore the effects of resampling generator noise.

The generator takes as input a Gaussian noise vector, in ad-

dition to the logit vector from the pretrained classifier. The

noise primarily captures non-semantic properties (Figure 3,

4), mostly small changes in shape, pose, size, and position.

These properties reflect information that the classifier has

discarded from the logit vector because the generative model

considers all of them to be sensible reconstructions of the

same logit vector. One particularly interesting invariance

is left-right mirroring; our model frequently generates hori-

zontal flips of an image, but not vertical flips. For example,

the dog’s body is sometimes on the left and sometimes on

the right of the face. We do note, however, that the noise

resampling has a greater effect on the non-robust model

Figure 3. Variation in reconstructions due to noise resampling for

Robust ResNet-152. The upper-left tile is the input.

Figure 4. Variation in reconstructions due to noise resampling for

non-robust ResNet-152. The upper-left tile is the input.

Figure 5. Noise interpolation for robust (left) and non-robust (right)

ResNet-152. We linearly interpolate between random noise vec-

tors. The top-left image corresponds to one noise sample, the

lower-right corresponds to another, and all others are linear in-

terpolates arranged left-to-right, top-to-bottom. We find that the

reconstruction varies significantly less across noise inputs for the

robust model.

than on the robust model. This is easily seen in Figure

5, where we linearly interpolate between two noise sam-

ples. The robust model is much more stable along the axis

of interpolation. We provide many more examples in the

Supplementary Materials.

It is interesting to observe invariances being captured in

the logits and the generator recovering them via resampled

input noises. However, more subtle invariances may not

be captured if the discriminator has not learned to look for
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certain forms of variation as a cue.

5.4. Reconstructing incorrectly classified images

The samples we show in Figure 1 are of correctly classified

images. Does the correctness of classification have a signifi-

cant impact on the nature of reconstruction? If a sample is

misclassified because the net ‘sees’ a sample as belonging

to a different class, the reconstructions may reveal a categor-

ical shift to the incorrect class. One might therefore expect

reconstructions of correctly classified samples to be more

veridical than those of incorrectly classified samples. Figure

6 shows that even incorrectly classified samples from the

ImageNet test set are faithfully reconstructed. With this, we

infer that incorrect classifications are due to the network

drawing flawed decision boundaries rather than a seman-

tically flawed embedding. We provide more samples for

both the robust and non-robust models in the Supplementary

Materials.

We turn now to another kind of incorrectly classified sam-

ple: adversarial examples (Goodfellow et al., 2015), small

perturbed version of correctly classified images that result

in incorrect classification. We use FGSM (Goodfellow et al.,

2015) to generate adversarial examples, with attack strength

ǫ = 0.1, meaning that no pixel deviates by more than ǫ from

the source image. Figure 7 shows the original and adversar-

ial images alongside their reconstructions for the robust (left

two columnns) and non-robust (right two columns) ResNet

models. The correct and incorrect labels are shown beside

the images. We selected images for which successful at-

tacks could be found for both robust and non-robust models.

Unsurprisingly, the robust model is less sensitive to attacks.

Whereas reconstructions of adversarial images in the robust

Figure 6. Reconstruction of incorrectly classified samples using ro-

bust ResNet-152. Surprisingly, even incorrectly classified samples

are reconstructed faithfully.

(a) Robust (b) Non-robust

Figure 7. Reconstructions of adversarially attacked images using

the FGSM method (Goodfellow et al., 2015). Each column of

image pairs consists of the input and reconstructed image. The left

two columns are from robust ResNet and the right two columns

non-robust ResNet. Each pair of columns consists of the original

and adversarial images and reconstructions. The true labels are on

the very left, and the predicted labels after attack are also shown.

model appear not to lose significant fidelity relative to re-

constructions of the original images, the same is not entirely

true for the non-robust model. Take the fire engine (3rd

row from the bottom) as an example. The adversarial attack

leads to a reconstruction in which the vehicle changes color

and shape and no longer looks like a fire engine. For the ro-

bust model, the adversarial images seem to be reconstructed

about as well as ordinary incorrectly classified images (Fig-

ure 6); in both cases, visual elements and shapes remain

largely intact despite incorrect classification.

5.5. Logit manipulations

In this section, we explore how three manipulations of the

logits affect reconstructions: logit shifting, in which a con-

stant is added to each element of the logit vector; logit

scaling, in which each element of the logit vector is mul-

tiplied by a constant; and logit perturbation in which i.i.d.

Gaussian noises are added to each element of the logit vec-

tor. We hold the noise input of the generator constant when

manipulating the logit for each sample.

Figure 8a illustrates logit shifting. The five columns are re-

constructions of an original image (left side of Figure) with

each logit in the vector shifted by a constant. The upper and

lower sets of images correspond to robust and standard (non-
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robust) ResNet-152 models. For robust ResNet-152, the

constants for the five columns are −0.30, −0.15, 0.0, 0.15,

and 0.30; for standard ResNet-152, the constants are −0.1,

−0.05, 0.0, 0.05, and 0.1. For larger shifts, reconstructions

from standard ResNet lose meaningful contents.

For the robust model, the manipulation primarily affects

contrast and sharpness of the reconstructed image but also

has subtle effects on shape. For example, in the hockey

scene, the three players appear to morph into one with larger

shifts. The effect is much less pronounced in the non-robust

model, where there are some color changes with positive

shifts and content suppression for large negative shifts.

Because a softmax classifier’s output is invariant to logit

shifting (the shifts are normalized out), there is no training

pressure for the classifier to show any systematic relation-

ship between image features and logit shifts. It must thus be

an inductive bias of the training procedure that image con-

trast and sharpness is reflected on offsets to the logits (Scott

et al., 2021). We refer the reader to the Supplementary Mate-

rials for additional experimental support for the hypothesis

suggested by the reconstructions. We show that directly ma-

nipulating brightness of an image results in shifted robust

logits.

Figure 8b illustrates logit scaling. The five columns are

reconstructions with each logit in the vector scaled by a con-

stant, where the constants for the five columns are 10−0.3,

10−0.15, 100, 100.15, and 100.3. Surprisingly, for the ro-

bust model this manipulation also affects reconstruction

contrast and sharpness, almost exclusively. Scaling affects

the output confidence distribution: the larger the scaling

factor, the more binary model outputs become. Sensibly,

the robust classifier has lower confidence for blurry low

contrast images. The scaling manipulation appears to affect

only contrast and sharpness. During training, the classifier

loss is sensitive to changes in the logit scale. Consequently

it’s somewhat surprising that scale encodes only contrast

and sharpness, and content is well preserved across scale

changes. The robust classifier appears to use the embedding

direction to represent image content.

In the non-robust model, apart from the extreme ends of

the scaling, there is no significant change in brightness.

Furthermore, unlike in the robust model, there do seem to

be slight changes in content. For example, the coral reef

in the top row changes shape. Therefore, for non-robust

classifiers, embedding direction and scale encode content.

In Figure 8c, we show reconstructions in which the the logits

are perturbed by i.i.d. Gaussian noise N (µ = 0, σ2 = 0.55).
For both robust and non-robust models, image content is

affected by noise. For the robust model, the content is

not so much affected that one could not group together

the reconstructions from the same underlying logit vector.

(a) Shifted logits (b) Scaled logits (c) Perturbed logits
R

o
b

u
s

t
S

ta
n

d
a

rd
Orig.

Figure 8. Reconstructions formed by shifting, scaling, and perturb-

ing logits. The upper set of images is from robust ResNet-152

logits; the lower set is from standard ResNet-152 logits.

However, for the non-robust model the content changes

are much larger; indicating that non-robust logits are much

more tightly grouped in the output space. We verify this

quantitatively by selecting 10 random classes and comput-

ing per-class means of validation sample logit vectors. We

then measure l2 distances between samples from each class

to their class mean. For the non-robust model, the mean l2
distance is 42.33, compared to 43.78 for the robust model,

supporting the hypothesis that non-robust logits are grouped

more tightly. We note that noise added to the logits has a dif-

ferent effect than providing noise sample ǫ to the generator.

Additive logit noise changes content, whereas ǫ primarily

affects pose and location.

Given the similarity of reconstructions from nearby points

in logit space, we also explored the effect of interpolating

between the logit vectors of two distinct images. Figure 9

shows two sample reconstruction sequences, formed by

linear interpolation between logit vectors, one from the

robust model and one from the non-robust model. Although

we observe a smooth semantic continuum in which natural

looking images are obtained at each interpolation point for

both, the robust model has a smoother sequence. We show

many more examples in the supplementary materials. Other

researchers studying image reconstruction from logits have

also observed smooth interpolations (e.g., Dosovitskiy and

Brox, 2016a), though we appear to be the first to show more

organization in the space for robust models.

5.6. Reconstructing out-of-distribution data

To further understand how classifiers behave on out-of-

distribution (OOD) data, we reconstruct samples from non-

Imagenet datasets using a model trained on ImageNet. Both

the classifier used to construct the logits and the inversion

model are trained on ImageNet. ImageNet pre-training for

transfer learning is an extremely common and successful
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Figure 9. We compare non-robust logit interpolation (left) and ro-

bust logit interpolation (right). The upper left and lower right

images in each block are from the ImageNet test set. The interme-

diate images are obtained by reconstructing interpolations between

the logit vectors of these two images.

Figure 10. Reconstruction of CIFAR-100, MNIST, and FashionM-

NIST images with a model trained on ImageNet. The left column

is input, middle is Robust ResNet-152 reconstruction, right is

standard ResNet-152 reconstruction.

method, so it’s natural to ask what about the target dataset is

embedded in the features. In Figure 10, we compare the ro-

bustly trained ResNet-152 with the standard one on CIFAR-

100 (Krizhevsky, 2009), MNIST (LeCun et al., 2010), and

FashionMNIST (Xiao et al., 2017). It is notable that the

robust model offers substantially better reconstructions than

the non-robust model. This ability to encode OOD data

strongly supports claims of Salman et al. (2020) that robust

features are better for transfer learning.

6. Discussion

We summarize our results as follows.

• We obtain remarkably high fidelity reconstructions,

which allow the object class to be determined as well

as visual detail orthogonal to the class label. In con-

trast to current state-of-the-art reconstruction methods

(Dosovitskiy and Brox, 2016a; Engstrom et al., 2019),

our model preserves global coherence as well as local

features.

• Subjectively, robust ResNet produces better reconstruc-

tions than non-robust ResNet, suggesting that the ad-

versarial training procedure is effective in preserving

features that human observers identify as salient in an

image, even if non-class-related.

• Architecture matters. ResNet seems to better preserve

visual information than Inception. It seems likely that

the short circuit linear connections of ResNet allow

low level information to be propagated forward.

• We do not see a qualitative difference in reconstruction

fidelity for incorrectly classified images.

• For a robust ResNet-152, both logit shifts and rescaling

have have a similar effect—they influence the contrast,

sharpness, and brighness of reconstructions. The rela-

tionship for non-robust ResNet is similar but weaker.

• The correspondence between logit space and image

space is smooth, such that small perturbations to the

logits yield small perturbations to reconstructions,

and interpolating between logits produces reasonable

image interpolations. The interpolation produces a

smoother sequence for the robust model.

• The robust ResNet-152 encodes OOD data such as

CIFAR and MNIST much more faithfully than non-

robust ResNet-152, giving a clue as to why robust

models are better for transfer learning.

The degree to which the logit vector is invertible seems

quite surprising. After all, perfectly discriminative networks

should retain only class-relevant information and should be

invariant to differences among instances of a class.

Future work should focus on how to leverage what we learn

to design better systems. If robust classifiers result in more

invertible features, is it also true that invertible features

result in more robust classifiers? Can we use decoded inter-

polated logits as a form of semantic MixUp (Zhang et al.,

2017)? Additionally, it would be interesting to inspect and

analyze inversions from alternative architechtures such as

Vision Transformers (Dosovitskiy et al., 2020) and MLP-

Mixers (Tolstikhin et al., 2021).

We hope that these questions inspire further work which

improves learning systems.
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